Уравнение клапейрона – клаузиуса. Уравнение клапейрона-клаузиуса Уравнение клаузиуса формула

§ 3. Фазовые переходы. Уравнение Клапейрона-Клаузиуса

В системе, состоящей из нескольких фаз чистого вещества, находящихся в равновесии, возможны переходы вещества из одной фазы в другую. Такие переходы называются фазовыми переходами или превращениями агрегатных состояний.

Рассмотрим равновесный переход одного моля вещества из одной фазы (1) в другую (2), совершающийся при постоянных давлении и температуре. Энергии Гиббса (G 1 и G 2) моля вещества в фазах 1 и 2 равны (условие равновесия). Следовательно:

G 2 = G 1 (III, 14)

Напишем уравнения (III, 13б) полных дифференциалов для энергии Гиббса одного моля чистого вещества в двух равновесных фазах 1 и 2:

dG 1 = V 1 dP – S 1 dT

dG 2 = V 2 dP – S 2 dT (III, 15)

Вычитая верхнее уравнение из нижнего, получим:

dG 2 – dG 1 = (V 2 – V 1) dP – (S 2 – S 1) dT

Изменения P и Т здесь были не независимыми, а такими, при которых сохранялось равновесие между фазами 1 и 2. Таким образом, между P и Т сохранялась функциональная связь, соответствующая фазовому равновесию. Поэтому, если G 1 = G 2 (равновесие при давлении P и температуре Т ), то G 1 + dG 1 = G 2 + dG 2 (равновесие при давлении P + dP и температуре T + dT ), т. е. dG l = dG 2 или dG 2 dG 1 = 0. Следовательно

(V 2 V 1)dP (S 2 S 1)dT = 0

Взаимное превращение, фаз рассматривалось здесь как равновесное и изотермическое, поэтому:

S 2 – S 1 = S =
=
=
(III, 17)

Здесь
– теплота фазового превращения, поглощаемая при переходе моля вещества из фазы 1 в фазу 2; V 2 – V 1 – разность мольных объёмов двух фаз.

Из уравнений (III, 16) и (III, 17) получим:

(III, 18)

Уравнение (III, 18) называется уравнением Клапейрона - Клаузиуса и является общим термодинамическим уравнением, приложимым ко всем фазовым переходам чистых веществ, т.е. к превращениям агрегатных состояний.

При превращении одной фазы в другую такие свойства как удельный или мольный объём, внутренняя энергия и энтропия одного грамма или одного моля вещества изменяются скачкообразно. Однако отсюда не следует, что внутренняя энергия всей двухфазной системы не является в этом случае непрерывной функцией её состояния. В самом деле, система, состоявшая в начале процесса, например, из некоторого количества льда при 0°С и 1 атм, при постоянном давлении и подведении теплоты превращается в двухфазную систему лед-жидкая вода, в которой по мере поглощения теплоты масса льда постепенно и непрерывно убывает, а масса воды растет. Поэтому также постепенно и непрерывно изменяются такие свойства системы в целом как внутренняя энергия, энтальпия, энтропия и др.

§ 4. Фазовые переходы первого рода. Плавление. Испарение

Фазовые переходы, характеризующиеся равенством изобарных потенциалов двух сосуществующих в равновесии фаз и скачкообразным изменением энтропии и объема при переходе вещества из одной фазы в другую, – называются фазовыми переходами первого рода. К ним относятся агрегатные превращения – плавление, испарение, возгонка и др.

Из фазовых переходов первого рода рассмотрим плавление и испарение, представляющие более общий интерес, чем другие процессы.

Плавление. Теплота плавления – перехода твердой фазы в жидкую – всегда положительна. Объём (мольный, удельный) жидкой фазы (V ж = V 2) в общем случае может быть больше или меньше объёма того же количества твердой фазы (V т = V 1). Отсюда в соответствии с уравнением (III, 18) вытекает, что величина dP / dT или обратная ей величина dT / dP , характеризующая изменение температуры с увеличением давления, может быть положительной или отрицательной. Это значит, что температура плавления может повышаться или понижаться с увеличением давления.

Так, для бензола (t пл. = 5,4°C;
= 9986 Дж /моль; V ж = 87,28 см 3 /моль; V т = 86,27 см 3 /моль ) получаем по уравнению (III, 18):

Обратная величина dT / dP = 0,0282
К/Па. Таким образом, с ростом давления вблизи точки плавления температура плавления бензола повышается.

Величина dT / dP положительна для огромного большинства веществ. Она имеет отрицательное значение лишь для воды, висмута и немногих других веществ, для которых плотность жидкости при температуре плавления больше плотности твердой фазы и (V ж V т )

Испарение. Теплота испарения – перехода жидкой фазы в газообразную – так же, как и теплота плавления, положительна. В этом случае всегда объём (удельный, мольный) газа больше соответствующего объёма жидкости, т. е. в уравнении (III, 18) всегда V 2 > V 1 . Поэтому dP / dT , а значит, и dT / dP также всегда положительны. Следовательно, температура испарения всегда повышается с ростом давления.

При температурах, далеких от критической, плотность насыщенного пара во много раз меньше плотности жидкости, а обратная величина – мольный (удельный) объём пара во много раз больше мольного (удельного) объёма жидкости. Поэтому значением V 1 = V ж в уравнении (III, 18) можно пренебречь, и оно примет вид:

(III, 18a)

Если вдали от критической температуры насыщенный пар можно считать идеальным газом, тогда = RT / P , и из уравнения (III, 18) получим 1:

(III, 19)

(III, 19а)

Теплота испарения жидкостей изменяется с температурой, не сильно убывая при средних температурах и очень сильно вблизи критической температуры, при которой
= 0. Например, для Н 2 О:

, кал/г

Таблица 1. Энтальпия и энтропия испарения некоторых жидкостей при нормальной температуре кипения (Р = 1 атм)

Вещество

T кип., K

,
кал/моль

,
кал/моль· K

Кислород

Этиловый эфир

Этиловый спирт

§ 5. Зависимость давления насыщенного пара от температуры

Давление насыщенного пара жидкости резко увеличивается с повышением температуры. Это видно из рис.2, на котором изображены кривые давления пара некоторых жидкостей, начинающиеся в точках плавления и оканчивающиеся в критических точках.

Рис. 2. Зависимость давления насыщенного пара некоторых жидкостей от температуры.

Функциональная зависимость давления насыщенного пара жидкости от температуры может быть выражена уравнением (III, 18), а вдали от критической температуры уравнением (III, 19).

Считая теплоту испарения (возгонки) постоянной в небольшом интервале температур, можно проинтегрировать уравнение (III, 19а)

(III, 20)

Представив уравнение (III, 20) в виде неопределенного интеграла, получим:

(III, 21),

где С – константа интегрирования.

В соответствии с этими уравнениями зависимость давления насыщенного пара жидкости (или кристаллического вещества) от температуры может быть выражена прямой линией в координатах
(в этом случае тангенс наклона прямой равен
). Такая зависимость имеет место лишь в некотором интервале температур, далеких от критической.

На рис.3 изображена зависимость давления насыщенного пара некоторых жидкостей в указанных координатах, удовлетворительно укладывающаяся на прямые линии в интервале 0-100°С.

Однако уравнение (III, 21) не охватывает зависимости давления насыщенного пара от температуры во всем интервале температур – от температуры плавления до критической. С одной стороны, теплота испарения зависит от температуры, и интегрирование должно производиться с учётом этой зависимости. С другой стороны, насыщенный пар при высоких температурах нельзя считать идеальным газом. Поэтому уравнение, охватывающее зависимость P = f (T ) в широком интервале температур, неизбежно становится эмпирическим.

Рис.3. Зависимость логарифма давления насыщенного пара некоторых жидкостей от обратной температуры.

§ 6. Сверхкритическое состояние вещества.

Сверхкритическое состояние – четвертая форма агрегатного состояния, в которое способны переходить многие органические и неорганические вещества.

Впервые сверхкритическое состояние вещества обнаружил Каньяр де ла Тур в 1822 году. Настоящий интерес к новому явлению возник 1869 году после экспериментов Т.Эндрюса. Проводя опыты в толстостенных стеклянных трубках, учёный исследовал свойства CO 2 , легко сжижающегося при повышении давления. В результате он установил, что при 31° С и 7,2 МПа , мениск – граница, разделяющая жидкость и находящийся в равновесии с ней пар, исчезает, при этом система становится гомогенной (однородной) и весь объем приобретает вид молочно-белой опалесцирующей жидкости. При дальнейшем повышении температуры она быстро становится прозрачной и подвижной, состоящей из постоянно перетекающих струй, напоминающих потоки теплого воздуха над нагретой поверхностью. Дальнейшее повышение температуры и давления не приводило к видимым изменениям.

Точку, в которой происходит такой переход, он назвал критической, а состояние вещества, находящегося выше этой точки – сверхкритическим. Несмотря на то, что внешне это состояние напоминает жидкость, в применении к нему сейчас используется специальный термин – сверхкритический флюид (от английского слова fluid , то есть «способный течь»). В современной литературе принято сокращенное обозначение сверхкритических флюидов – СКФ.

Расположение линий, разграничивающих области газообразного, жидкого и твердого состояний, а также положение тройной точки, где сходятся все три области, для каждого вещества индивидуальны. Сверхкритическая область начинается в критической точке (обозначена звездочкой), которая характеризуется непременно двумя параметрами – температурой (Т кр .) и давлением (Р кр .). Понижение либо температуры, либо давления ниже критических значений выводит вещество из сверхкритического состояния.

Факт существования критической точки позволил понять, почему некоторые газы, например, водород, азот и кислород долгое время не удавалось получить в жидком виде при повышении давления, из-за чего их называли перманентными газами (от латинского permanentis – «постоянный»). На приведённой выше диаграмме видно, что область существования жидкой фазы расположена слева от линии критической температуры. Таким образом, для сжижения какого-либо газа его необходимо сначала охладить до температуры ниже критической. У СО 2 критическая температура выше комнатной, поэтому его можно сжижать при указанных условиях, повышая давление. У азота критическая температура намного ниже: –146,95° С, поэтому, если сжимать азот, находящийся при нормальных условиях, можно достичь в конечном итоге сверхкритической области, но жидкий азот при этом образоваться не может. Необходимо сначала охладить азот ниже критической температуры и затем, повышая давление, достичь области, где возможно существование жидкости. Аналогичная ситуация для водорода, кислорода, поэтому перед сжижением их охлаждают до температуры ниже критической, и лишь затем повышают давление. Сверхкритическое состояниевозможно для большинства веществ, нужно лишь, чтобы вещество не разлагалось при критической температуре. В сравнении с указанными веществами критическая точка воды достигается с большим трудом: t кр = 374,2° С и Р кр = 21,4 МПа .

Критическая точка признается как важный физический параметр вещества, такой же, как температуры плавления или кипения. Плотность СКФ исключительно низкая, например, вода в состоянии СКФ имеет плотность в три раза ниже, чем при обычных условиях. Все СКФ имеют крайне низкую вязкость.

Сверхкритические флюиды представляют собой нечто среднее между жидкостью и газом. Они могут сжиматься как газы (обычные жидкости практически несжимаемы) и, в тоже время, способны растворять многие вещества в твёрдом и жидком состояниях, что газам несвойственно. Сверхкритический этанол (при температуре выше 234° С) очень легко растворяет некоторые неорганические соли (CoCl 2 , KBr , KI ). Диоксид углерода, закись азота, этилен и некоторые другие газы в состоянии СКФ приобретают способность растворять многие органические вещества – стеариновую кислоту, парафин, нафталин. Свойства сверхкритического СО 2 как растворителя можно регулировать – при повышении давления его растворяющая способность резко увеличивается.

Сверхкритические флюиды стали широко использовать только в 1980-х, когда общий уровень развития промышленности сделал установки для получения СКФ широко доступными. С этого момента началось интенсивное развитие сверхкритических технологий. СКФ – это не только хорошие растворители, но и вещества с высоким коэффициентом диффузии, т.е. они легко проникают в глубинные слои различных твердых веществ и материалов. Наиболее широкое применение нашёл сверхкритический СО 2 , который оказался растворителем широкого круга органических соединений. Диоксид углерода стал лидером в мире сверхкритических технологий, т.к. обладает целым комплексом преимуществ. Перевести его в сверхкритическое состояние достаточно легко (t кр – 31° С, Р кр – 73,8 атм. ), кроме того, он не токсичен, не горюч, не взрывоопасен, к тому же, дешев и доступен. С точки зрения любого технолога он является идеальным компонентом любого процесса. Особую привлекательность ему придает то, что он является составной частью атмосферного воздуха и, следовательно, не загрязняет окружающую среду. Сверхкритический СО 2 можно считать экологически абсолютно чистым растворителем. Приведём только некоторые примеры его использования.

Кофеин – препарат, используемый для улучшения деятельности сердечно-сосудистой системы, получают из кофейных зерен даже без их предварительного измельчения. Полнота извлечения достигается за счет высокой проникающей способности СКФ. Зерна помещают в автоклав – ёмкость, выдерживающую повышенное давление, затем подают в неё газообразный СО 2 , далее создают необходимое давление (>73 атм. ), в результате СО 2 переходит в сверхкритическое состояние. Всё содержимое перемешивают, после чего флюид вместе с растворенным кофеином сливают в открытую емкость. Диоксид углерода, оказавшись в условиях атмосферного давления, превращается в газ и улетает в атмосферу, а экстрагированный кофеин остается в открытой емкости в чистом виде.

Применение СКФ оказалось весьма успешным для очистки от загрязнений электронных схем в процессе их производства, так как на них не остается никаких следов очищающего растворителя.

В связи с быстрыми темпами выработки активной части запасов легкой нефти резко возрос интерес к методам увеличения нефтеотдачи пластов. Если в 70–80 годы XX века число проектов, направленных на решение проблемы увеличения нефтеотдачи посредством нагнетания смешивающихся углеводородных растворителей, «инертных» газов и диоксида углерода было сопоставимо, то в конце XX и начале XXI столетий только метод нагнетания СО 2 имел устойчивую тенденцию роста. Эффективность применения СО 2 для повышения нефтеотдачи доказана не только экспериментальными и теоретическими работами, но и результатами многочисленных промышленных испытаний.

Не стоит забывать, что технология увеличения нефтеотдачи пластов с использованием СО 2 позволяет параллельно решать проблему консервации огромного количества выделяемого промышленностью углекислого газа.

Особенности процесса воздействия нагнетаемого CO 2 на нефтегазовую залежь зависят от его агрегатного состояния.

Превышение давления и температуры выше критических значений для углекислого газа (а это наиболее вероятная ситуация в пластовых условиях), предопределяет его сверхкритическое состояние. В этом случае CO 2 , обладающий исключительной растворяющей способностью по отношению к углеводородным жидкостям при прямом растворении в пластовой нефти, снижает её вязкость и резко улучшает фильтрационные свойства. Указанное обстоятельство даёт все основания отнести СКФ – технологии повышения нефтеотдачи пластов к одним из наиболее перспективных.

Физическая химия (органическая химия , часть I). В.А.Старцева, Л.Е.Никитина, Н.П. ...

  • Контрольная работа №2 по физической химии

    Документ

    Контрольная работа № 2 по физической химии Вариант 2 Чему равен температурный... . Контрольная работа № 2 по физической химии Вариант 3 Перечислите физико-химические величины... Контрольная работа № 2 по физической химии Вариант 12 Электроды определения. ...

  • Методическое пособие для лабораторной работы №4 по курсу физической химии для студентов дневной формы обучения химико-технологического факультета и факультета строительного материаловедения

    Методическое пособие

    ВЕЛИЧИНЫ КОНСТАНТЫ РАВНОВЕСИЯ В практикумах по физической химии часто встречается лабораторная работа, касающаяся... с. 3. Петров Н.А., Черепанов В.А. Ермишина Ю.А. Практикум по физической химии . Методическое пособие. Екатеринбург: изд-во...

  • Программа вступительного экзамена по специальности 02. 00. 04 "физическая химия"

    Программа

    Равновесия // М.: Металлургия.-1988.-560с. Курс физической химии / Я.И. Герасимов, В.П. Древинг, Е.И. Ермин и др.: под... .- 1980.- 180с. Горшков Б.И., кузнецов И.А. / Основы физической химии . 2–е изд. // М.: Изд-во Московского университета...

  • ТЕПЛОВЫЕ ЭФФЕКТЫ ФАЗОВЫХ ПЕРЕХОДОВ.

    УРАВНЕНИЕ КЛАПЕЙРОНА – КЛАУЗИУСА.

    Переход компонента из одной фазы в другую сопровождается выделением или поглощением теплоты, которую можно определить количественно на основе фундаментального уравнения термодинамики:

    ВЫВОД И АНАЛИЗ УРАВНЕНИЯ КЛАПЕЙРОНА – КЛАУЗИУСА.

    Для любого равновесного перехода вещества из одной фазы α в другую фазу β, применяя уравнение (* ) к каждой из фаз, можно написать

    Индексы α и β отражают принадлежность параметров к соответствующей фазе. В равновесных условиях между фазами α и β изменение энергии Гиббса отсутствует, т.е.

    Приравнивая правые части уравнений 1 и 2, получим

    Для равновесного обратимого процесса согласно уравнениям и запишем

    а уравнение (3) примет вид

    где ∆H пер – теплота фазового перехода.

    Тепловой эффект, сопровождающий фазовый переход, определяется следующим образом:

    уравнение

    Клапейрона–Клаузиуса

    где ∆V – изменение объема в результате фазового перехода; dP/dT – изменение давления в зависимости от температуры при сохранении равновесия между двумя фазами.

    Уравнение Клапейрона–Клаузиуса связывает тепловой эффект процесса с изменением давления насыщенного пара, температурой и изменением объема в процессе фазового перехода.

    Для процессов испарения ж→п и сублимации тв→п уравнение Клапейрона–Клаузиуса можно представить следующим образом:

    где ∆H исп, ∆H суб – теплоты испарения и сублимации; V п, V ж, V тв – мольные объемы пара, жидкости и твердого тела соответственно.

    В процессе испарения и сублимации наблюдается значительное изменение удельного объема ∆V и существенное изменение величины dP/dT. При плавлении, напротив, изменение ∆V невелико, и величина dP/dT незначительна.

    Пример 1. Проведем расчет по уравнению Клапейрона–Клаузиуса температуры плавления фенола Т пл. Плотность твердого фенола ρ тв при атмосферном давлении составляет 1,072∙10 3 кг/м 3 , а жидкого ρ ж = 1,056∙10 3 кг/м 3 ; теплота плавления ∆H пл = 1,045∙10 5 Дж/кг; температура замерзания 314,2 К. Определим dP/dT и температуру плавления при Р = 5,065∙10 7 Па:

    Прирост температуры плавления при повышении давления на 1 атм (1,013∙10 5 Па) составляет 4,525∙10 -8 град/Па. При увеличении давления до 5,065∙10 7 Па температура плавления увеличивается на ∆T = (dT/dP)∆P = 4,525∙10 -8 ∙ 5,065∙10 7 = 2,29 К, т.е. составит Т пл = 314,2+2,29 = 316,49 К.

    Следует иметь в виду, что в процессе плавления у большинства веществ V ж > V тв, тогда ∆V>0 и при повышении давления Р температура плавления повышается Т.

    Однако, такие вещества как вода (Н 2 О), висмут (Bi), имеют объем твердой фазы V тв больше, чем объем жидкой фазы V ж < V тв. Тогда в процессе плавления этих веществ изменение мольного объема ∆V будет <0 и при повышении давления Р температура плавления будет уменьшаться Т↓

    ПРИМЕР 2. Скольжение коньков по льду обусловлено образованием в плоскости скольжения воды, которая выполняет роль жидкой смазки. Ранее считали, что образование воды происходит за счет плавления льда под давлением острого конька. Однако термодинамические расчеты по уравнению Клапейрона–Клаузиуса не подтверждают этого. Действительно, удельный объем воды (ж) и льда (тв) равны соответственно V ж уд = 10 -3 м 3 /кг и V тв уд = 1,091·10 -3 м 3 /кг; теплота плавления ∆H пл = 332,4 кДж/кг:

    Решение:

    Это значение показывает, что для понижения температуры таяния льда на один градус Кельвина необходимо увеличить давление на 1,34∙10 7 Па, т.е. примерно на 134 атмосферы, что нереально, поскольку такое давление лед не выдерживает – трескается.

    Таяние льда происходит в основном в результате трения и превращения работы в теплоту при скольжении конька по льду, а не за счет повышения давления на лед.

    Уравнение для процесса испарения можно представить в интегральном виде. Мольный объем пара значительно превосходит мольный объем жидкости, V п >> V ж, т.е. величиной V ж можно пренебречь. Тогда уравнение Клапейрона–Клаузиуса запишется в виде:

    Пар подчиняется законам идеального газа: PV=RT , тогда , преобразуем уравнение, переставляя давление Р в левую часть уравнения, а dT в правую часть. Получаем:

    или

    Проведем интегрирование уравнения (1) в пределах от Т 1 до Т 2 и соответственно от Р 1 до Р 2 при условии, что в области невысоких давлений пара ∆Н исп ≈ const; в результате интегрирования получим:

    ∆Н исп / R = const, выносим за знак интеграла

    При помощи уравнения (2) можно графически определить значения теплоты испарения, если известны давления Р 1 и Р 2 и соответствующие им температуры испарения Т 1 и Т 2 . Для этого необходимо отложить на оси абсцисс значения обратной температуры, а на оси ординат – lnP.

    Зависимость lnP от 1/Т будет линейной, а тангенс угла наклона этой прямой равен , т.е. , а

    Расчетные значения ∆Н исп получаются с достаточной для практики точностью, не уступающей точности непосредственного измерения. Возможно использование уравнения (2) для обратного расчета, когда по значению ∆Н исп определяют изменение давления при изменении температуры в процессе испарения.

    Теплоту фазовых переходов можно определить и по величине стандартной энтальпии образования, в зависимости от фазового состояния продуктов реакции.

    Пример. Лучше всего это показать на примере теплоты образования воды из газообразных кислорода и водорода, которая составляет

    H 2(г) +1/2О 2(г) =Н 2 О (г),(ж),(тв)

    для водяного пара ∆Н (г) 0 = -241,82 кДж/моль; для воды в жидком состоянии ∆Н (ж) 0 = -285,83 кДж/моль; для льда ∆Н (тв) 0 = -291,82 кДж/моль. Теплота конденсации воды равна:

    а теплота превращения воды в лед:

    Как видно, тепловой эффект фазовых переходов значительно меньше теплоты образования веществ.

    В результате фазовых переходов происходит изменение энтропии . Такие изменения в зависимости от температуры представим на рисунке.

    Как известно, энтропия идеального кристалла при абсолютном нуле равна нулю. С ростом температуры атомы (ионы) флуктуировать относительно равновесного положения, число возможных способов их размещения растет, и энтропия увеличивается (ΔS>0). При достижении температуры плавления (точка А на рисунке) кристаллическая решетка разрушается скачкообразно (отрезок АБ), увеличивается термодинамическая вероятность системы W, а в соответствии с формулой S=k∙lnW (где k – постоянная Больцмана) энтропия при переходе от твердого в жидкое состояние растет. Более значительный скачок энтропии имеет место при переходе из жидкого состояния в газообразное (отрезок ВГ), когда ближний порядок расположения частиц друг относительно друга нарушается, и движение частиц становится хаотичным.

    Пример. Оценим скачок энтропии на примере фазовых переходов воды:

    ,

    когда известны стандартные абсолютные значения энтропии S тв 0 =39,4; S ж 0 =69,9; S г 0 =188,7 Дж/(моль·К).

    Тогда имеем

    В соответствии с рисунком для воды

    По известной энтальпии фазового перехода можно рассчитать изменение энтропии в соответствии с формулой

    Пример. Вычислим изменение энтропии в процессе парообразования 1 моля этилхлорида при 12,3 0 С, когда теплота испарения ∆Н исп =24,16 кДж/моль.

    Молекулярная масса = 64,5 г/моль.

    В заключение отмечу, что мы рассматривали лишь фазовые переходы I рода. При фазовых переходах I рода свойства веществ, выражаемые, например, через химический потенциал, первыми производными одной из характеристических функций, изменяются скачком при непрерывном изменении соответствующих параметров: температуры, давления, объема и энтропии. При этом выделяется или поглощается теплота перехода ∆Н пер в соответствии с уравнением Клапейрона–Клаузиуса.

    Кроме них, однако, существуют фазовые переходы II рода. Они не сопровождаются выделением или поглощением теплоты, для них уравнение Клапейрона–Клаузиуса теряет смысл. Эти переходы характеризуют изменения в системе, которые не определяются объемом и запасом энергии. В этом случае первые производные одной из характеристических функций непрерывны, а вторые производные (например, теплоемкость) изменяются скачком. К фазовым переходам II рода относятся переходы парамагнетика в ферромагнетик, диэлектрика в сегнетоэлектрик, а также процессы возникновения сверхтекучести, сверхпроводимости и др.

    ТЕПЛОВЫЕ ЭФФЕКТЫ ФАЗОВЫХ ПЕРЕХОДОВ.

    УРАВНЕНИЕ КЛАПЕЙРОНА – КЛАУЗИУСА.

    Переход компонента из одной фазы в другую сопровождается выделением или поглощением теплоты, которую можно определить количественно на основе фундаментального уравнения термодинамики:

    ВЫВОД И АНАЛИЗ УРАВНЕНИЯ КЛАПЕЙРОНА – КЛАУЗИУСА.

    Для любого равновесного перехода вещества из одной фазы α в другую фазу β, применяя уравнение (* ) к каждой из фаз, можно написать

    Индексы α и β отражают принадлежность параметров к соответствующей фазе. В равновесных условиях между фазами α и β изменение энергии Гиббса отсутствует, т.е.

    ,

    П
    риравнивая правые части уравнений 1 и 2, получим

    Для равновесного обратимого процесса согласно уравнениям
    и
    запишем

    а уравнение (3) примет вид

    ,

    где ∆H пер – теплота фазового перехода.

    Тепловой эффект, сопровождающий фазовый переход, определяется следующим образом:

    уравнение

    Клапейрона Клаузиуса

    где ∆V – изменение объема в результате фазового перехода; dP/dT – изменение давления в зависимости от температуры при сохранении равновесия между двумя фазами.

    Уравнение Клапейрона–Клаузиуса связывает тепловой эффект процесса с изменением давления насыщенного пара, температурой и изменением объема в процессе фазового перехода.

    Для процессов испарения ж→п и сублимации тв→п уравнение Клапейрона–Клаузиуса можно представить следующим образом:

    где ∆H исп, ∆H суб – теплоты испарения и сублимации; V п, V ж, V тв – мольные объемы пара, жидкости и твердого тела соответственно.

    В процессе испарения и сублимации наблюдается значительное изменение удельного объема ∆V и существенное изменение величины dP/dT. При плавлении, напротив, изменение ∆V невелико, и величина dP/dT незначительна.

    Пример 1. Проведем расчет по уравнению Клапейрона–Клаузиуса температуры плавления фенола Т пл. Плотность твердого фенола ρ тв при атмосферном давлении составляет 1,072∙10 3 кг/м 3 , а жидкого ρ ж = 1,056∙10 3 кг/м 3 ; теплота плавления ∆H пл = 1,045∙10 5 Дж/кг; температура замерзания 314,2 К. Определим dP/dT и температуру плавления при Р = 5,065∙10 7 Па:

    Прирост температуры плавления при повышении давления на 1 атм (1,013∙10 5 Па) составляет 4,525∙10 -8 град/Па. При увеличении давления до 5,065∙10 7 Па температура плавления увеличивается на ∆T = (dT/dP)∆P = 4,525∙10 -8 ∙ 5,065∙10 7 = 2,29 К, т.е. составит Т пл = 314,2+2,29 = 316,49 К.

    Следует иметь в виду, что в процессе плавления у большинства веществ V ж > V тв, тогда ∆V>0 и при повышении давления Р температура плавления повышается Т.

    Однако, такие вещества как вода (Н 2 О), висмут (Bi), имеют объем твердой фазы V тв больше, чем объем жидкой фазы V ж < V тв. Тогда в процессе плавления этих веществ изменение мольного объема ∆V будет <0 и при повышении давления Р температура плавления будет уменьшаться Т↓

    ПРИМЕР 2. Скольжение коньков по льду обусловлено образованием в плоскости скольжения воды, которая выполняет роль жидкой смазки. Ранее считали, что образование воды происходит за счет плавления льда под давлением острого конька. Однако термодинамические расчеты по уравнению Клапейрона–Клаузиуса не подтверждают этого. Действительно, удельный объем воды (ж) и льда (тв) равны соответственно V ж уд = 10 -3 м 3 /кг и V тв уд = 1,091·10 -3 м 3 /кг; теплота плавления ∆H пл = 332,4 кДж/кг:

    Решение:

    Это значение показывает, что для понижения температуры таяния льда на один градус Кельвина необходимо увеличить давление на 1,34∙10 7 Па, т.е. примерно на 134 атмосферы, что нереально, поскольку такое давление лед не выдерживает – трескается.

    Таяние льда происходит в основном в результате трения и превращения работы в теплоту при скольжении конька по льду, а не за счет повышения давления на лед.

    Уравнение для процесса испарения
    можно представить в интегральном виде. Мольный объем пара значительно превосходит мольный объем жидкости, V п >> V ж, т.е. величиной V ж можно пренебречь. Тогда уравнение Клапейрона–Клаузиуса запишется в виде:

    Пар подчиняется законам идеального газа: PV=RT
    , тогда
    , преобразуем уравнение, переставляя давление Р в левую часть уравнения, а dT в правую часть. Получаем:

    или

    Проведем интегрирование уравнения (1) в пределах от Т 1 до Т 2 и соответственно от Р 1 до Р 2 при условии, что в области невысоких давлений пара ∆Н исп ≈ const; в результате интегрирования получим:

    ∆Н исп / R = const, выносим за знак интеграла

    При помощи уравнения (2) можно графически определить значения теплоты испарения, если известны давления Р 1 и Р 2 и соответствующие им температуры испарения Т 1 и Т 2 . Для этого необходимо отложить на оси абсцисс значения обратной температуры, а на оси ординат – lnP.

    Зависимость lnP от 1/Т будет линейной, а тангенс угла наклона этой прямой равен
    , т.е.
    , а

    Расчетные значения ∆Н исп получаются с достаточной для практики точностью, не уступающей точности непосредственного измерения. Возможно использование уравнения (2) для обратного расчета, когда по значению ∆Н исп определяют изменение давления при изменении температуры в процессе испарения.

    Теплоту фазовых переходов можно определить и по величине стандартной энтальпии образования, в зависимости от фазового состояния продуктов реакции.

    Пример . Лучше всего это показать на примере теплоты образования воды из газообразных кислорода и водорода, которая составляет

    H 2(г) +1/2О 2(г) =Н 2 О (г),(ж),(тв)

    для водяного пара ∆Н (г) 0 = -241,82 кДж/моль; для воды в жидком состоянии ∆Н (ж) 0 = -285,83 кДж/моль; для льда ∆Н (тв) 0 = -291,82 кДж/моль. Теплота конденсации воды равна:

    а теплота превращения воды в лед:

    Как видно, тепловой эффект фазовых переходов значительно меньше теплоты образования веществ.

    В результате фазовых переходов происходит изменение энтропии . Такие изменения в зависимости от температуры представим на рисунке.

    Как известно, энтропия идеального кристалла при абсолютном нуле равна нулю. С ростом температуры атомы (ионы) флуктуировать относительно равновесного положения, число возможных способов их размещения растет, и энтропия увеличивается (ΔS>0). При достижении температуры плавления (точка А на рисунке) кристаллическая решетка разрушается скачкообразно (отрезок АБ), увеличивается термодинамическая вероятность системы W, а в соответствии с формулой S=k∙lnW (где k – постоянная Больцмана) энтропия при переходе от твердого в жидкое состояние растет. Более значительный скачок энтропии имеет место при переходе из жидкого состояния в газообразное (отрезок ВГ), когда ближний порядок расположения частиц друг относительно друга нарушается, и движение частиц становится хаотичным.

    Пример. Оценим скачок энтропии на примере фазовых переходов воды:

    ,

    когда известны стандартные абсолютные значения энтропии S тв 0 =39,4; S ж 0 =69,9; S г 0 =188,7 Дж/(моль·К).

    Тогда имеем

    В соответствии с рисунком для воды

    По известной энтальпии фазового перехода можно рассчитать изменение энтропии в соответствии с формулой

    Пример. Вычислим изменение энтропии в процессе парообразования 1 моля этилхлорида при 12,3 0 С, когда теплота испарения ∆Н исп =24,16 кДж/моль.

    Молекулярная масса
    = 64,5 г/моль.

    В заключение отмечу, что мы рассматривали лишь фазовые переходы I рода. При фазовых переходах I рода свойства веществ, выражаемые, например, через химический потенциал, первыми производными одной из характеристических функций, изменяются скачком при непрерывном изменении соответствующих параметров: температуры, давления, объема и энтропии. При этом выделяется или поглощается теплота перехода ∆Н пер в соответствии с уравнением Клапейрона–Клаузиуса.

    Кроме них, однако, существуют фазовые переходы II рода. Они не сопровождаются выделением или поглощением теплоты, для них уравнение Клапейрона–Клаузиуса теряет смысл. Эти переходы характеризуют изменения в системе, которые не определяются объемом и запасом энергии. В этом случае первые производные одной из характеристических функций непрерывны, а вторые производные (например, теплоемкость) изменяются скачком. К фазовым переходам II рода относятся переходы парамагнетика в ферромагнетик, диэлектрика в сегнетоэлектрик, а также процессы возникновения сверхтекучести, сверхпроводимости и др.

    В настоящее время насчитывается около 400 твердых минералов, для которых наблюдаются фазовые переходы II рода: рутил, анатаз, алмаз и особенно кварц, который имеет семь модификаций, причем наряду с фазовыми переходами I рода наблюдаются фазовые переходы II рода. Так, при 573 0 С и переходе модификации кварца β
    α теплоемкость и коэффициент линейного расширения изменяются скачкообразно (I род), но при этом поглощается теплота 10,9 кДж/моль (II род).


    Все вещества могут существовать в различных агрегатных состояниях или в различных модификациях одного агрегатного состояния в зависимости от условий (Т, р и т.д.). Переход вещества из одного агрегатного состояния в другое, или изменение модификации агрегатного состояния вещества называется фазовым переходом первого рода. Фазовые переходы 1-го рода сопровождаются выделением или поглощением теплоты.

    Рис.20
    Система может содержать одновременно несколько фаз. Чтобы такая система находилась в равновесии, необходимо выполнение нескольких условий, одно из них: термодинамический потенциал Гиббса G должен принимать минимальное значение.

    . (25)

    При динамическом равновесии выполняется уравнение:

    , (26)

    где g 1 и g 2 – удельные (относящиеся к единице массы вещества) термодинамические потенциалы 1-й и 2-й фаз.

    Уравнение, связывающее между собой давление и температуру, при которых осуществляется фазовый переход первого рода , имеет вид

    где - удельный объем. Две любые фазы вещества могут находиться в равновесии лишь при определенном давлении, зависящем от температуры.

    Максимально возможное число фаз вещества, находящихся в равновесии друг с другом равно трем, если это изобразить на плоскости p, T , то она получится разделена на три области: твердую фазу (т), жидкую (ж) и газообразную (г), рис.20

    Границами соприкасающихся фаз являются кривые сублимации (испарение твердого тела), испарения и плавления , характеризующие двухфазные равновесные состояния.

    Подобные диаграммы строят экспериментально для разных веществ, они позволяют предсказывать в каких равновесных состояниях может находиться вещество при тех или иных значениях давления и температуры, а также когда и какие оно будет испытывать фазовые превращения при том или ином процессе. Например, кривая испарения заканчивается в критической точке К , поэтому возможен непрерывный переход вещества из жидкого состояния в газообразное и обратно путем обхода точки К «сверху», в этом случае такой переход не сопровождается двухфазным состоянием.

    Задачи

    6.1. Получить уравнение Клапейрона-Клаузиуса методом циклов.

    6.2. Вывести уравнение Клапейрона-Клаузиуса методом термодинамического потенциала.

    6.3. Ромбическая сера превращается в моноклинную при . При атмосферном давлении удельная теплота превращения . Скачок удельного объема серы при фазовом превращении . Найти смещение точки фазового перехода серы при изменении давления на .

    6.4. Кусочек льда массы непрерывно нагревают при атмосферном давлении от температуры до , пока все вещество не перейдет в пар. Построить график зависимости энтропии воды от абсолютной температуры на всем вышеуказанном интервале температур.

    6.5. При стремлении температуры фазового перехода «жидкость – пар» к критической температуре Т к удельная теплота испарения (конденсации) стремится к нулю. Объяснить это свойство с помощью уравнения Клапейрона-Клаузиуса.

    6.6. В закрытом сосуде с объемом находится 1 кг воды при температуре . Пространство над водой занято насыщенным водяным паром (воздух выкачан). Найти увеличение массы насыщенного пара при повышении температуры системы на . Удельная теплота парообразования . При расчетах пар считать идеальным газом. Удельным объемом воды пренебречь по сравнению с удельным объемом пара.

    6.7 Найти зависимость давления насыщенного пара от температуры в следующих упрощающих предположениях: удельную теплоту парообразования q считать не зависящей от температуры; удельный объем жидкости пренебрежимо

    мал по сравнению с удельным объемом пара; к жидкости применимо уравнение состояния Клапейрона. (Эти упрощения допустимы вдали от критической температуры, если интервал изменения температур не слишком широк.)

    6.8. Кусок льда помещен в адиабатическую оболочку при температуре 0˚С и атмосферном давлении. Как изменится температура льда, если его адиабатически сжать до давления ? Какая доля льда при этом расплавится? Удельные объемы воды , льда . Теплоемкости воды и льда связаны соотношением .

    Ответы

    6.3.

    ОПРЕДЕЛЕНИЕ

    Две любые фазы одного и того же вещества могут находиться в равновесии лишь при определенном давлении, величина которого зависит от температуры. Для двухфазной равновесной однокомпонентной системы является функцией температуры. Эта зависимость выражается уравнением Клапейрона – Клаузиуса :

    где — удельная теплота фазового перехода из первой фазы во вторую, – разность удельных объемов фаз.

    Уравнение 1 связывает производную от равновесного давления по температуре с теплотой перехода, температурой и разностью удельных объемов фаз, находящихся в . Согласно уравнению (1) знак производной зависит от того, каким изменением объема – возрастанием или уменьшением сопровождается фазовый переход. При испарении жидкости или твердого тела объем всегда увеличивается, поэтому для кривых испарения и сублимации title="Rendered by QuickLaTeX.com" height="23" width="54" style="vertical-align: -6px;">, увеличение температуры ведет к увеличению равновесного давления. При плавлении, как правило, объем увеличивается, что означает, что повышая давление мы увеличиваем температуру плавления. Но здесь есть исключения, например, лед-вода. Объем жидкой фазы (воды) меньше, объема льда. Лед можно расплавить, не повышая температуру выше , просто увеличивая давление.

    Если вторая фаза является идеальным газом, то уравнение Клапейрона – Клаузиуса имеет вид:

    где – теплота испарения для одного моля вещества, молярная которого равна .

    Решение уравнения Клапейрона — Клаузиуса

    Решением уравнения (2) будет:

    где Q – количество теплоты, необходимое для фазового перехода

    Строго говоря, общий вид функции p(T), то есть уравнение (1), был установлен Клапейроном, при анализе цикла Карно для конденсирующегося пара, который находится в равновесии с жидкостью, а Клаузиус упростил его до уравнения (2) предположив, что вторая фаза вещества (пар) – идеальный газ и молярный объем жидкости много меньше, чем молярный объем газа (пара). Кроме того, Клаузиус распространил уравнение (1) для других фазовых переходов, которые сопровождаются теплопередачей.

    Уравнение 1 и 2 часто используются для расчета теплоты испарения или возгонки (это трудно установить экспериментально).

    Примеры решения задач

    ПРИМЕР 1

    Задание Фазовый переход некоторого вещества происходит при температуре T, при атмосферном давлении. Удельная теплота превращения q. Скачок удельного объема данного вещества при фазовом превращении Найти смещение точки фазового перехода данного вещества при изменении давления на .
    Решение При заданных условиях уравнение Клапейрона – Клаузиуса можно записать в следующем виде:

    Из этого уравнения легко выразить искомое смещение температуры, точки фазового перехода при изменении :

    Ответ Смещение точки фазового перехода при заданных условиях можно найти используя соотношение

    ПРИМЕР 2

    Задание В закрытом сосуде находятся вода и насыщенный пар. Найти удельную теплоту испарения воды при температуре . Если упругость паров , насыщающих пространство при данной температуре Па, а при температуре равна Па.


    Решение Основой для решения задачи является уравнение

    где , напомню, что здесь идет речь об удельных объемах.

    и для одного моль ( моль) газа запишем:

    Для того, чтобы определиться с дальнейшим ходом расчетов найдем объем моля пара и оценим объем жидкости, сравним их.