Излучение хокинга возникает не на горизонте событий черных дыр. Ученые воссоздали загадочное излучение хокинга Излучение хокинга формула

Следуя общей теории относительности, существование черных дыр подразумевает простой факт: как только любой объект попадает за горизонт событий, в сердце черной дыры, возврата уже нет. Гравитационная сила этих областей настолько велика, что даже свет — самое быстрое явление во Вселенной — не может развить скорость, необходимую для преодоления притяжения. Следовательно, черные дыры не порождают и электромагнитное излучение. Однако в 1974 году молодой Стивен Хокинг предположил, что какое-то излучение все-таки существует. Звучит парадоксально? Все дело в квантовой механике.

Излучение Хокинга

Это теоретическое излучение получило название «излучение Хокинга». Грубо — очень грубо — можно сказать, что оно возникает как излучение в результате температуры самой черной дыры, которая обратно пропорциональна ее массе. Если его удастся обнаружить — то это будет значить, что черные дыры рассеиваются, пусть и чрезвычайно медленно. Однако, согласно математическим расчетам, это излучение слишком слабое, чтобы его могли зарегистрировать современные приборы.

Что можно сделать? Попытаться воссоздать в лаборатории имитацию черной дыры. Не волнуйтесь, это не вызовет схлопывания пространства: ученые могут имитировать такие явления с помощью жидкости и звуковых волн внутри специальных резервуаров, из конденсатов Бозе-Эйнштейна или из света внутри оптоволокна. Физик Ульф Леонхардт на страницах журнала Physics World поясняет, что «излучение Хокинга встречается гораздо чаще, чем мы предполагали. Вероятно, оно возникает всякий раз, когда создается горизонт событий — будь то астрофизика или свет в оптических материалах, волны жидкости и даже ультрахолодные атомы».

Очевидно, что на нашей планете невозможно создать такую же мощную гравитацию, как внутри черных дыр (и спасибо за это). При этом математические измерения аналогичны той математике, что описывает черные дыры в общей теории относительности. В качестве итогового экспериментального метода команда исследователей выбрала оптоволоконную систему, разработанную Леонхардтом несколько лет назад.

Как это работает

Внутри оптического волокна существуют микроскопические узоры, играющие роль своеобразного канала. Когда свет входит в волокно, то он слегка замедляется. Для создания аналога горизонта событий по волокну пускают два очень быстрых импульса лазерного излучения разных цветов. Первый мешает второму, в результате чего и возникает эффект горизонта событий, наблюдаемый как изменение показателя преломления волокна.

Осуществив это, команда использовала дополнительное световое излучение, что привело к увеличению интенсивности излучения с отрицательной частотой. Говоря проще, «негативный» свет черпал энергию прямо из горизонтов событий — признак, который говорит об успешной симуляции излучения Хокинга.

Доказали или все-таки нет?

Несмотря на то, что результат был успешным, конечной частью исследования является излучение не вынужденного, а спонтанного излучения Хокинга. Вынужденное — как в случае этого эксперимента — требует внешнего электромагнитного воздействия, в то время как излучение Хокинга, исходящее от черной дыры, будет спонтанным, то есть без стимуляции извне.

Другое важное обстоятельство заключается в том, что невозможно в точности воссоздать в лабораторной среде условия вблизи горизонта событий. К примеру, в данном случае нельзя быть на 100% уверенным, что излучение не было создано в результате самого эксперимента, хотя ученые и уверены в обратном.

В любом случае, у команды появилась еще одна загадка — оказалось, что полученный результат не совпадает с тем, что ожидали исследователи. «На бумаге наши расчеты показывают, что излучение Хокинга должно быть более сильным чем то, что мы наблюдали в итоге», отметил Леонхардт.

Поскольку квантовая механика не играет никакой роли в общей теории относительности Эйнштейна, решение Шварцшильда для чёрных дыр основывается исключительно на классической физике. Однако надлежащее рассмотрение вещества и излучения - таких частиц, как фотоны, нейтрино и электроны, которые могут переносить массу, энергию и энтропию из одного места в другое - требует привлечения квантовой механики. Чтобы в полной мере оценить природу чёрных дыр и разобраться, как они взаимодействуют с веществом и излучением, необходимо продлить решение Шварцшильда в квантовую область. Это нелегко. Несмотря на достижения теории струн (а также других подходов, которых мы не коснулись, таких как петлевая квантовая гравитация, твисторы, теория топосов), мы по-прежнему находимся на начальном уровне в наших попытках совместить квантовую физику и теорию гравитации. А в далёких 1970-х было ещё меньше теоретических оснований для понимания того, как квантовая механика может влиять на гравитацию.

Однако были физики, которые работали в этом направлении и которым удалось добиться частичного объединения квантовой механики и общей теории относительности, рассмотрев распространение квантовых полей (квантовая часть) в фиксированной, но искривлённой пространственно-временной среде (гравитационная часть). Как было указано в главе 4, полное объединение должно, как минимум, содержать рассмотрение не только квантовых флуктуаций полей на пространстве-времени, но также квантовых флуктуаций самого пространства-времени. Простоты ради это усложнение не учитывалось в первых работах. Хокинг воспользовался частичным объединением и рассмотрел, как квантовые поля будут вести себя в очень особой области пространства-времени - в окрестности чёрной дыры. То, что он обнаружил, поразило физиков до глубины души.

Хорошо известное свойство квантовых полей в обычном, пустом, неискривлённом пространстве-времени состоит в том, что из-за квантовых флуктуаций парам частиц, например электрону и его античастице, позитрону, позволяется мгновенно возникнуть из ничего, немножко пожить, после чего столкнуться друг с другом, и в результате взаимно аннигилировать. Этот процесс, квантовое рождение пары , интенсивно изучался как теоретически, так и экспериментально, и был разобран со всех сторон.

Новой характеристикой квантового рождения пары является то, что если один партнёр имеет положительную энергию, то из закона сохранения энергии следует, что другой партнёр должен обладать тем же количеством отрицательной энергии - понятие, которое не имеет смысла в классической вселенной.Однако, благодаря принципу неопределённости имеется своеобразная лазейка, позволяющая частицам иметь отрицательную энергию, при условии, что возникнув, они не сильно долго будут злоупотреблять гостеприимством. Если частица существует лишь мимолётно, то квантовая неопределённость говорит, что никакому эксперименту не хватит времени, даже в принципе, определить знак её энергии. Именно такова основная причина, почему пара частиц обречена квантовыми законами на быструю аннигиляцию. Поэтому при квантовых флуктуациях пары частиц беспрестанно рождаются и аннигилируют, рождаются и аннигилируют, на фоне неизбежной непрекращающейся игры квантовой неопределённости в пространстве, которое иначе оставалось бы пустым.


Хокинг заново рассмотрел вездесущие квантовые флуктуации, но не в пустом пространстве, а вблизи горизонта событий чёрной дыры. Он обнаружил, что часто всё выглядит как обычно. Пары частиц образуются случайным образом; быстро находят друг друга; после чего аннигилируют. Но время от времени происходит нечто новое. Если частицы образуются достаточно близко к краю чёрной дыры, то одну из них может затянуть внутрь, а другая улетит в пространство. В отсутствии чёрной дыры такого никогда не происходит, потому что, если частицы не аннигилируют друг с другом, то частица с отрицательной энергией сможет пробиться сквозь защитную рябь квантовой неопределённости. Хокинг осознал, что столь радикальное закручивание пространства и времени чёрной дырой может привести к тому, что частицы, обладающие отрицательной энергией с точки зрения наблюдателя снаружи чёрной дыры, окажутся частицами с положительной энергией для несчастного наблюдателя внутри неё. Таким образом, чёрная дыра предоставляет частицам с отрицательной энергией надёжное убежище, поэтому нужда в квантовой маскировке отпадает. Возникшие частицы могут избежать взаимной аннигиляции и заявить о своей независимой жизни.104

Частицы с положительной энергией летят наружу от горизонта событий, поэтому издалека они выглядят как некое излучение, получившее название излучение Хокинга . Частицы с отрицательной энергией поглощаются чёрной дырой, поэтому их нельзя непосредственно наблюдать, однако их можно обнаружить косвенным способом. Подобно тому как масса чёрной дыры растёт при поглощении всего, что обладает положительной энергией, она также уменьшается при поглощении всего, что имеет отрицательную энергию. Эти два процесса в совокупности делают чёрную дыру похожей на кусок горящего угля: чёрная дыра беспрестанно излучает направленный наружу поток излучения по мере того как её масса уменьшается.105 То есть, если добавить квантовую механику, то чёрные дыры перестают быть абсолютно чёрными. Открытие Хокинга было как гром среди ясного неба.

Однако это вовсе не означает, что типичная чёрная дыра нагрета до красного свечения. По мере того как поток частицы летит от чёрной дыры, он должен преодолевать невероятное сопротивление со стороны её гравитационного притяжения. На это частицы тратят свою энергию и поэтому значительно остывают. Хокинг вычислил, что наблюдатель, находящийся достаточно далеко от чёрной дыры, обнаружит, что температура остаточного «утомлённого» излучения обратно пропорциональна массе чёрной дыры. Огромная чёрная дыра, подобная находящейся в центре нашей Галактики, имеет температуру менее триллионной доли градуса выше абсолютного нуля. Чёрная дыра с массой Солнца будет иметь температуру меньше чем миллионная доля градуса, даже меньше, чем температура в 2,7 градуса реликтового излучения, оставшегося после Большого взрыва. Чтобы температура чёрной дыры была достаточно высока, чтобы приготовить барбекю для всей семьи, её масса должна быть примерно в десять тысяч раз больше массы Земли, а это экстраординарно малая величина в космических масштабах.

Однако само значение температуры чёрной дыры не столь важно. Хотя излучение, идущее от удалённых астрофизических чёрных дыр, не сможет осветить ночное небо, тот факт, что они действительно имеют температуру, что они действительно излучают, означает, что эксперты поспешили отбросить гипотезу Бекенштейна о том, что чёрные дыры действительно обладают энтропией. Хокинг великолепно справился с этой задачей. Его теоретические вычисления, определяющие температуру данной чёрной дыры и испускаемого ею излучения, дали все необходимые данные для определения количества энтропии, которую, согласно стандартным законам термодинамики, должна иметь чёрная дыра. Полученный ответ оказался пропорционален площади поверхности чёрной дыры, как и предполагал Бекенштейн.

Итак, к концу 1974 года Второй закон вновь стал законом. Открытия Бекенштейна и Хокинга выявили, что в любой ситуации полная энтропия возрастает, если при этом учитывать не только энтропию обычного вещества и излучения, но также и находящуюся внутри чёрных дыр и определяемую площадью их полной поверхности. Вместо того чтобы быть стоком для энтропии и приводить к нарушению Второго закона, чёрные дыры играют активную роль в исполнении этого закона во вселенной с постоянно увеличивающимся беспорядком.

Это заключение вызвало долгожданное облегчение. Для многих физиков Второй закон, основанный на казалось бы неоспоримых статистических рассуждениях, стал священным как практически никакой другой в науке. Его воскрешение означало, что с этим миром опять всё в порядке. Но со временем появилась небольшая, но первостепенно важная запись в бухгалтерской книге энтропии, которая показала, что вопрос о справедливости Второго закона не является самым приоритетным. Эта честь досталась задаче о месте хранения энтропии , задаче, важность которой станет очевидной, когда мы выявим глубокую связь между энтропией и центральной темой этой главы - информацией.

Хокинг и микрогравитация (Vomit Comet)

По такому сценарию, вся другая информация о материи, которая образовала черную дыру или падает в нее (для которой используются «волосы» как метафора), «исчезает» за горизонтом событий черной дыры и, следовательно, сохраняется, но будет недоступна для внешних наблюдателей.

В 1973 году Хокинг ездил в Москву и виделся с советскими учеными Яковом Зельдовичем и Алексеем Старобинским. В ходе дискуссий с ними об их работе, они показали ему, как принцип неопределенности приводит к тому, что черные дыры должны излучать частицы. Это поставило под вопрос второй закон термодинамики черной дыры Хокинга (то есть черные дыры не могут становиться меньше), поскольку за счет энергии они должны терять и массу.

Более того, это поддерживало теорию, выдвинутую Якобом Бекенштейном, аспирантом Университета Джона Уилера, что черные дыры должны иметь конечную ненулевую температуру и энтропию. Все это противоречило «теореме об отсутствии волос». Хокинг вскоре пересмотрел свою теорему, показав, что когда учитываются квантово-механические эффекты, оказывается, что черные дыры испускают тепловое излучение определенной температуры.

В 1974 году Хокинг представил свои выводы и показал, что черные дыры излучают радиацию. Этот эффект стал известен как «излучение Хокинга» и сначала был противоречивым. Но к концу 70-х и после публикации дальнейших исследований открытие было признано в качестве существенного прорыва в области теоретической физики.

Тем не менее одним из следствий такой теории было то, что черные дыры постепенно теряют массу и энергию. Из-за этого черные дыры, которые теряют больше массы, чем приобретают, должны сжиматься и в конечном счете исчезать - сейчас это явление известно как «испарение» черной дыры.

В 1981 году Хокинг предположил, что информация в черной дыре необратимо теряется, когда черная дыра испаряется, что стало известно как «информационный парадокс черной дыры». Он утверждал, что физическая информация может навсегда исчезнуть в черной дыре, позволяя множеству физических состояний приходить к единому.

Теория оказалась спорной, поскольку нарушала два фундаментальных принципа квантовой физики. Квантовая физики утверждает, что полная информация физической системы - состояние ее материи (масса, положение, спин, температура и т. п.) - закодирована в ее волновой функции до тех пор, пока функция не коллапсирует. Это, в свою очередь, приводит к двум другим принципам.

Первый - квантовый детерминизм - утверждает, что - учитывая настоящую волновую функцию - будущие изменения уникально определяются оператором эволюции. Второй - обратимость - утверждает, что оператор эволюции имеет обратную сторону, а значит прошлые волновые функции также уникальны. Сочетание этих принципов приводит к тому, что информация о квантовом состоянии материи всегда должна сохраняться.

Хокинг в Белом доме на вручении Медали свободы

Предположив, что информация исчезает после испарения черной дыры, Хокинг по сути создал фундаментальный парадокс. Если черная дыра может испаряться, тем самым приводя к исчезновению всей информации о квантовой волновой функции, тогда информация может быть в принципе утрачена навсегда. Этот вопрос стал предметом дискуссий среди ученых и остается практически нерешенным по сей день.

И все же к 2003 году среди физики сложился определенный консенсус на тему того, что Хокинг был неправ о потере информации в черной дыре. На лекции в Дублине в 2004 году он признал, что проиграл пари на эту тему Джону Прескиллу из Калтеха (которое заключил в 1997 году), но описал собственное и несколько спорное решение проблемы парадокса: возможно, черные дыры могут иметь больше чем одну топологию.

В работе 2005 года, которую он опубликовал на эту тему - «Потеря информации в черных дырах», - он утверждал, что информационный парадокс объясняется изучением всех альтернативных историй вселенных, когда информационная потеря в одной с черными дырами компенсируется в другой без них. В итоге в январе 2014 года Хокинг назвал информационный парадокс черной дыры своей «крупнейшей ошибкой».

Хокинг и Питер Хиггс на Большом адронном коллайдере

В дополнение к расширению нашего понимания черных дыр и космологии с применением ОТО и квантовой механики, Стивен Хокинг также сыграл важную роль в привлечении к науке широкой аудитории. За свою долгую научную карьеру он также опубликовал много популярных книг, много путешествовал и читал лекции, появлялся на телешоу и в фильмах.

За время своей карьеры Хокинг также стал заслуженным педагогом, лично выпустив 39 успешных студентов с докторской степенью. Его имя останется и в истории поиска внеземного разума, и развитии робототехники и искусственного интеллекта. 20 июля 2015 года Стивен Хокинг помог запустить Breakthrough Initiatives, инициативу поиска внеземной жизни во Вселенной.

Вне всяких сомнений, Стивен Хокинг - один из самых известных ученых, живущих сегодня. Его работа в области астрофизики и квантовой механики привела к прорыву в нашем понимании пространства и времени, а также породила множество споров среди ученых. Едва ли кто-нибудь из живущих ныне ученых сделал столько для привлечения внимания широкой публики к науке.

Есть в Хокинге что-то от его предшественника Альберта Эйнштейна - другого влиятельного и знаменитого ученого, который сделал все для борьбы с невежеством и развития науки. Но особенно впечатляет то, что все, что Хокинг делал в своей жизни (с определенного момента), происходило в упорной борьбе с дегенеративным заболеванием. (Почитайте, например, оставаясь совершенно недвижимым).

Больше 52 лет Хокинг прожил с болезнью, которая, по мнению врачей, должна была унести его жизнь за 2 года. И когда наступит день, когда Хокинга уже не будет с нами, время, несомненно, поместит его рядом с такими людьми, как Эйнштейн, Ньютон, Галилей и Кюри, в качестве одного из величайших ученых в истории человечества.

Дмитрий Трунин

Редактор

Что общего между излучением Хокинга и эффектом Унру?

Излучение Хокинга возникает на границе черной дыры и заставляет ее постепенно испаряться, а из-за эффекта Унру равномерно ускоряющийся наблюдатель видит рождение частиц с постоянной температурой, которых нет в инерциальных системах отсчета. Несмотря на то, что эти эффекты кажутся принципиально разными, в действительности оба они связаны с изменением вакуумного состояния вблизи границы двух причинно-несвязных областей пространства-времени. В этом блоге мы рассмотрим эти два эффекта и попробуем разобраться, чем же они так похожи.


fs999 / flickr.com

Для начала вспомним, что в Общей теории относительности существует так называемый принцип эквивалентности , который утверждает, что равномерно ускоряющаяся система неотличима от системы, помещенной в однородное гравитационное поле (то есть инертная и гравитационная масса совпадают). Другими словами, пассажиры космического корабля, которые могут ставить на его борту произвольные физические опыты, но не имеют связи с внешним миром, не смогут с уверенностью сказать, попал их корабль в поле притяжения какой-нибудь массивной звезды или движется с постоянным ускорением. В частности, если ускорение корабля будет равно ускорению свободного падения на поверхности Земли g , космонавты будут чувствовать себя абсолютно так же, как их оставшиеся дома знакомые.

Для описания равномерно ускоряющейся системы удобно использовать метрику, введенную Вольфгангом Риндлером в середине прошлого века и напоминающую метрику обычного плоского пространства (метрику Минковского). Метрика - это тензор, который задает правила вычисления расстояния между двумя заданными точками пространства-времени. Как и метрика Минковского, метрика Риндлера диагональна и не зависит от времени - проще говоря, в ней квадрат расстояния между двумя точками полностью определяется квадратами разницы их координат. В то же время, есть и отличия: вместо координаты оси x , вдоль которой движется равномерно ускоряющийся наблюдатель, в метрике Риндлера используется параметр ρ - обратная величина от собственного ускорения наблюдателя 1/ρ. Например, космический корабль, который сжигает больше топлива и движется с большим ускорением, имеет меньшее значение координаты ρ.

Заметим, что постоянное ускорение - это очень сильное свойство системы, поскольку оно заставляет ее скорость все ближе и ближе подходить к скорости света, и в результате время в собственной системе отсчета идет все медленнее и медленнее. Например, космический корабль, который движется с ускорением свободного падения g , пройдет расстояние 13 миллиардов световых лет (долетит до края наблюдаемой Вселенной !) менее чем за сто лет, если считать время в собственной системе отсчета. В то же время, на Земле Новый год совершенно честно отпразднуют 13 миллиардов раз (на самом деле, меньше, поскольку вращение Земли постепенно замедляется, к тому же за это время все живое на планете исчезнет, как и, скорее всего, сама планета, но речь сейчас не об этом).


Преобразование пространства-времени при переходе от метрики Минковского к метрике Риндлера

Кроме того, метрика Риндлера не может полностью покрыть "обычное" пространство Минковского, поскольку при движении с постоянным ускорением в пространстве-времени возникают причинно-несвязные области. В самом деле, световой луч, испущенный из достаточно далекой от наблюдателя точки O (смотри рисунок), никогда не сможет его догнать - из-за постоянного ускорения скорость наблюдателя постепенно будет все сильнее и сильнее приближаться к скорости света, на бесконечности полностью переходя в нее. Другими словами, поле зрения наблюдателя оказывается ограничено определенным световым конусом, и точки вне этого конуса для наблюдателя недоступны, - следовательно, пространство-время разбивается на несколько причинно-несвязных областей. Граница области, в которой находится ускоряющийся наблюдатель, называется горизонтом Риндлера . Заметим, что по своим свойствам горизонт Риндлера аналогичен горизонту событий черной дыры, который также разделяет пространство-время на причинно-несвязные области.

Теперь аналогия между излучением Хокинга и эффектом Унру становится практически очевидной. В самом деле, качественно возникновение излучения Хокинга можно объяснить следующим образом. Из-за принципа неопределенности, который приводит к квантовым флуктуациям вакуума - наименьшего энергетического состояния поля, отвечающего частицам определенного сорта, - в пространстве постоянно образуются виртуальные пары частица-античастица. Когда такая пара возникает вблизи горизонта событий черной дыры, одна из виртуальных частиц захватывается дырой и исчезает для внешнего мира, а другая уходит на бесконечность и становится частью излучения Хокинга. Причем из-за особенностей системы энергетический спектр уходящих на бесконечность частиц оказывается аналогичен температурному спектру, то есть черной дыре можно приписать определенную температуру, зависящую от ее массы. С другой стороны, тот же самый процесс может происходить около горизонта Риндлера равномерно ускоряющегося наблюдателя - следовательно, в этой системе тоже должно возникать излучение с температурным спектром. Собственно, в этом и заключается эффект Унру.

Конечно, такое качественное рассмотрение задачи не совсем верно. В самом деле, кажется, что число частиц и античастиц в излучении Хокинга должно быть одинаковым, а значит, они должны полностью уничтожать друг друга и превращаться в фотоны. В действительности это не совсем так и эффекты Хокинга и Унру выводятся немного по-другому. Обычно физики доказывают их, выписывая уравнения движения для каждого типа частиц и рассматривая, как на их решении сказывается включение в рассмотрение внешних сил - гравитации или постоянного ускорения.

В результате при аккуратном рассмотрении оказывается, что вакуумное состояние, а также операторы числа частиц N (который описывает число частиц в заданном состоянии) и тензора энергии-импульса T μν (который определяет энергию частиц в заданном состоянии) необходимо переопределить. В обычном случае вакуумные средние всех этих операторов равны нулю. Однако при добавлении в систему внешних сил переопределенные операторы нужно усреднять по вакуумному состоянию пустого пространства, отвечающему удаленному на бесконечность наблюдателю, который сидит в инерциальной системе отсчета. Из-за этого средние значения отличаются от нуля, что можно интерпретировать как рождение реальных частиц (среднее <N > ≠ 0) и температурный спектр (среднее <T μν > ~ exp[−E /T ], где E - энергия частиц, T - температура). Собственно, именно эти утверждения формулируются в знаменитых работах Стивена Хокинга и Уильяма Унру .

Таким образом, и излучение Хокинга, и эффект Унру оказываются связаны с вакуумными флуктуациями поблизости от границы двух причинно-несвязных областей пространства времени - а если точнее, с изменением основного состояния поля, которое по-научному называется перенормировкой вакуума. Более того, в силу принципа эквивалентности можно сказать, что излучение Хокинга и эффект Унру, по сути, являются проявлением одного и того же процесса. Правда, стоит отметить, что на границе применимости Общей теории относительности и квантовой теории поля, на которой лежат оба этих эффекта, говорить о принципе эквивалентности нужно с .

Упрощенный, но сравнительно строгий вывод эффекта Унру, который использует общепринятый в теоретической физике подход, можно найти в блоге Роман Парпалака «Эффект Унру» , написанном на основе статьи физиков Форда и О’Коннела Качественное объяснение эффекта Унру можно послушать в рассказе физика-теоретика Эмиля Ахмедова, а про излучение Хокинга можно прочитать в его интервью .