Электромагнитная индукция. Направление индукционного тока. Правило Ленца. Вихревое поле Правило ленца простыми словами

В предыдущем параграфе были рассмотрены опыты по получению индукционного тока и установлена причина его возникновения.

Как же направлен индукционный ток? Для ответа на этот вопрос воспользуемся прибором, изображённым на рисунке 123. Он представляет собой узкую алюминиевую пластинку с алюминиевыми кольцами на концах. Одно кольцо сплошное, другое имеет разрез. Пластинка с кольцами помещена на стойку и может свободно вращаться вокруг вертикальной оси.

Рис. 123. При приближении к сплошному кольцу любого полюса магнита кольцо отталкивается от него

Возьмём полосовой магнит и внесём его в кольцо с разрезом - кольцо останется на месте. Если же вносить магнит в сплошное кольцо, то оно будет отталкиваться, уходить от магнита, поворачивая при этом всю пластинку. Результат будет точно таким же, если магнит будет повёрнут к кольцам не северным полюсом (как показано на рисунке), а южным. Объясним наблюдаемые явления.

При приближении к кольцу любого полюса магнита, поле которого является неоднородным, проходящий сквозь кольцо магнитный поток увеличивается (рис. 124). При этом в сплошном кольце возникает индукционный ток, а в кольце с разрезом тока не будет.

Рис. 124. Возникновение индукционного тока в сплошном кольце при приближении к кольцу магнита

Ток в сплошном кольце создаёт в пространстве магнитное поле, благодаря чему кольцо приобретает свойства магнита. Взаимодействуя с приближающимся полосовым магнитом, кольцо отталкивается от него. Из этого следует, что кольцо и магнит обращены друг к другу одноимёнными полюсами, а векторы магнитной индукции (В к и В м) их полей направлены в противоположные стороны (рис. 125). Зная направление вектора индукции магнитного поля кольца, можно по правилу правой руки (см. рис. 97) определить направление индукционного тока в кольце. Отодвигаясь от приближающегося к нему магнита, кольцо противодействует увеличению проходящего сквозь него внешнего магнитного потока.

Рис. 125. Определение направления индукционного тока в кольце

Теперь посмотрим, что произойдёт при уменьшении внешнего магнитного потока сквозь кольцо. Для этого, удерживая кольцо рукой, внесём в него магнит. Затем, отпустив кольцо, начнём удалять магнит. В этом случае кольцо будет следовать за магнитом, притягиваться к нему (рис. 126). Значит, кольцо и магнит обращены друг к другу разноимёнными полюсами, а векторы магнитной индукции их полей направлены в одну сторону (рис. 127). При одинаковом направлении В к и В м магнитное поле тока будет противодействовать уменьшению внешнего магнитного потока, проходящего сквозь кольцо.

Рис. 126. При удалении магнита от сплошного кольца оно, притягиваясь, следует за магнитом

Рис. 127. Направление индукционного тока в кольце меняется при изменении направления движения магнита относительно кольца

Мы видим, что для определения направления индукционного тока прежде всего необходимо узнать, как направлен вектор магнитной индукции созданного этим током магнитного поля (в центре кольца). На основании результатов рассмотренных опытов (в одном из них внешний магнитный поток увеличивался, а в другом - уменьшался) было сформулировано правило, которое в современной формулировке звучит так:

  • возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует изменению внешнего магнитного потока, которое вызвало этот ток

Данное правило было установлено в 1834 г. российским учёным Эмилием Христиановичем Ленцем, в связи с чем называется правилом Ленца.

Вопросы

  1. Для чего проводился опыт, изображённый на рисунках 123 и 126?
  2. Почему кольцо с разрезом не реагирует на приближение магнита?
  3. Объясните явления, происходящие при приближении магнита к сплошному кольцу (см. рис. 125); при удалении магнита (см. рис. 127).
  4. Как определить направление индукционного тока в кольце?
  5. Сформулируйте правило Ленца.

Упражнение 37

  1. Как вы думаете, почему прибор, изображённый на рисунке 123, изготовлен из алюминия? Как проходил бы опыт, если бы прибор был железным; медным?
  2. В данном ниже перечне логических операций, которые мы выполняли для определения направления индукционного тока, нарушена последовательность их проведения. Запишите в тетради буквы, обозначающие эти операции, расположив их в правильной последовательности.
    1. Определили направление индукционного тока в кольце (пользуясь правилом правой руки).
    2. Определили направление вектора индукции В к магнитного поля тока в кольце по отношению к направлению вектора магнитной индукции B м поля магнита, исходя из того, что кольцо отталкивается от магнита при его приближении (значит, они обращены друг к другу одноимёнными полюсами) и притягивается при удалении (значит, кольцо и магнит обращены друг к другу разноимёнными полюсами).
    3. Определили направление вектора магнитной индукции В м поля магнита (по расположению его полюсов).

Цель работы: экспериментальное изучение явления магнитной индукции и проверка правила Ленца.

Явление электромагнитной индукции заключается в возникновении электрического тока в проводящем контуре, который либо покоится в переменном по времени магнитном поле, либо движется в постоянном магнитном поле таким образом, что число линий магнитной индукции, пронизывающих контур, меняется. В нашем случае разумнее было бы менять во времени магнитное поле, так как оно создается движущимися (свободно) магнитом. Согласно правилу Ленца, возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван. В данном случае наблюдать это мы можем по отклонению стрелки миллиамперметра.

Пример выполнения работы

1. Вводя магнит в катушку одним полюсом (северным) и выводя ее, мы наблюдаем, что стрелка амперметра отклоняется в разные стороны. В первом случае число линий магнитной индукции, пронизывающих катушку (магнитный поток) растет, а во втором случае наоборот. Причем в первом случае линии индукции, созданные магнитным полем индукционного тока, выходят из верхнего конца катушки, так как катушка отталкивает магнит, а во втором случае, наоборот, входят в этот конец. Так как стрелка амперметра отклоняется, то направление индукционного тока меняется. Именно это показывает нам правило Ленца.

Вводя магнит в катушку южным полюсом, мы наблюдаем картину, противоположную первой.

2. (Случай с двумя катушками)

В случае с двумя катушками при размыкании ключа стрелка амперметра смещается в одну сторону, а при замыкании в другую.

Это объясняется тем, что при замыкании ключа, ток в первой катушке создает магнитное поле. Это поле увеличивается, и число линий индукции, пронизывающих вторую катушку, растет. При размыкании число линий, пронизывающих катушку, уменьшается. Следовательно, по правилу Ленца в первом случае и во втором индукционный ток противодействует тому изменению, которым он вызван. Изменение направления индукционного тока нам показывает тот же амперметр, и это подтверждает правило Ленца.

ИНФОФИЗ — мой мир.

Весь мир в твоих руках — все будет так, как ты захочешь

Как сказал.

Вопросы к экзамену

Для групп АМ-11, СЗ-11, А-11 специальности:

190631 «Техническое обслуживание и ремонт автомобильного транспорта»

270802 «Строительство и эксплуатация зданий и сооружений»

Список лекций по физике за 1,2 семестр

ЖЕЛАЮ УДАЧИ!

Тестирование

Лабораторная работа № 09 «Изучение явления электромагнитной индукции»

Лабораторная работа №10

Цель работы: изучить условия возникновения индукционного тока, ЭДС индукции.

Оборудование : катушка, два полосовых магнита, миллиамперметр.

Взаимная связь электрических и магнитных полей была установлена выдающимся английским физиком М. Фарадеем в 1831 г. Он открыл явление электромагнитной индукции .

Многочисленные опыты Фарадея показывают, что с помощью магнитного поля можно получить электрический ток в проводнике.

Явление электромагнитной индукции заключается в возникновении электрического тока в замкнутом контуре при изменении магнитного потока, пронизывающего контур.

Ток, возникающий при явлении электромагнитной индук­ции, называют индукционным.

В электрической цепи (рисунок 1) возникает индукционный ток, если есть движение магнита относительно катушки, или наоборот. Направление индукционного тока зависит как от направления движения магнита, так и от расположения его полюсов. Индукционный ток отсутствует, если нет относительного перемещения катушки и магнита.

Строго говоря, при движении контура в магнит­ном поле генерируется не определенный ток, а определенная э. д. с.

Фарадей экспериментально установил, что при изменении магнитного потока в проводящем контуре возникает ЭДС индукции E инд, равная скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус :

Эта формула выражает закон Фарадея: э. д. с. индукции равна скорости изменения магнитного потока через поверхность, ограни­ченную контуром.

Знак минус в формуле отражает правило Ленца .

В 1833 году Ленц опытным путем доказал утверждение, которое называется правилом Ленца: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток .

При возрастании магнитного потока Ф>0, а ε инд 0, т.е. магнитное поле индукционного тока увеличивает убывающий магнитный поток через контур.

Правило Ленца имеет глубокий физический смысл оно выражает закон сохранения энергии : если магнитное поле через контур увеличивается, то ток в контуре направлен так, что его магнитное поле направлено против внешнего, а если внешнее магнитное поле через контур уменьшается, то ток направлен так, что его магнитное поле поддерживает это убывающее магнитное поле.

ЭДС индукции зависит от разных причин. Если вдвигать в катушку один раз сильный магнит, а в другой - слабый, то показания прибора в первом случае будут более высокими. Они будут более высокими и в том случае, когда магнит движется быстро. В каждом из проведённых в этой работе опыте направление индукционного тока определяется правилом Ленца. Порядок определения направления индукционного тока показан на рисунке 2.

На рисунке синим цветом обозначены силовые линии магнитного поля постоянного магнита и линии магнитного поля индукционного тока. Силовые линии магнитного поля всегда направлены от N к S – от северного полюса к южному полюсу магнита.

По правилу Ленца индукционный электрический ток в проводнике, возникающий при изменении магнитного потока, направлен таким образом, что его магнитное поле противодействует изменению магнитного потока. Поэтому в катушке направление силовых линий магнитного поля противоположно силовым линиям постоянного магнита, ведь магнит движется в сторону катушки. Направление тока находим по правилу буравчика: если буравчик (с правой нарезкой) ввинчивать так, чтобы его поступательное движение совпало с направлением линий индукции в катушке, тогда направление вращения рукоятки буравчика совпадает с направлением индукционного тока.

Поэтому ток через миллиамперметр течёт слева направо, как показано на рисунке 1 красной стрелкой. В случае, когда магнит отодвигается от катушки, силовые линии магнитного поля индукционного тока будут совпадать по направлению с силовыми линиями постоянного магнита, и ток будет течь справа налево.

Подготовьте для отчета таблицу и по мере проведения опытов заполните её.

Изучение явления электромагнитной индукции

Решебник по физике за 11 класс (Г.Я Мякишев, Б.Б. Буховцев, 2000 год),
задача №1
к главе «Лабораторная работа №1 ».

Цель работы: экспериментальное изучение явления магнитной индукциии проверка правила Ленца.

Теоретическая часть: Явление электромагнитной индукции заключается в возникновении электрического тока в проводящем контуре, который либо покоится в переменном во времени магнитном поле, либо движется в постоянном магнитном поле таким образом, что число линий магнитной индукции, пронизывающих контур, меняется. В нашем случае разумнее было бы менять во времени магнитное поле, так как оно создается движущимися (свободно) магнитом. Согласно правилу Ленца, возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван. В данном случае это мы можем наблюдать по отклонению стрелки миллиамперметра.

Оборудование: Миллиамперметр, источник питания, катушки с сердечниками, дугообразный магнит, выключатель кнопочный, соединительные провода, магнитная стрелка (компас), реостат.

Вывод по проделанной работе: 1. Вводя магнит в катушку одним полюсом (северным) и выводя ее, мы наблюдаем, что стрелка амперметра отклоняется в разные стороны. В первом случае число линий магнитной индукции, пронизывающих катушку (магнитный поток), растет, а во втором случае – наоборот. Причем в первом случае линии индукции, созданные магнитным полем индукционного тока, выходят из верхнего конца катушки, так как катушка отталкивает магнит, а во втором случае, наоборот, входят в этот конец. Так как стрелка амперметра отклоняется, то направление индукционного тока меняется. Именно это показывает нам правило Ленца. Вводя магнит в катушку южным полюсом, мы наблюдаем картину, противоположную первой.

2. (Случай с двумя катушками) В случае с двумя катушками при размыкании ключа стрелка амперметра смещается в одну сторону, а при замыкании в другую. Это объясняется тем, что при замыкании ключа, ток в первой катушке создает магнитное поле. Это поле растет, и число линий индукции, пронизывающих вторую катушку, растет. При размыкании число линий падает. Следовательно, по правилу Ленца в первом случае и во втором индукционный ток противодействует тому изменению, которым он вызван. Изменение направления индукционного тока нам показывает тот же амперметр, и это подтверждает правило Ленца.

Лабораторная работа на тему: «Изучение явления электромагнитной индукции»

Успейте воспользоваться скидками до 60% на курсы «Инфоурок»

Лабораторная работа

изучение явления электромагнитной индукции

Цель: наблюдать явление электромагнитной индукции, проверить выполнение правила Ленца.

гальванометр, катушка, соединительные провода, магнит.

Метод выполнения работы

Явление электромагнитной индукции заключается в возникновении индукционного электрического тока в любом замкнутом проводящем контуре при изменении магнитного потока, который пронизывает контур. Направление индукционного тока определяется по правилу Ленца.

В этой работе наблюдается явление электромагнитной индукции. Через полость катушки перемещают магнит и определяют при этом направление индукционного тока по отклонению стрелки гальванометра.

Направление индукционного тока можно определить и по правилу Ленца. В работе его можно применить так:

1) определить направление магнитных полюсов катушки при движении магнита (к магниту обращен полюс, который препятствует его движению);

2) определить (по правилу магнитной стрелки) направление вектора В магнитного поля, созданного током в катушке;

3) определить (по правилу буравчика) направление тока в катушке.

1. Подсоединить катушку к гальванометру.

2. Передвигать магнит через полость катушки, как показано на рисунках а)-г); отметить в каждом случае отклонение стрелки гальванометра (направление тока).

3. Для одного из четырех случаев (полюса магнита и направление его движения задает преподаватель) определить направление тока в катушке по правилу Ленца, используя п. 1 – 3. Для катушки указать: полюса N и S , направление вектора В, направление тока I .

1. Что характеризует магнитная индукция В? Как вычисляется магнитная индукция? Какие величины входят в эту формулу?

2. Объясните по рисунку, как возникает ЭДС индукции в проводнике, который движется в магнитном поле?

3. При каком условии появляется вихревое электрическое поле? Каковы свойства вихревого электрического поля (объяснит его, опираясь на рисунок).

Лабораторная работа №2. «Изучение явления электромагнитной индукции»

Урок 9. Физика 11 класс

Конспект урока «Лабораторная работа №2. «Изучение явления электромагнитной индукции»»

«Человека, умеющего наблюдать и

анализировать, обмануть невозможно»

Артур Конан Дойль

Данная тема посвящена лабораторной работе по изучению явления электромагнитной индукции.

Цель лабораторной работы : изучение явления электромагнитной индукции, а также проверка правила Ленца.

Оборудование : соединительные провода, миллиамперметр, реостат, источник питания, ключ, полосовой или дугообразный магнит, магнитная стрелка или компас, катушки с сердечниками.

Магнитный поток через плоскую поверхность - это скалярная физическая величина, численно равная произведению модуля магнитной индукции на площадь поверхности, ограниченной контуром, и на косинус угла между нормалью к поверхности и магнитной индукцией

17 октября 1831 года английский ученый Майкл Фарадей открыл явление электромагнитной индукции.

Явлением электромагнитной индукции называется явление возникновения тока в замкнутом контуре при изменении магнитного потока, пронизывающего этот контур. А полученный таким способом ток, называется индукционным.

Закон электромагнитной индукции: среднее значение электродвижущей силы индукции в проводящем контуре пропорционально скорости изменения магнитного потока через поверхность, ограниченную контуром.

Знак минус в математической записи закона учитывает правило Ленца , согласно которому электромагнитная индукция создает в контуре индукционный ток такого направления, что созданное им магнитное поле препятствует изменению магнитного потока, вызывающего этот ток.

Подготовка к выполнению работы.

Вставьте в одну из катушек железный сердечник и закрепите его там, например гайкой.

Рядом с катушкой расположите магнитную стрелку или компас.

Замкнув ключ, определите расположение магнитных полюсов катушки с током при помощи магнитной стрелки.

Зафиксируйте, в какую сторону при этом отклониться стрелка миллиамперметра. Это поможет в дальнейшем судить о расположении магнитных полюсов катушки с током по направлению отклонения стрелки миллиамперметра.

После проделанной работы, отключите от цепи реостат и ключ, а миллиамперметр замкните на катушку, при этом сохранив порядок соединения их клемм.

Для удобства записей, можно составить следующую таблицу.


Приступаем непосредственно к выполнению лабораторной работы. При этом все данные, которые вы будите получать в процессе исследования, заносите в таблицу.

Приставив сердечник к одному из полюсов магнита (например к северному), быстро поместите его внутрь катушки, одновременно наблюдая за стрелкой миллиамперметра. По правилу Ленца определите направление индукционного тока внутри катушки.

Оставив магнит неподвижным, после первого опыта, пронаблюдайте опять за стрелкой миллиамперметра.

Быстро вытащите сердечник из катушки, не забывая наблюдать за стрелкой миллиамперметра (модуль скорости выдвижения магнита должен быть примерно таким же, как и в первом опыте). Опять, по правилу Ленца, определите направление индукционного тока внутри катушки в этом случае.

Посмотрите, как ведет себя стрелка миллиамперметра после проделанного опыта.

Повторите наблюдения, изменив полюс магнита с северного на южный.

Запишите вывод по работе на основе проведённых наблюдений. Объясните различие в направлении индукционного тока с точки зрения правила Ленца.

Теперь немного видоизменим нашу установку.

Расположите вторую катушку рядом с первой так, чтобы их оси совпадали, и поместите их на один общий сердечник.

Первую катушку соедините с миллиамперметром, а вторую катушку через реостат соедините с источником тока.

Замыкая и размыкая ключ, проверьте возникает ли в первой катушки индукционный ток.

Зарисуйте схему опыта и проверьте выполнения правила Ленца.

Также проверьте, возникает ли индукционный ток при изменении силы тока реостатом.

В конце работы, подведите ее итог, сделав общий вывод, не забыв отразить в нем условия, при которых в катушке возникал индукционный ток.

Письменно ответьте на контрольные вопросы:

1. В чем заключается явление электромагнитной индукции?

2. Какой ток называют индукционным?

3. Сформулируйте закон электромагнитной индукции. Какой формулой он описывается?

4. Как формулируется правило Ленца?

5. Какова связь правила Ленца с законом сохранения энергии?

Это интересно:

  • Сколько стоят услуги юриста по взысканию неустойки с застройщика Застройщик КСК (Спб) задерживает срок сдачи квартиры. По договору ДДУ должен был передать 31.12.2015г. Квартира 40м2, приобретена в ипотеку. На что можно рассчитывать и сколько будут стоить услуги юриста (акта приема […]
  • Нормативные документы Приемная комиссия Прием по образовательным программам высшего образования - программам бакалавриата, программам специалитета прием иностранных граждан в КГМУ На нашем сайте вы найдете всю необходимую информацию о правилах поступления в наш вуз, способах и сроках […]
  • Право на НДФЛ-вычет ИФНС подтвердила, а деньги так и не пришли: как быть? Далеко не всегда получение денег по заявленному НДФЛ- вычету (имущественному/ социальному/ стандартному) проходит гладко. Давайте разберемся с ситуацией, когда вы представили в инспекцию декларацию с необходимыми […]
  • Сайт мир суд С 01.01.2017 года вступил в законную силу Федеральный закон от 23.06.2016 года № 220-ФЗ "О внесении изменений в отдельные законодательные акты Российской Федерации в части применения электронных документов в деятельности органов судебной власти". Согласно данного закона […]

В 1834 году русский академик Э. Х. Ленц, известный своими многочисленными исследованиями в области электромагнитных явлений, дал универсальное правило для определения направления индуктированной электродвижущей силы (ЭДС) в проводнике. Это правило, известное как правило Ленца, может быть сформулировано так:

Направление индуктированной ЭДС всегда таково, что вызванный ею ток и его имеют такое направление, что стремятся препятствовать причине, порождающей эту индуктированную ЭДС.

Справедливость формулировки правила Ленца подтверждается следующими опытами:

Рисунок 1. Противодействие проводника с индуктированным током своему движению

1. Если расположить так, как показано на рисунке 1, то при движении вниз проводник будет пересекать это магнитное поле. Тогда в проводнике индуктируется ЭДС, направление которой можно определить по . В нашем случае направление индуктированной ЭДС, а стало быть и тока будет «к нам». Посмотрим теперь, как будет вести себя наш проводник с током в магнитном поле. Из предыдущих статей нам известно, что проводник с током из магнитного поля будет выталкиваться. Направление выталкивания определяется по правилу левой руки. В нашем случае сила выталкивания направлена вверх. Таким образом, индуктированный ток, взаимодействуя с магнитным полем, мешает движению проводника, то есть противодействует причине, которая его вызвала.

2. Для опыта соберем цепь, показанную на рисунке 2. Опуская в катушку (северным полюсом вниз), заметим отклонение стрелки гальванометра. Опыт показывает, что направление индуктированного тока в катушке будет такое, как показано стрелками на рисунке 2, а . Пусть ему соответствует отклонение стрелки влево от среднего нулевого положения. Следовательно, катушка как бы превратилась в и указанное направление тока создает наверху ее северный полюс, а внизу - южный. Так как одноименные полюса магнита и соленоида будут отталкиваться, то индуктированный ток в катушке будет мешать движению постоянного магнита, то есть будет противодействовать причине, которая его вызвала.

Рисунок 2. Противодействие соленоида движению магнита:
а - вниз, б - вверх

Если мы будем вынимать постоянный магнит из катушки, то стрелка гальванометра отклонится вправо (рисунок 2, б ). Этому отклонению стрелки гальванометра, как показывает опыт, соответствует направление индуктированного тока, показанное стрелками на рисунке 2, б , и противоположное направлению тока на рисунке 2, а .

Определяя полюса катушки по «правилу буравчика», найдем, что южный полюс будет теперь наверху катушки, а северный внизу. Разноименные полюса магнита и соленоида, притягиваясь, будут тормозить движение магнита. Значит, индуктированный ток опять будет противодействовать причине, которая его вызвала.

Рисунок 3. Возникновение индуктированного тока II :
а - в момент замыкания цепи I , б - в момент размыкания цепи

3. Замыкая цепь I (рисунок 3, а ), пропустим ток по проводнику АБ . Направление тока показано на рисунке стрелками. Магнитное поле проводника АБ , созданное появившимся током, распространяясь во все стороны, будет пересекать проводник ВГ , и в цепи II возникает индуктированная ЭДС. Поскольку цепь II замкнута на гальванометр, в ней появится ток. Гальванометр в этом случае включен также, как и в предыдущем опыте.

Стрелка гальванометра, отклонившись влево, покажет, что ток через прибор идет сверху вниз. Сравнивая направление токов в проводниках АБ и ВГ, мы видим, что токи их направлены в разные стороны.

Как мы уже знаем, проводники, токи в которых направлены в разные стороны, один от другого. Поэтому проводник ВГ с индуктированным током будет стремиться оттолкнуться от проводника АБ (так же, как и проводник АБ от ВГ ), устранить влияние поля проводника АБ и тем самым препятствовать причине, вызвавшей индуктированный ток.

Индуктированный ток в цепи II будет проходить непродолжительное время. Как только проводника АБ установится, прекратится пересечение проводника ВГ магнитным полем проводника АБ , ток в цепи II пропадет.

При размыкании цепи I исчезающий ток вызовет уменьшение магнитного поля, индукционные линии которого, пересекая проводник ВГ , создадут в нем индуктированный ток того же направления, что и в проводнике АБ (рисунок 3, б ).

Нам известно, что проводники, в которых ток идет в одном направлении, один к другому. Поэтому проводник ВГ будет стремиться протянуться к проводнику АБ , чтобы поддержать его убывающее магнитное поле.

4. Для следующего примера возьмем катушку, имеющую круглый сердечник, набранный из нарубленной стальной проволоки, на который свободно надето легкое алюминиевое кольцо (рисунок 4). В момент замыкания цепи по обмотке катушки начинает проходить , создающий магнитное поле, индукционные линии которого, пересекая алюминиевое кольцо, индуктируют в нем ток. В момент включения катушки в алюминиевом кольце возникает индуктированный ток, направленный обратно току в витках катушки. Проводники имеющие разное направление индукционного тока отталкиваются. Поэтому в момент включения катушки алюминиевое кольцо подскакивает вверх.

Нам теперь известно, что при всяком изменении во времени магнитного потока, пронизывающего контур, в нем появляется индуктированная ЭДС, определяемая равенством:

Выражение в данной формуле представляет собою среднюю скорость изменения магнитного потока по времени. Чем меньше промежуток времени Δt , тем меньше вышеуказанная ЭДС отличается от ее действительного значения в данный момент времени. Знак минус, стоящий перед выражением , показывает направление индуктированной ЭДС, то есть учитывает правило Ленца.

При увеличении магнитного потока выражение будет положительным, а ЭДС - отрицательной. В этом и заключается правило Ленца: ЭДС и созданный ею ток противодействуют причине, которая их вызвала .

При равномерном изменении во времени магнитного потока выражение будет постоянно. Тогда абсолютное значение ЭДС в проводнике будет равно:

Размерность магнитного потока будет:

[Ф] = [e × t ] = В × сек или вебер.

Если мы имеем не один проводник, а катушку, состоящую из w витков, то величина индуктированной ЭДС будет:

Произведение числа витков катушки на сцепленный с ними магнитный поток называется потокосцеплением катушки и обозначается буквой ψ. Поэтому закон можно записать и в другой форме:

Явление электромагнитной индукции заключается в том, что в результате изменения во времени магнитного потока, который пронизывает замкнутый проводящий контур, в контуре возникает электрический ток. Открыто это явление было физиком из Великобритании Максом Фарадеем в 1831 году.

Введем обозначения, необходимые нам для записи формулы. Для обозначения магнитного потока используем букву Ф, площади контура – S , модуля вектора магнитной индукции – B , α – это угол между вектором B → и нормалью n → к плоскости контура.

Магнитный поток, который проходит через площадь замкнутого проводящего контура, можно задать следующей формулой:

Φ = B · S · cos α ,

Проиллюстрируем формулу.

Рисунок 1 . 20 . 1 . Магнитный поток через замкнутый контур. Направление нормали n → и выбранное положительное направление l → обхода контура связаны правилом правого буравчика.

За единицу магнитного потока в С И принят 1 вебер (В б) . Магнитный поток, равный 1 В б, может быть создан в плоском контуре площадью 1 м 2 под воздействием магнитного поля с индукцией 1 Т л, которое пронизывает контур по направлению нормали.

1 В б = 1 Т л · м 2

Закон Фарадея

Изменение магнитного потока приводит к тому, что в проводящем контуре возникает ЭДС индукции δ и н д. Она равна скорости, с которой происходит изменение магнитного потока через ограниченную контуром поверхность, взятой со знаком минус. Впервые экспериментально установил это Макс Фарадей. Он же записал свое наблюдение в виде формулы ЭДС индукции, которая теперь носит название Закона Фарадея:

Определение 1

Закон Фарадея:

δ и н д = - ∆ Φ ∆ t

Правило Ленца

Определение 2

Согласно результатам опытов, индукционный ток, который возникает в замкнутом контуре в результате изменения магнитного потока, всегда направлен определенным образом. Создаваемое индукционным током магнитное поле препятствует изменению вызвавшего этот индукционный ток магнитного потока. Ленц сформулировал это правило в 1833 году.

Проиллюстрируем правило Ленца рисунком, на котором изображен неподвижный замкнутый проводящий контур, помещенный в однородное магнитное поле. Модуль индукции увеличивается во времени.

Пример 1

Благодаря правилу Ленца мы можем обосновать тот факт, что в формуле электромагнитной индукции δ и н д и ∆ Φ ∆ t противоположны по знакам.

Если задуматься о физическом смысле правила Ленца, то это частный случай Закона сохранения энергии.

Причин, по которым может происходить изменение магнитного потока, пронизывающего замкнутый контур, две:

  1. Изменение магнитного потока вследствие перемещения всего контура или отдельных его частей в магнитном поле, которое не изменяется со временем;
  2. Изменение магнитного поля при неподвижном контуре.

Перейдем к рассмотрению этих случаев подробнее.

Перемещение контура или его частей в неизменном магнитном поле

При движении проводников и свободных носителей заряда в магнитном поле возникает ЭДС индукции. Объяснить возникновение δ и н д можно действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца здесь – это сторонняя сила.

Пример 2

На рисунке мы изобразили пример индукции, когда прямоугольный контур помещен в однородное магнитное поле B → направленное перпендикулярно плоскости контура. Одна из сторон контура перемещается по двум другим сторонам с некоторой скоростью.

Рисунок 1 . 20 . 3 . Возникновение ЭДС индукции в движущемся проводнике. Отражена составляющая силы Лоренца, которая действует на свободный электрон

На свободные заряды подвижной части контура воздействует сила Лоренца. Основная составляющая силы Лоренца в данном случае направлена вдоль проводника и связана с переносной скоростью зарядов υ → . Модуль этой сторонней силы равен:

F Л = e υ → B .

Работа силы F Л на пути l равна:

A = F Л · l = e υ B l .

По определению ЭДС:

δ и н д = A e = υ B l .

Значение сторонней силы для неподвижных частей контура равно нулю. Для соотношения δ и н д можно записать другой вариант формулы. Площадь контура с течением времени изменяется на Δ S = l υ Δ t . Соответственно, магнитный поток тоже будет с течением времени изменяться: Δ Φ = B l υ Δ t .

Следовательно,

δ и н д = ∆ Φ ∆ t .

Знаки в формуле, которая связывает δ и н д и ∆ Φ ∆ t , можно установить в зависимости от того, какие направления нормали и направления контура будут выбраны. В случае выбора согласованных между собой по правилу правого буравчика направлений нормали n → и положительного направления обхода контура l → можно прийти к формуле Фарадея.

При условии, что сопротивление всей цепи – это R , то по ней будет протекать индукционный ток, который равен I и н д = δ и н д R . За время Δ t на сопротивлении R выделится джоулево тепло:

∆ Q = R I и н д 2 ∆ t = υ 2 B 2 l 2 R ∆ t

Парадокса здесь нет. Мы просто не учли воздействие на систему еще одной силы. Объяснение заключается в том, что при протекании индукционного тока по проводнику, расположенному в магнитном поле, на свободные заряды действует еще одна составляющая силы Лоренца, которая связана с относительной скоростью движения зарядов вдоль проводника. Благодаря этой составляющей появляется сила Ампера F А → .

Для рассмотренного выше примера модуль силы Ампера равен F A = I B l . Направление силы Ампера таково, что она совершает отрицательную механическую работу A м е х. Вычислить эту механическую работу за определенный период времени можно по формуле:

A м е х = - F υ ∆ t = - I B l υ ∆ t = - υ 2 B 2 l 2 R ∆ t

Проводник, перемещающийся в магнитном поле, испытывает магнитное торможение. Это приводит к тому, что полная работа силы Лоренца равна нулю. Джоулево тепло может выделяться либо за счет уменьшения кинетической энергии движущегося проводника, либо за счет энергии, которая поддерживает скорость перемещения проводника в пространстве.

Изменение магнитного поля при неподвижном контуре

Определение 3

Вихревое электрическое поле – это электрическое поле, которое вызывается изменяющимся магнитным полем.

В отличие от потенциального электрического поля работа вихревого электрического поля при перемещении единичного положительного заряда по замкнутому проводящему контуру равна δ и н д в неподвижном проводнике.

В неподвижном проводнике электроны могут приводиться в движение только под действием электрического поля. А возникновение δ и н д нельзя объяснить действием силы Лоренца.

Первым, кто ввел понятие вихревого электрического поля, был английский физик Джон Максвелл. Случилось это в 1861 году.

Фактически, явления индукции в подвижных и неподвижных проводниках протекают одинаково. Так что в этом случае мы тоже можем использовать формулу Фарадея. Отличия касаются физической причины возникновения индукционного тока: в движущихся проводниках δ и н д обусловлена силой Лоренца, в неподвижных – действием на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.