Постоянная планка в си. Постоянная планка и геометрия квантовой природы света

· Смешанное состояние · Измерение · Неопределённость · Принцип Паули · Дуализм · Декогеренция · Теорема Эренфеста · Туннельный эффект

См. также: Портал:Физика

Физический смысл

В квантовой механике импульс имеет физический смысл волнового вектора, энергия - частоты, а действие - фазы волны, однако традиционно (исторически) механические величины измеряются в других единицах (кг·м/с, Дж, Дж·с), чем соответствующие волновые (м −1 , с −1 , безразмерные единицы фазы). Постоянная Планка играет роль переводного коэффициента (всегда одного и того же), связывающего эти две системы единиц - квантовую и традиционную:

\mathbf p = \hbar \mathbf k (импульс) (|\mathbf p|= 2 \pi \hbar / \lambda) E = \hbar \omega (энергия) S = \hbar \phi (действие)

Если бы система физических единиц формировалась уже после возникновения квантовой механики и приспосабливалась для упрощения основных теоретических формул, константа Планка вероятно просто была бы сделана равной единице, или, во всяком случае, более круглому числу. В теоретической физике очень часто для упрощения формул используется система единиц с \hbar = 1, в ней

\mathbf p = \mathbf k (|\mathbf p|= 2 \pi / \lambda) E = \omega S = \phi (\hbar = 1).

Постоянная Планка имеет и простую оценочную роль в разграничении областей применимости классической и квантовой физики: она в сравнении с величиной характерных для рассматриваемой системы величин действия или момента импульса , или произведений характерного импульса на характерный размер, или характерной энергии на характерное время, показывает, насколько применима к данной физической системе классическая механика . А именно, если S - действие системы, а M - её момент импульса, то при \frac{S}{\hbar}\gg1 или \frac{M}{\hbar}\gg1 поведение системы с хорошей точностью описывается классической механикой. Эти оценки достаточно прямо связаны с соотношениями неопределенностей Гейзенберга .

История открытия

Формула Планка для теплового излучения

Формула Планка - выражение для спектральной плотности мощности излучения абсолютно чёрного тела, которое было получено Максом Планком для равновесной плотности излучения u(\omega, T). Формула Планка была получена после того, как стало ясно, что формула Рэлея - Джинса удовлетворительно описывает излучение только в области длинных волн. В 1900 году Планк предложил формулу с постоянной (впоследствии названной постоянной Планка), которая хорошо согласовывалась с экспериментальными данными. При этом Планк полагал, что данная формула является всего лишь удачным математическим трюком, но не имеет физического смысла. То есть Планк не предполагал, что электромагнитное излучение испускается в виде отдельных порций энергии (квантов), величина которых связана с циклической частотой излучения выражением:

\varepsilon = \hbar \omega.

Коэффициент пропорциональности \hbar впоследствии назвали постоянной Планка , \hbar = 1.054·10 −34 Дж·с.

Фотоэффект

Фотоэффект - это испускание электронов веществом под действием света (и, вообще говоря, любого электромагнитного излучения). В конденсированных веществах (твёрдых и жидких) выделяют внешний и внутренний фотоэффект.

Затем тот же фотоэлемент облучают монохроматическим светом с частотой \nu_2 и точно также запирают его с помощью напряжения U_2:

h\nu_2=A+eU_2.

Почленно вычитая второе выражение из первого, получаем

h(\nu_1-\nu_2)=e(U_1-U_2),

откуда следует

h=\frac {e(U_1-U_2)}{(\nu_1-\nu_2)}.

Анализ спектра тормозного рентгеновского излучения

Этот способ считается самым точным из существующих. Используется тот факт, что частотный спектр тормозного рентгеновского излучения имеет точную верхнюю границу, называемую фиолетовой границей. Её существование вытекает из квантовых свойств электромагнитного излучения и закона сохранения энергии. Действительно,

h\frac{c}{\lambda}=eU,

где c - скорость света,

\lambda - длина волны рентгеновского излучения, e - заряд электрона, U - ускоряющее напряжение между электродами рентгеновской трубки.

Тогда постоянная Планка равна

h=\frac{{\lambda}{Ue}}{c}.

Напишите отзыв о статье "Постоянная Планка"

Примечания

Литература

  • John D. Barrow. The Constants of Nature; From Alpha to Omega - The Numbers that Encode the Deepest Secrets of the Universe. - Pantheon Books, 2002. - ISBN 0-37-542221-8 .
  • Steiner R. // Reports on Progress in Physics. - 2013. - Vol. 76. - P. 016101.

Ссылки

Отрывок, характеризующий Постоянная Планка

– Это моя чашка, – говорил он. – Только вложите пальчик, все выпью.
Когда самовар весь выпили, Ростов взял карты и предложил играть в короли с Марьей Генриховной. Кинули жребий, кому составлять партию Марьи Генриховны. Правилами игры, по предложению Ростова, было то, чтобы тот, кто будет королем, имел право поцеловать ручку Марьи Генриховны, а чтобы тот, кто останется прохвостом, шел бы ставить новый самовар для доктора, когда он проснется.
– Ну, а ежели Марья Генриховна будет королем? – спросил Ильин.
– Она и так королева! И приказания ее – закон.
Только что началась игра, как из за Марьи Генриховны вдруг поднялась вспутанная голова доктора. Он давно уже не спал и прислушивался к тому, что говорилось, и, видимо, не находил ничего веселого, смешного или забавного во всем, что говорилось и делалось. Лицо его было грустно и уныло. Он не поздоровался с офицерами, почесался и попросил позволения выйти, так как ему загораживали дорогу. Как только он вышел, все офицеры разразились громким хохотом, а Марья Генриховна до слез покраснела и тем сделалась еще привлекательнее на глаза всех офицеров. Вернувшись со двора, доктор сказал жене (которая перестала уже так счастливо улыбаться и, испуганно ожидая приговора, смотрела на него), что дождь прошел и что надо идти ночевать в кибитку, а то все растащат.
– Да я вестового пошлю… двух! – сказал Ростов. – Полноте, доктор.
– Я сам стану на часы! – сказал Ильин.
– Нет, господа, вы выспались, а я две ночи не спал, – сказал доктор и мрачно сел подле жены, ожидая окончания игры.
Глядя на мрачное лицо доктора, косившегося на свою жену, офицерам стало еще веселей, и многие не могла удерживаться от смеха, которому они поспешно старались приискивать благовидные предлоги. Когда доктор ушел, уведя свою жену, и поместился с нею в кибиточку, офицеры улеглись в корчме, укрывшись мокрыми шинелями; но долго не спали, то переговариваясь, вспоминая испуг доктора и веселье докторши, то выбегая на крыльцо и сообщая о том, что делалось в кибиточке. Несколько раз Ростов, завертываясь с головой, хотел заснуть; но опять чье нибудь замечание развлекало его, опять начинался разговор, и опять раздавался беспричинный, веселый, детский хохот.

В третьем часу еще никто не заснул, как явился вахмистр с приказом выступать к местечку Островне.
Все с тем же говором и хохотом офицеры поспешно стали собираться; опять поставили самовар на грязной воде. Но Ростов, не дождавшись чаю, пошел к эскадрону. Уже светало; дождик перестал, тучи расходились. Было сыро и холодно, особенно в непросохшем платье. Выходя из корчмы, Ростов и Ильин оба в сумерках рассвета заглянули в глянцевитую от дождя кожаную докторскую кибиточку, из под фартука которой торчали ноги доктора и в середине которой виднелся на подушке чепчик докторши и слышалось сонное дыхание.
– Право, она очень мила! – сказал Ростов Ильину, выходившему с ним.
– Прелесть какая женщина! – с шестнадцатилетней серьезностью отвечал Ильин.
Через полчаса выстроенный эскадрон стоял на дороге. Послышалась команда: «Садись! – солдаты перекрестились и стали садиться. Ростов, выехав вперед, скомандовал: «Марш! – и, вытянувшись в четыре человека, гусары, звуча шлепаньем копыт по мокрой дороге, бренчаньем сабель и тихим говором, тронулись по большой, обсаженной березами дороге, вслед за шедшей впереди пехотой и батареей.
Разорванные сине лиловые тучи, краснея на восходе, быстро гнались ветром. Становилось все светлее и светлее. Ясно виднелась та курчавая травка, которая заседает всегда по проселочным дорогам, еще мокрая от вчерашнего дождя; висячие ветви берез, тоже мокрые, качались от ветра и роняли вбок от себя светлые капли. Яснее и яснее обозначались лица солдат. Ростов ехал с Ильиным, не отстававшим от него, стороной дороги, между двойным рядом берез.
Ростов в кампании позволял себе вольность ездить не на фронтовой лошади, а на казацкой. И знаток и охотник, он недавно достал себе лихую донскую, крупную и добрую игреневую лошадь, на которой никто не обскакивал его. Ехать на этой лошади было для Ростова наслаждение. Он думал о лошади, об утре, о докторше и ни разу не подумал о предстоящей опасности.
Прежде Ростов, идя в дело, боялся; теперь он не испытывал ни малейшего чувства страха. Не оттого он не боялся, что он привык к огню (к опасности нельзя привыкнуть), но оттого, что он выучился управлять своей душой перед опасностью. Он привык, идя в дело, думать обо всем, исключая того, что, казалось, было бы интереснее всего другого, – о предстоящей опасности. Сколько он ни старался, ни упрекал себя в трусости первое время своей службы, он не мог этого достигнуть; но с годами теперь это сделалось само собою. Он ехал теперь рядом с Ильиным между березами, изредка отрывая листья с веток, которые попадались под руку, иногда дотрогиваясь ногой до паха лошади, иногда отдавая, не поворачиваясь, докуренную трубку ехавшему сзади гусару, с таким спокойным и беззаботным видом, как будто он ехал кататься. Ему жалко было смотреть на взволнованное лицо Ильина, много и беспокойно говорившего; он по опыту знал то мучительное состояние ожидания страха и смерти, в котором находился корнет, и знал, что ничто, кроме времени, не поможет ему.
Только что солнце показалось на чистой полосе из под тучи, как ветер стих, как будто он не смел портить этого прелестного после грозы летнего утра; капли еще падали, но уже отвесно, – и все затихло. Солнце вышло совсем, показалось на горизонте и исчезло в узкой и длинной туче, стоявшей над ним. Через несколько минут солнце еще светлее показалось на верхнем крае тучи, разрывая ее края. Все засветилось и заблестело. И вместе с этим светом, как будто отвечая ему, раздались впереди выстрелы орудий.
Не успел еще Ростов обдумать и определить, как далеки эти выстрелы, как от Витебска прискакал адъютант графа Остермана Толстого с приказанием идти на рысях по дороге.
Эскадрон объехал пехоту и батарею, также торопившуюся идти скорее, спустился под гору и, пройдя через какую то пустую, без жителей, деревню, опять поднялся на гору. Лошади стали взмыливаться, люди раскраснелись.
– Стой, равняйся! – послышалась впереди команда дивизионера.
– Левое плечо вперед, шагом марш! – скомандовали впереди.
И гусары по линии войск прошли на левый фланг позиции и стали позади наших улан, стоявших в первой линии. Справа стояла наша пехота густой колонной – это были резервы; повыше ее на горе видны были на чистом чистом воздухе, в утреннем, косом и ярком, освещении, на самом горизонте, наши пушки. Впереди за лощиной видны были неприятельские колонны и пушки. В лощине слышна была наша цепь, уже вступившая в дело и весело перещелкивающаяся с неприятелем.
Ростову, как от звуков самой веселой музыки, стало весело на душе от этих звуков, давно уже не слышанных. Трап та та тап! – хлопали то вдруг, то быстро один за другим несколько выстрелов. Опять замолкло все, и опять как будто трескались хлопушки, по которым ходил кто то.
Гусары простояли около часу на одном месте. Началась и канонада. Граф Остерман с свитой проехал сзади эскадрона, остановившись, поговорил с командиром полка и отъехал к пушкам на гору.
Вслед за отъездом Остермана у улан послышалась команда:
– В колонну, к атаке стройся! – Пехота впереди их вздвоила взводы, чтобы пропустить кавалерию. Уланы тронулись, колеблясь флюгерами пик, и на рысях пошли под гору на французскую кавалерию, показавшуюся под горой влево.
Как только уланы сошли под гору, гусарам ведено было подвинуться в гору, в прикрытие к батарее. В то время как гусары становились на место улан, из цепи пролетели, визжа и свистя, далекие, непопадавшие пули.
Давно не слышанный этот звук еще радостнее и возбудительное подействовал на Ростова, чем прежние звуки стрельбы. Он, выпрямившись, разглядывал поле сражения, открывавшееся с горы, и всей душой участвовал в движении улан. Уланы близко налетели на французских драгун, что то спуталось там в дыму, и через пять минут уланы понеслись назад не к тому месту, где они стояли, но левее. Между оранжевыми уланами на рыжих лошадях и позади их, большой кучей, видны были синие французские драгуны на серых лошадях.

Ростов своим зорким охотничьим глазом один из первых увидал этих синих французских драгун, преследующих наших улан. Ближе, ближе подвигались расстроенными толпами уланы, и французские драгуны, преследующие их. Уже можно было видеть, как эти, казавшиеся под горой маленькими, люди сталкивались, нагоняли друг друга и махали руками или саблями.
Ростов, как на травлю, смотрел на то, что делалось перед ним. Он чутьем чувствовал, что ежели ударить теперь с гусарами на французских драгун, они не устоят; но ежели ударить, то надо было сейчас, сию минуту, иначе будет уже поздно. Он оглянулся вокруг себя. Ротмистр, стоя подле него, точно так же не спускал глаз с кавалерии внизу.
– Андрей Севастьяныч, – сказал Ростов, – ведь мы их сомнем…
– Лихая бы штука, – сказал ротмистр, – а в самом деле…
Ростов, не дослушав его, толкнул лошадь, выскакал вперед эскадрона, и не успел он еще скомандовать движение, как весь эскадрон, испытывавший то же, что и он, тронулся за ним. Ростов сам не знал, как и почему он это сделал. Все это он сделал, как он делал на охоте, не думая, не соображая. Он видел, что драгуны близко, что они скачут, расстроены; он знал, что они не выдержат, он знал, что была только одна минута, которая не воротится, ежели он упустит ее. Пули так возбудительно визжали и свистели вокруг него, лошадь так горячо просилась вперед, что он не мог выдержать. Он тронул лошадь, скомандовал и в то же мгновение, услыхав за собой звук топота своего развернутого эскадрона, на полных рысях, стал спускаться к драгунам под гору. Едва они сошли под гору, как невольно их аллюр рыси перешел в галоп, становившийся все быстрее и быстрее по мере того, как они приближались к своим уланам и скакавшим за ними французским драгунам. Драгуны были близко. Передние, увидав гусар, стали поворачивать назад, задние приостанавливаться. С чувством, с которым он несся наперерез волку, Ростов, выпустив во весь мах своего донца, скакал наперерез расстроенным рядам французских драгун. Один улан остановился, один пеший припал к земле, чтобы его не раздавили, одна лошадь без седока замешалась с гусарами. Почти все французские драгуны скакали назад. Ростов, выбрав себе одного из них на серой лошади, пустился за ним. По дороге он налетел на куст; добрая лошадь перенесла его через него, и, едва справясь на седле, Николай увидал, что он через несколько мгновений догонит того неприятеля, которого он выбрал своей целью. Француз этот, вероятно, офицер – по его мундиру, согнувшись, скакал на своей серой лошади, саблей подгоняя ее. Через мгновенье лошадь Ростова ударила грудью в зад лошади офицера, чуть не сбила ее с ног, и в то же мгновенье Ростов, сам не зная зачем, поднял саблю и ударил ею по французу.

В данной статье на основе фотонной концепции раскрывается физическая сущность “фундаментальной константы” постоянной Планка. Приводятся аргументы, показывающие, что постоянная Планка это типовой параметр фотона, являющийся функцией его длины волны.

Введение. Конец ХIХ – начало ХХ веков ознаменовались кризисом теоретической физики , обусловленный неспособностью методами классической физики обосновать ряд проблем, одной из которых была “ультрафиолетовая катастрофа”. Суть данной проблемы состояла в том, что при установлении закона распределения энергии в спектре излучения абсолютно черного тела методами классической физики спектральная плотность энергии излучения должна была неограниченно расти по мере сокращения длины волны излучения. По сути, эта проблема показала если не внутреннюю противоречивость классической физики, то, во всяком случае, крайне резкое расхождение с элементарными наблюдениями и экспериментом.

Исследования свойств излучения абсолютно чёрного тела , проходившие в течение почти сорока лет (1860-1900), завершились выдвижением гипотезы Макса Планка о том, что энергия любой системы Е при излучении или поглощении электромагнитного излучения частоты ν {\displaystyle ~\nu } может измениться только на величину, кратную энергии кванта :

Е γ = hν {\displaystyle ~E=h\nu } . (1){\displaystyle ~h}

Коэффициент пропорциональности h в выражении (1) вошел в науку под названием «Планка постоянная», став основной константой квантовой теории .

Проблема чёрного тела была пересмотрена в 1905 г., когда Рэлей и Джинс с одной стороны, и Эйнштейн с другой стороны, независимо доказали, что классическая электродинамика не может обосновать наблюдаемый спектр излучения. Это привело к так называемой «ультрафиолетовой катастрофе «, обозначенной таким образом Эренфестом в 1911 г. Усилия теоретиков (вместе с работой Эйнштейна по фотоэффекту) привели к признанию того, что постулат Планка о квантовании уровней энергии является не простым математическим формализмом, а важным элементом представлений о физической реальности .

Дальнейшее развитие квантовых идей Планка – обоснование фотоэффекта с помощью гипотезы световых квантов (А. Эйнштейн, 1905), постулат в теории атома Бора квантование момента импульса электрона в атоме (Н. Бор, 1913), открытие соотношения де Бройля между массой частицы и ее длиной волны (Л. Де Бройль, 1921), а затем создание квантовой механики (1925 – 26) и установление фундаментальных соотношений неопределенности между импульсом и координатой и между энергией и временем (В. Гейзенберг, 1927) привело к установлению фундаментального статуса постоянной Планка в физике .

Этой точки зрения придерживается и современная квантовая физика : “В дальнейшем нам станет ясно, что в формуле Е / ν = h выражен фундаментальный принцип квантовой физики, а именно имеющая универсальный характер связь между энергией и частотой: Е = hν. Эта связь полностью чужда классической физике, и мистическая константа h есть проявление не постигнутых в то время тайн природы ”.

Вместе с тем был и альтернативный взгляд на постоянную Планка : “Учебники по квантовой механике говорят, что классическая физика – это физика в которой h равняется нулю. А на самом деле постоянная Планка h – это не что иное, как величина, фактически определяющая понятие хорошо известное в классической физике гироскопа. Втолкование адептам, штудирующим физику, что h ≠ 0 — это чисто квантовое явление, не имеющее своего аналога в классической физике, было одним из основных элементов, направленных на укрепление убеждения о необходимости квантовой механики.”

Таким образом, взгляды физиков теоретиков на постоянную Планка разделились. С одной стороны, наблюдается ее исключительность и мистификация, а с другой, попытка дать физическое толкование, не выходящее за рамки классической физики. Такое положение сохраняется в физике и в настоящее время, и будет сохраняться до тех пор, пока не будет установлена физическая сущность этой постоянной.

Физическая сущность постоянной Планка. Планку удалось вычислить значение h из экспериментальных данных по излучению чёрного тела: его результат был 6,55 10 −34 Дж с, с точностью 1,2 % от принятого сейчас значения , однако, обосновать физическую сущность постоянной h он не смог. Раскрытие физических сущностей каких-либо явлений не свойственно квантовой механике : “ Причиной кризисного положения в конкретных областях науки является общая неспособность современной теоретической физики разобраться в физической сути явлений, вскрыть внутренний механизм явлений, структуры материальных образований и полей взаимодействия, понять причинно-следственные связи между элементами, явлениями.” Поэтому кроме мифологии в данном вопросе она представить больше ничего не могла. В целом, эти взгляды отражены в работе : “Постоянная Планка h как физический факт означает существование наименьшего, не уменьшаемого и не стягиваемого к нулю конечного количества действия в природе. Как ненулевой коммутатор для любой пары динамической и кинематической величин, образующих своим произведением размерность действия, постоянная Планка порождает свойство некоммутативности для этих величин, которое в свою очередь является первичным и неустранимым источником неизбежно вероятностного описания физической реальности в любых пространствах динамики и кинематики. Отсюда – универсальность и всеобщность квантовой физики.”

В отличие от представлений адептов квантовой физики на природу постоянной Планка их оппоненты были более прагматичны. Физический смысл их представлений сводился к “вычислению методами классической механики величины главного момента импульса электрона P e (момента импульса связанного с вращением электрона вокруг собственной оси) и получение математического выражения постоянной Планка «h » через известные фундаментальные константы.” Из чего обосновывалась физическая сущность : “постоянная Планка «h » равна величине классического главного момента импульса электрона (связанного с вращением электрона вокруг собственной оси), умноженной на 4 p .

Ошибочность этих взглядов заключается в непонимании природы элементарных частиц и истоков появления постоянной Планка. Электрон это структурный элемент атома вещества, имеющий свое функциональное назначение – формирование физико-химических свойств атомов вещества. Поэтому выступать в качестве переносчика электромагнитного излучения он никак не может, т. е. гипотеза Планка о переносе энергии квантом к электрону неприменима.

Для обоснования физической сущности постоянной Планка рассмотрим эту проблему в историческом аспекте. Из выше изложенного следует, что решением проблемы “ультрафиолетовой катастрофы” стала гипотеза Планка о том, что излучение абсолютно черного тела происходит порционно, т. е. квантами энергии. Многие физики того времени предполагали изначально, что квантование энергии есть результат какого-то неизвестного свойства материи, поглощающей и излучающей электромагнитные волны. Однако, уже в 1905 г. Эйнштейн развил идею Планка, предположив, что квантование энергии - свойство самого электромагнитного излучения. Исходя из гипотезы световых квантов он объяснил ряд закономерностей фотоэффекта, люминесценции, фотохимических реакций .

Справедливость гипотезы Эйнштейна была экспериментально подтверждена исследованием фотоэффекта Р. Милликеном (1914 -1916 г.г.) и исследованиями рассеяния рентгеновских лучей электронами А. Комптоном (1922 — 1923 г.г.). Таким образом, стало возможным рассматривать световой квант как элементарную частицу, подчиняющуюся тем же кинематическим законам, что и частицы вещества .

В 1926 г. Льюис предложил для этой частицы термин “фотон”, который и был принят в обиход научной общественностью. Согласно современным понятиям фотон — элементарная частица , квант электромагнитного излучения. Масса покоя фотона m g равна нулю (экспериментальное ограничение m g <5 . 10 -60 г), и поэтому его скорость равна скорости света . Электрический заряд фотона также равен нулю .

Если фотон это квант (переносчик) электромагнитного излучения, то его электрический заряд никак не может быть равен нулю. Противоречивость данного представления фотона стала одной из причин непонимания физической сущности постоянной Планка.

Неразрешимое обоснование физической сущности постоянной Планка в рамках существующих физических теорий позволяет преодолеть эфиродинамическая концепция, развиваемая В.А Ацюковским .

В эфиродинамических моделях элементарные частицы трактуются как замкнутые вихревые образования (кольца), в стенках которых эфир существенно уплотнён, а элементарные частицы, атомы и молекулы, - это конструкции, объединяющие такие вихри. Существование кольцевого и винтового движений соответствует наличию у частиц механического момента (спина), направленного вдоль оси его свободного движения.

Согласно данной концепции структурно фотон представляет собой замкнутый тороидальный вихрь с кольцевым движением тора (как колеса) и винтовым движением внутри него. Источником генерации фотонов является протон-электронная пара атомов вещества. В результате возбуждения, вследствие симметричности своей структуры, каждая протон-электронная пара генерирует два фотона. Экспериментальным подтверждением этому является процесс аннигиляции электрона и позитрона .

Фотон это единственная элементарная частица, которая характеризуется тремя видами движений: вращательное движение вокруг собственной оси вращения, прямолинейное движение в заданном направлении и вращательное движение с некоторым радиусом R относительно оси прямолинейного движения. Последнее движение трактуется как движение по циклоиде . Циклоида это периодическая функция по оси абсцисс, с периодом R {\displaystyle 2\pi r}/…. У фотона период циклоиды трактуется как длина волны λ , которая является аргументом всех остальных параметров фотона.

С другой стороны длина волны является также одним из параметром электромагнитного излучения : распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля . Для которого длина волны это расстояние между двумя ближайшими друг к другу точками в пространстве, в которых колебания происходят в одинаковой фазе .

Из чего следует существенное различие в понятиях длины волны для фотона и электромагнитного излучения в целом.

У фотона длина волны и частота связаны соотношением

ν = u γ / λ, (2)

где u γ – скорость прямолинейного движения фотона.

Фотон это понятие относящееся к семейству (множеству) элементарных частиц, объединенных общими признаками существования. Каждый фотон характеризуется своим определенным набором характеристик, одной из которых является длина волны. При этом, учитывая взаимозависимость этих характеристик друг от друга, на практике стало удобным представлять характеристики (параметры) фотона как функции одной переменной. В качестве независимой переменной была определена длина волны фотона.

Известно значение u λ = 299 792 458 ± 1,2 / , определенное как скорость света . Это значение было получено К. Ивенсоном и его сотрудниками в 1972 по цезиевому стандарту частоты СН 4 -лазера, а по криптоновому стандарту частоты — его длина волны (ок. 3,39 мкм). Таким образом, формально скорость света определяется как прямолинейная скорость движения фотонов длиной волны λ = 3,39 10 -6 м. Теоретически {\displaystyle 2\pi r}/… установлено, что скорость движения (прямолинейного) фотонов величина переменная и нелинейная, т.е. u λ = f( λ). Экспериментальным подтверждением этому являются работы, связанные с исследованием и разработкой лазерных стандартов частоты {\displaystyle 2\pi r}/…. Из результатов этих исследований следует, что все фотоны, у которых λ < 3,39 10 -6 м движутся быстрее скорости света. Предельной скоростью фотонов (гамма диапазона) является вторая звуковая скорость эфира 3 10 8 м/с {\displaystyle 2\pi r}/….

Эти исследования позволяют сделать еще один существенный вывод о том, что изменение скорости движения фотонов в области их существования не превышает величины ≈ 0,1 %. Такое относительно небольшое изменение скорости фотонов в области их существования позволяет говорить о скорости фотонов, как о квазипостоянной величине.

Фотон это элементарная частица, неотъемлемыми свойствами которой являются масса и электрический заряд. Экспериментами Эренгафта доказано, что электрический заряд фотона (субэлектрона) имеет непрерывный спектр, а из экспериментов Милликена следует, что для фотона рентгеновского диапазона, длиной волны ориентировочно 10 -9 м, величина электрического заряда равна 0,80108831 Кл {\displaystyle 2\pi r}/….

Согласно первому материализованному определению физической сущности электрического заряда : “элементарный электрический заряд пропорционален массе, распределенной на сечении элементарного вихря “ следует обратное утверждение, что масса распределенная на сечении вихря пропорциональна электрическому заряду. Исходя из физической сущности электрического заряда следует, что масса фотона также имеет непрерывный спектр. На основании структурного подобия элементарных частиц протона, электрона и фотона, значения массы и радиуса протона (соответственно, m p = 1.672621637(83)·10 -27 кг, r p = 0,8751 10 -15 м {\displaystyle 2\pi r}/…), а также при допущении равенства плотности эфира в данных частицах масса фотона оценивается величиной 10 -40 кг, а его радиус круговой орбиты 0,179◦10 −16 м, радиус тела фотона(внешний радиус тора) предположительно находится в диапазоне 0,01 – 0,001 радиуса круговой орбиты, т. е. порядка 10 -19 – 10 -20 м.

Исходя из представлений о множественности фотонов и зависимости параметров фотона от длины волны, а также из экспериментально подтвержденных фактов непрерывности спектра электрического заряда и массы можно полагать, что e λ , m λ = f ( λ ) , которые имеют характер квазипостоянных.

Исходя из вышеизложенного можно говорить, что выражение (1) устанавливающее взаимосвязь энергии любой системы при излучении или поглощении электромагнитного излучения частотой ν {\displaystyle ~\nu } есть не что иное как взаимосвязь между энергией фотонов, излучающихся или поглощающихся телом и частотой (длиной волны) этих фотонов. А постоянная Планка это коэффициент взаимосвязи. Такое представление взаимосвязи энергии фотона и его частоты снимает с постоянной Планка значение ее универсальности и фундаментальности. В данном контексте постоянная Планка становится одним из параметров фотона, зависимым от длины волны фотона.

Для полного и достаточного доказательства этого утверждения рассмотрим энергетический аспект фотона. Из экспериментальных данных известно, что фотон характеризуется энергетическим спектром , имеющим нелинейную зависимость: для фотонов инфракрасного диапазона Е λ = 0,62 эВ для λ = 2 10 -6 м, рентгеновского Е λ = 124 эВ для λ = 10 -8 м, гамма-диапазона Е λ = 124000 эВ для λ = 10 -11 м. Из характера движения фотона следует, что полная энергия фотона состоит из кинетической энергии вращения вокруг собственной оси, кинетической энергии вращения по круговой траектории (циклоиде) и энергии прямолинейного движения:

E λ = E 0 λ + E 1 λ + E 2 λ , (3)

где E 0 λ = m λ r 2 γ λ ω 2 γ λ — кинетическая энергии вращения вокруг собственной оси,

E 1 λ = m λ u λ 2 — энергия прямолинейного движения, E 2 λ = m λ R 2 λ ω 2 λ — кинетическая энергия вращения по круговой траектории, где r γ λ — радиус тела фотона, R γ λ — радиус круговой траектории, ω γ λ – собственная частота вращения фотона вокруг оси, ω λ = ν — круговая частота вращения фотона, m λ – масса фотона.

Кинетическая энергия движения фотона по круговой орбите

E 2 λ = m λ r 2 λ ω 2 λ = m λ r 2 λ (2π u λ / λ) 2 = m λ u λ 2 ◦ (2π r λ / λ) 2 = E 1 λ ◦ (2π r λ / λ) 2 .

E 2 λ = E 1 λ ◦ (2π r λ / λ) 2 . (4)

Выражение (4) показывает, что кинетическая энергия вращения по круговой траектории, составляет часть энергии прямолинейного движения зависящего от радиуса круговой траектории и длины волны фотона

(2π r λ / λ) 2 . (5)

Оценим эту величину. Для фотонов инфракрасного диапазона

(2π r λ / λ) 2 =(2π 10 -19 м /2 10 -6 м) 2 = π 10 -13 .

Для фотонов гамма-диапазона

(2π r λ / λ) 2 =(2π 10 -19 м /2 10 -11 м) 2 = π 10 -8 .

Таким образом, во всей области существования фотона его кинетическая энергия вращения по круговой траектории значительно меньше энергии прямолинейного движения и ею можно пренебречь.

Оценим энергию прямолинейного движения.

E 1 λ = m λ u λ 2 = 10 -40 кг (3 10 8 м/с) 2 =0,9 10 -23 кг м 2 /с 2 = 5,61 10 -5 эВ.

Энергия прямолинейного движения фотона в балансе энергий (3) значительно меньше полной энергии фотона, например, в области инфракрасного диапазона (5,61 10 -5 эВ < 0,62 эВ), что указывает на то, что полная энергия фотона фактически определяется собственной кинетической энергией вращения вокруг оси фотона.

Таким образом, ввиду малости энергий прямолинейного движения и движения по круговой траектории можно говорить о том, что энергетический спектр фотона состоит из спектра собственных кинетических энергий вращения вокруг оси фотона.

Следовательно, выражение (1) можно представить как

Е 0 λ = hν ,

т.е.{\displaystyle ~E=h\nu }

m λ r 2 γ λ ω 2 γ λ = h ν . (6)

h = m λ r 2 γ λ ω 2 γ λ / ν = m λ r 2 γ λ ω 2 γ λ / ω λ . (7)

Выражение (7) можно представить в следующем виде

h = m λ r 2 γ λ ω 2 γ λ / ω λ = (m λ r 2 γ λ) ω 2 γ λ / ω λ = k λ (λ) ω 2 γ λ / ω λ .

h = k λ (λ) ω 2 γ λ / ω λ . (8)

Где k λ (λ) = m λ r 2 γ λ некоторая квазипостоянная.

Оценим значения собственных частот вращения фотонов вокруг оси: например,

для λ = 2 10 -6 м (инфракрасный диапазон)

ω 2 γ i = Е 0i / m i r 2 γ i = 0,62 ·1,602 ·10 −19 Дж / (10 -40 кг 10 -38 м 2)= 0,99 1059 с -2 ,

ω γ i = 3,14 10 29 об/с.

для λ = 10 -11 м (гамма-диапазон)

ω γ i = 1,4 10 32 об/с.

Оценим отношение ω 2 γ λ / ω λ для фотонов инфракрасного и гамма диапазонов. После подстановки выше указанных данных получим:

для λ = 2 10 -6 м (инфракрасный диапазон) — ω 2 γ λ / ω λ = 6,607 10 44 ,

для λ = 10 -11 м (гамма-диапазон) — ω 2 γ λ / ω λ = 6,653 10 44 .

Т. е. выражение (8) показывает, что отношение квадрата частоты собственного вращения фотона к вращению по круговой траектории есть величина квазипостоянная для всей области существования фотонов. При этом, значение частоты собственного вращения фотона в области существования фотона изменяется на три порядка. Из чего следует, что постоянная Планка носит характер квазипостоянной.

Преобразуем выражение (6) следующим образом

m λ r 2 γ λ ω γ λ ω γ λ = h ω λ .

М = h ω λ / ω γ λ , (9)

где М = m λ r 2 γ λ ω γ λ — собственный гироскопический момент фотона.

Из выражения (9) следует физическая сущность постоянной Планка: постоянная Планка это коэффициент пропорциональности, устанавливающий взаимосвязь между собственным гироскопическим моментом фотона и отношением частот вращения (по круговой траектории и собственной) , имеющий характер квазипостоянной во всей области существования фотона.

Преобразуем выражение (7) следующим образом

h = m λ r 2 γ λ ω 2 γ λ / ω λ = m λ r 2 γ λ m λ r 2 γ λ R 2 λ ω 2 γ λ / (m λ r 2 γ λ R 2 λ ω λ) =

= (m λ r 2 γ λ ω γ λ) 2 R 2 λ / (m λ R 2 λ ω λ r 2 γ λ) =M 2 γ λ R 2 λ / M λ r 2 γ λ ,

h = (M 2 γ λ / M λ) (R 2 λ / r 2 γ λ),

h (r 2 γ λ /R 2 λ),= (M 2 γ λ / M λ) (10)

Выражение (10) также показывает, что отношение квадрата собственного гироскопического момента фотона к гироскопическому моменту движения по круговой траектории (циклоиде) есть величина квазипостоянная во всей области существования фотона и определяется выражением h (r 2 γ λ /R 2 λ).

Постоянная Планка определяет границу между макромиром, где действуют законы механики Ньютона, и микромиром, где действуют законы квантовой механики.

Макс Планк — один из основоположников квантовой механики — пришел к идеям квантования энергии, пытаясь теоретически объяснить процесс взаимодействия между недавно открытыми электромагнитными волнами (см. Уравнения Максвелла) и атомами и, тем самым, разрешить проблему излучения черного тела . Он понял, что для объяснения наблюдаемого спектра излучения атомов нужно принять за данность, что атомы излучают и поглощают энергию порциями (которые ученый назвал квантами ) и лишь на отдельных волновых частотах. Энергия, переносимая одним квантом, равна:

где v — частота излучения, а h элементарный квант действия, представляющий собой новую универсальную константу, получившую вскоре название постоянная Планка . Планк же первым и рассчитал ее значение на основе экспериментальных данных h = 6,548 × 10 -34 Дж·с (в системе СИ); по современным данным h = 6,626 × 10 -34 Дж·с. Соответственно, любой атом может излучать широкий спектр связанных между собой дискретных частот, который зависит от орбит электронов в составе атома. Вскоре Нильс Бор создаст стройную, хотя и упрощенную модель атома Бора , согласующуюся с распределением Планка.

Опубликовав свои результаты в конце 1900 года, сам Планк — и это видно из его публикаций — сначала не верил в то, что кванты — физическая реальность, а не удобная математическая модель. Однако, когда пять лет спустя Альберт Эйнштейн опубликовал статью, объясняющую фотоэлектрический эффект на основе квантования энергии излучения, в научных кругах формулу Планка стали воспринимать уже не как теоретическую игру, а как описание реального физического явления на субатомном уровне, доказывающее квантовую природу энергии.

Постоянная Планка фигурирует во всех уравнениях и формулах квантовой механики. Она, в частности, определяет масштабы, начиная с которых вступает в силу принцип неопределенности Гейзенберга . Грубо говоря, постоянная Планка указывает нам нижний предел пространственных величин, после которого нельзя не принимать во внимание квантовые эффекты. Для песчинок, скажем, неопределенность произведения их линейного размера на скорость настолько незначительна, что ею можно пренебречь. Иными словами, постоянная Планка проводит границу между макромиром, где действуют законы механики Ньютона, и микромиром, где вступают в силу законы квантовой механики. Будучи получена всего лишь для теоретического описания единичного физического явления, постоянная Планка вскоре стала одной из фундаментальных констант теоретической физики, определяемых самой природой мироздания.

См. также:

Max Karl Ernst Ludwig Plank, 1858-1947

Немецкий физик. Родился в г. Киль в семье профессора юриспруденции. Будучи пианистом-виртуозом, Планк в юности был вынужден сделать нелегкий выбор между наукой и музыкой (рассказывают, что перед первой мировой войной на досуге пианист Макс Планк часто составлял весьма профессиональный классический дуэт со скрипачом Альбертом Эйнштейном. — Прим. переводчика ) Докторскую диссертацию по второму началу термодинамики Планк защитил в 1889 году в Мюнхенском университете — и в том же году стал преподавателем, а с 1892 года — профессором Берлинского университета, где и проработал до своего выхода на пенсию в 1928 году. Планк по праву считается одним из отцов квантовой механики . Сегодня его имя носит целая сеть немецких научно-исследовательских институтов.

Сокольников Михаил Леонидович,

Ахметов Алексей Лирунович

Свердловский областной негосударственный фонд

содействия развитию науки,культуры и искусства Меценат

Россия, Екатерибург

Email: [email protected]

Реферат: Показана связь постоянной Планка с законом Вина и третьим законом Кеплера. Получено точное значение постоянной Планка для жидкого или твёрдого агрегатного состояния вещества, равное

h = 4*10 -34 дж*сек.

Выведена формула, объединяющая четыре физических константы – скорость света – с, постоянную Вина – в, постоянную Планка – h и постоянную Больцмана – k

Ключевые слова: постоянная Планка, постоянная Вина, постоянная Больцмана, третий закон Кеплера, квантовая механика

The Foundation "Maecenas"
Sokolnikov M.L., Akhmetov A.L.

Yekaterinburg, Russian Federation

Email: [email protected]
Abstract: The connection to the Planck constant with Wien"s displacement law and Kepler"s third law. The exact value of Planck"s constant for the liquid or solid state of aggregation of matter equal to

h = 4*10 -34 J*s.
The formula that combines four physical constants - the speed of light - c,

Wien"s displacement constant - в, Planck constant - h and the Boltzmann constant - k

Keywords: Planck constant, Wien"s displacement constant, the Boltzmann constant, Kepler"s third law, quantum mechanics

Об этой физической константе впервые заявил немецкий физик Макс Планк в 1899 году. В этой статье постараемся ответить на три вопроса:

1. В чём заключается физический смысл постоянной Планка?

2. Как её можно вычислить из реальных экспериментальных данных?

3. Связано ли с постоянной Планка утверждение о том, что энергия может передаваться только определёнными порциями – квантами?

Введение

Читая современную научную литературу, невольно обращаешь внимание на то, насколько сложно, а иногда и туманно авторы отображают эту тему. Поэтому в своей статье я постараюсь объяснить ситуацию простым русским языком, не выходя за уровень школьных формул. История эта началась во второй половине 19 века, когда учёные начали детально изучать процессы теплового излучения тел. Для повышения точности измерений при этих экспериментах использовались специальные камеры, которые давали возможность приблизить коэффициент поглощения энергии к единице. Устройство этих камер подробно описано в различных источниках и я не буду на этом останавливаться, замечу только, что сделаны они могут быть практически из любого материала. Оказалось, что излучение тепла является излучением электромагнитных волн в инфракрасном диапазоне, т.е. на частотах, несколько ниже видимого спектра. В ходе экспериментов было установлено, что при любой конкретной температуре тела в спектре ИК излучения этого тела наблюдается пик максимальной интенсивности этого излучения. При повышении температуры этот пик сдвигался в сторону более коротких волн, т.е. в область более высоких частот ИК излучения. Графики этой закономерности тоже есть в различных источниках и я не буду их рисовать. Вторая закономерность уже была по настоящему удивительной. Оказалось, что различные вещества при одной и той же температуре имеют пик излучения на одной и той же частоте. Ситуация требовала теоретического объяснения. И тут Планк предлагает формулу, связывая энергию и частоту излучения:

где Е ― энергия, f - частота излучения, а h – постоянная величина, которая позже и была названа в его честь. Планк вычислил и значение этой величины, которая, по его расчётам оказалась равной

h = 6,626*10 -34 дж*сек.

Количественно эта формула описывает реальные экспериментальные данные не совсем точно и далее вы увидите, почему, а с точки зрения теоретического объяснения ситуации она полностью соответствует действительности, что вы позже тоже увидите.

Подготовительная часть

Далее мы вспомним несколько физических законов, которые лягут в основу наших дальнейших рассуждений. Первым будет формула кинетической энергии тела, совершающего вращательное движение по круговой или эллиптической траектории. Она выглядит следующим образом:

т.е. произведению массы тела на квадрат скорости, с которой тело движется по орбите. Скорость V при этом вычисляется по простой формуле:

где Т – период обращения, и в качестве R при круговом движении берётся радиус вращения, а при эллиптической траектории большая полуось эллипса траектории. Для одного атома вещества есть одна очень полезная для нас формула, связывающая температуру с энергией атома:

Здесь t – температура в градусах Кельвина, а k – постоянная Больцмана, которая равна 1,3807*10 -23 дж/К. Если взять температуру в один градус, то, в соответствии с этой формулой, энергия одного атома будет равна:

(2) Е = 4140*10 -26 дж

Причём эта энергия будет одинаковой как для атома свинца, так и для атома алюминия или атома любого другого химического элемента. В этом как раз и заключается смысл понятия «температура». Из формулы (1), справедливой для твёрдого и жидкого агрегатного состояния вещества, видно, что равенство энергий для различных атомов с различной массой при температуре в 1 градус достигается лишь с помощью изменения величины квадрата скорости, т.е. скорости, с которой атом совершает движение по своей круговой или эллиптической орбите. Поэтому, зная энергию атома при одном градусе и массу атома, выраженную в килограммах, мы можем без труда вычислить линейную скорость данного атома при любой температуре. Как это делается, поясним на конкретном примере. Возьмём из таблицы Менделеева любой химический элемент, например – молибден. Далее возьмем любую температуру, например – 1000 градусов Кельвина. Зная из формулы (2) значение энергии атома при 1 градусе, мы можем узнать энергию атома при взятой нами температуре, т.е. умножить это значение на 1000. Получилось:

(3) Энергия атома молибдена при 1000К = 4,14*10 -20 дж

Теперь вычислим значение массы атома молибдена, выраженное в килограммах. Делается это при помощи таблицы Менделеева. В клетке каждого химического элемента, около его порядкового номера, указана его молярная масса. Для молибдена это 95,94. Остается это число разделить на число Авогадро, равное 6,022*10 23 и полученный результат умножить на 10 -3 , так как в таблице Менделеева молярная масса указана в граммах. Получается 15,93 *10 -26 кг. Далее из формулы

mV 2 = 4,14*10 -20 дж

вычислим скорость и получаем

V = 510м/сек.

Тут нам пора переходить к следующему вопросу подготовительного материала. Вспомним о таком понятии, как момент импульса. Это понятие было введено для тел, совершающих движение по окружности. Можно провести простой пример: взять короткую трубку, пропустить через неё шнур, привязать к шнуру груз массой m и, придерживая шнур одной рукой, другой рукой раскрутить груз над головой. Перемножив значение скорости движения груза на его массу и радиус вращения, получим значение момента импульса, который обычно обозначается буквой L. Т.е.

Потянув шнур через трубку вниз, мы уменьшим радиус вращения. При этом скорость вращения груза возрастёт и его кинетическая энергия увеличится на величину той работы, которую вы выполните, тянув за шнур для уменьшения радиуса. Однако, умножив массу груза на новые значения скорости и радиуса, мы получим то же самое значение, которое у нас получилось до того, как мы уменьшили радиус вращения. Это и есть закон сохранения импульса. Ещё в 17 веке Кеплер во втором своём законе доказал, что этот закон соблюдается и для спутников, двигающихся вокруг планет по эллиптическим орбитам. При приближении к планете скорость спутника возрастает, а при удалении от него уменьшается. При этом произведение mVR остается неизменным. То же самое касается и планет, двигающихся вокруг Солнца. Попутно вспомним и третий закон Кеплера. Вы спросите – зачем? Затем, что в этой статье вы увидите то, о чем не написано ни в одном научном источнике – формулу третьего закона движения планет Кеплера в микромире. А теперь о сути этого самого третьего закона. В официальной трактовке он звучит довольно витиевато: «квадраты периодов обращений планет вокруг Солнца пропорциональны кубам больших полуосей их эллиптических орбит». У каждой планеты есть два личных параметра – расстояние до Солнца и время, за которое она делает один полный оборот вокруг Солнца, т.е. период обращения. Так вот, если расстояние возвести в куб, а потом полученный результат разделить на период, возведённый в квадрат, то получится какая-то величина, обозначим её буквой С. А если произвести вышеуказанные математические действия с параметрами любой другой планеты, то получится та же самая величина – С. Несколько позже, на основе третьего закона Кеплера, Ньютон вывел Закон Всемирного тяготения, а ещё через 100 лет Кавендиш вычислил истинное значение гравитационной постоянной – G. И только после этого стал ясен истинный смысл этой самой константы – С. Оказалось, что это зашифрованная величина массы Солнца, выраженная в единицах измерения длина в кубе, делённые на время в квадрате. Проще говоря, зная расстояние планеты до Солнца и период её обращения, можно вычислить массу Солнца. Пропуская несложные математические преобразования, сообщу, что коэффициент пересчёта равен

Поэтому справедлива формула, с аналогом которой мы ещё встретимся:

(4) 4π 2 R 3 /T 2 G = M солнца (кг)

Основная часть

Теперь можно переходить к главному. Разберёмся с размерностью постоянной Планка. Из справочников мы видим, что величина постоянной Планка

h = 6,626*10 -34 дж*сек.

Для тех, кто подзабыл физику, напомню, что эта размерность эквивалентна размерности

кг*метр 2 /сек.

Это есть размерность момента импульса

Теперь возьмём формулу энергии атома

и формулу Планка

Для одного атома любого вещества при заданной температуре величины этих энергий должны совпадать. Учитывая, что частота обратна периоду излучения, т.е.

а скорость

где R – радиус вращения атома, мы можем написать:

m4π 2 R 2 /T 2 = h/T.

Отсюда мы видим, что постоянная Планка не является моментом импульса в чистом виде, а отличается от него на сомножитель 2π. Вот мы и определили её истинную суть. Осталось только её вычислить. Перед тем, как мы сами начнём её вычислять, давайте посмотрим, как это делают другие. Заглянув в лабораторные работы по этой теме, мы увидим, что в большинстве случаев постоянную Планка вычисляют их формул фотоэффекта. Но законы фотоэффекта были открыты гораздо позже, чем Планк вывел свою постоянную. Поэтому поищем другой закон. Он есть. Это закон Вина, открытый в 1893 году. Суть этого закона проста. Как мы уже говорили, при определённой температуре нагретое тело имеет пик интенсивности ИК излучения на определённой частоте. Так вот, если умножить значение температуры на значение волны ИК излучения, соответствующей этому пику, то получится некая величина. Если взять другую температуру тела, то пик излучения будет соответствовать другой длине волны. Но и тут, при перемножении этих величин получится тот же результат. Вин вычислил эту константу и выразил свой закон в виде формулы:

(5) λt = 2,898*10 -3 м*градус К

Здесь λ - длина волны ИК излучения в метрах, а t - значение температуры в градусах Кельвина. Этот закон по своей значимости можно приравнять к законам Кеплера. Теперь, посмотрев на нагретое тело через спектроскоп и определив длину волны, на которой наблюдается пик излучения, можно по формуле закона Вина дистанционно определить температуру тела. На этом принципе работают все пирометры и тепловизоры. Хотя тут не всё так просто. Пик излучения показывает, что большинство атомов в нагретом теле излучает именно эту длину волны, т.е. имеют именно эту температуру. А излучение справа и слева от пика показывает, что в теле есть как «недогретые», так и «перегретые» атомы. В реальных условиях бывает даже несколько «горбов» излучения. Поэтому современные пирометры измеряют интенсивность излучения в нескольких точках спектра, а потом полученные результаты интегрируются, что даёт возможность получить максимально точные результаты. Но вернёмся к нашим вопросам. Зная, с одной стороны, что из формулы (1) температура соответствует кинетической энергии атома через постоянный коэффициент 3к, а с другой стороны, произведение температуры на длину волны в законе Вина тоже константа, раскладывая квадрат скорости в формуле кинетической энергии атома на сомножители, мы можем записать:

m4π 2 R 2 λ/T 2 = константа.

В левой половине уравнения m - константа, значит и всё остальное в левой части

4π 2 R 2 λ/T 2 – константа.

А теперь сравните это выражение с формулой третьего закона Кеплера (4). Тут, конечно, речь не идёт о гравитационном заряде Солнца, тем не менее, в этом выражении зашифрована величина некого заряда, суть и свойства которого весьма интересны. Но эта тема достойна отдельной статьи, поэтому мы продолжим свою. Вычислим значение постоянной Планка на примере атома молибдена, который мы уже взяли в качестве примера. Как мы уже установили, формула постоянной Планка

Ранее мы уже вычислили значения массы атома молибдена и скорость его движения по своей траектории. Нам осталось вычислить лишь радиус вращения. Как это сделать? Здесь нам поможет закон Вина. Зная значение температуры молибдена = 1000 градусов, мы по формуле (5) легко вычислим длину волны λ, которая получится

λ = 2,898*10 -6 м.

Зная, что инфракрасные волны распространяются в пространстве со скоростью света - с, мы по простой формуле

вычислим частоту излучения атома молибдена при температуре 1000 градусов. И получится этот период

Т = 0,00966 *10 -12 сек.

Но это именно та частота, которую генерирует атом молибдена, двигаясь по своей орбите вращения. Ранее мы уже вычислили скорость этого движения V=510 м/сек, а сейчас знаем и частоту вращения Т. Осталось только из простой формулы

вычислить радиус вращения R. Получается

R = 0,7845*10 -12 м.

И теперь нам остаётся только вычислить значение постоянной Планка, т.е. Перемножить значения

массы атома (15,93*10 -26 кг),

скорости (510м/сек),

радиуса вращения (0,7845*10 -12 м)

и удвоенного значения числа «пи». Получаем

4*10 -34 дж*сек.

Стоп! В любом справочнике вы найдёте значение

6,626*10 -34 дж*сек!

Кто прав? Вы сами по указанной методике можете просчитать значение постоянной Планка для атомов любых химических элементов при любой температуре, не превышающую температуру испарения. Во всех случаях получится величина именно

4*10 -34 дж*сек,

6,626*10 -34 дж*сек.

Но. лучше всего, чтобы ответ на этот вопрос дал сам Планк. Давайте в его формулу

подставим наше значение его постоянной, а частота излучения при 1000 градусах вычислена нами на основе закона Вина, который сотни раз перепроверялся и выдержал все экспериментальные проверки. Учитывая, что частота является величиной, обратной периоду, т.е.

вычислим энергию атома молибдена при 1000 градусах. Получаем

4*10 -34 /0,00966*10 -12 = 4,14*10 -20 дж.

А теперь сравним полученный результат с другим, полученным по независимой формуле, достоверность которой не вызывает сомнений (3). Эти результаты совпадают, что является лучшим доказательством. А мы ответим на последний вопрос – содержит ли формула Планка неопровержимые доказательства того, что энергия передаётся только квантами? Иногда читаешь в серьёзных источниках такое объяснение – вот, видите, при частоте 1Гц мы имеем определённое значение энергии, а при частоте в 2 Гц оно будет кратным величине постоянной Планка. Это и есть квант. Господа! Значение частоты может быть 0,15 Гц, 2,25 Гц или любое другое. Частота является обратной функцией длины волны и для электромагнитного излучения связаны через скорость света функцией типа

График этой функции не допускает никакого квантования. А теперь о квантах в общем. В физике существуют законы, выраженные в формулах, где присутствуют целые неделимые числа. Например, электрохимический эквивалент вычисляется по формуле масса атома/к, где к – целое число, равное валентности химического элемента. Целые числа присутствуют и при параллельном соединении конденсаторов при вычислении общей ёмкости системы. С энергией то же самое. Простейший пример – переход вещества в газообразное состояние, где однозначно присутствует квант в виде числа 2. Интересна и серия Бальмера и некоторые другие соотношения. Но к формуле Планка это не имеет никакого отношения. Кстати, сам Планк был такого же мнения.

Заключение

Если открытие закона Вина можно по значимости сравнить с законами Кеплера, то открытие Планка можно сравнить с открытием Закона Всемирного тяготения. Он превратил безликую постоянную Вина в константу, имеющую и размерность и физический смысл. Доказав, что при жидком или твёрдом агрегатном состоянии вещества, для атомов любых элементов при любой температуре сохраняется момент импульса, Планк совершил великое открытие, позволившее по новому взглянуть на окружающий нас физический мир. В заключение приведу интересную формулу, выведенную из вышесказанного и объединяющую четыре физических константы – скорость света – с, постоянную Вина – в, постоянную Планка – h и постоянную Больцмана – k.

ПЛАНКА ПОСТОЯННАЯ
h, одна из универсальных числовых констант природы, входящая во многие формулы и физические законы, описывающие поведение материи и энергии в масштабах микромира. Существование этой константы было установлено в 1900 профессором физики Берлинского университета М.Планком в работе, заложившей основы квантовой теории. Им же была дана предварительная оценка ее величины. Принятое в настоящее время значение постоянной Планка равно (6,6260755 ± 0,00023)*10 -34 Дж*с. Планк сделал это открытие, пытаясь найти теоретическое объяснение спектра излучения, испускаемого нагретыми телами. Такое излучение испускают все тела, состоящие из большого числа атомов, при любой температуре выше абсолютного нуля, однако оно становится заметным лишь при температурах, близких к температуре кипения воды 100° С и выше нее. Кроме того, оно охватывает весь спектр частот от радиочастотного диапазона до инфракрасной, видимой и ультрафиолетовой областей. В области видимого света излучение становится достаточно ярким лишь примерно при 550° С. Зависимость интенсивности излучения за единицу времени от частоты характеризуется спектральными распределениями, представленными на рис. 1 для нескольких значений температуры. Интенсивность излучения при данном значении частоты есть количество энергии, излучаемой в узкой полосе частот в окрестности данной частоты. Площадь кривой пропорциональна полной энергии, излучаемой на всех частотах. Как нетрудно видеть, эта площадь быстро увеличивается с повышением температуры.

Планк хотел вывести теоретически функцию спектрального распределения и найти объяснение двух простых установленных экспериментально закономерностей: частота, отвечающая наиболее яркому свечению нагретого тела, пропорциональна абсолютной температуре, а полная энергия, излучаемая за 1 с единичной площадкой поверхности абсолютно черного тела, - четвертой степени его абсолютной температуры. Первую закономерность можно выразить формулой

Где nm - частота, соответствующая максимальной интенсивности излучения, Т - абсолютная температура тела, а a - постоянная, зависящая от свойств излучающего объекта. Вторая закономерность выражается формулой

Где Е - полная энергия, излучаемая единичной площадкой поверхности за 1 с, s - постоянная, характеризующая излучающий объект, а Т - абсолютная температура тела. Первая формула называется законом смещения Вина, а вторая - законом Стефана - Больцмана. Планк стремился на основании этих законов вывести точное выражение для спектрального распределения излучаемой энергии при любой температуре. Универсальный характер явления можно было объяснить с позиций второго начала термодинамики, согласно которому тепловые процессы, протекающие самопроизвольно в физической системе, всегда идут в направлении установления в системе теплового равновесия. Представим себе, что два полых тела А и В разной формы, разного размера и из разного материала с одной температурой обращены друг к другу, как показано на рис. 2. Если предположить, что из А в В приходит больше излучения, чем из В в А, то тело В неизбежно становилось бы более теплым за счет А и равновесие самопроизвольно нарушалось бы. Такая возможность исключается вторым началом термодинамики, а следовательно, оба тела должны излучать одинаковое количество энергии, и, стало быть, величина s в формуле (2) не зависит от размера и материала излучающей поверхности, при условии, что последняя представляет собой некую полость. Если полости разделить цветным экраном, который фильтровал бы и отражал обратно все излучение, кроме излучения с какой-либо одной частотой, то все сказанное осталось бы справедливым. Это означает, что количество излучения, испускаемого каждой полостью в каждом участке спектра, одно и то же, и функция спектрального распределения для полости носит характер универсального закона природы, причем величина a в формуле (1), подобно величине s, является универсальной физической константой.



Планк, хорошо владевший термодинамикой, предпочел именно такое решение проблемы и, действуя методом проб и ошибок, нашел термодинамическую формулу, которая позволяла вычислять функцию спектрального распределения. Полученная формула согласовалась со всеми имевшимися экспериментальными данными и, в частности, с эмпирическими формулами (1) и (2). Чтобы объяснить это, Планк воспользовался хитроумной уловкой, подсказанной вторым началом термодинамики. Справедливо полагая, что термодинамика вещества лучше изучена, нежели термодинамика излучения, он сосредоточил свое внимание преимущественно на веществе стенок полости, а не на излучении внутри нее. Поскольку постоянные, входящие в законы Вина и Стефана - Больцмана, не зависят от природы вещества, Планк был вправе делать любые предположения относительно материала стенок. Он выбрал модель, в которой стенки состоят из огромного числа крошечных электрически заряженных осцилляторов, каждый со своей частотой. Осцилляторы под действием падающего на них излучения могут колебаться, излучая при этом энергию. Весь процесс можно было исследовать исходя из хорошо известных законов электродинамики, т.е. функцию спектрального распределения можно было найти, вычислив среднюю энергию осцилляторов с разными частотами. Обратив последовательность рассуждений, Планк, исходя из угаданной им правильной функции спектрального распределения, нашел формулу для средней энергии U осциллятора с частотой n в полости, находящейся в равновесии при абсолютной температуре Т:

Где b - величина, определяемая экспериментально, а k - постоянная (называемая постоянной Больцмана, хотя впервые была введена Планком), которая фигурирует в термодинамике и кинетической теории газов. Поскольку эта постоянная обычно входит с множителем Т, удобно ввести новую постоянную h = bk. Тогда b = h/k и формулу (3) можно переписать в виде

Новая постоянная h и представляет собой постоянную Планка; вычисленное Планком ее значение составило 6,55Ч10-34 ДжЧс, что всего лишь примерно на 1% отличается от современного значения. Теория Планка позволила выразить величину s в формуле (2) через h, k и скорость света с:


Это выражение согласовалось с экспериментом в пределах той точности, с которой были известны константы; позднее более точные измерения не обнаружили расхождений. Таким образом, проблема объяснения функции спектрального распределения свелась к более "простой" задаче. Нужно было объяснить, каков физический смысл постоянной h или, вернее, произведения hn. Открытие Планка состояло в том, что объяснить ее физический смысл можно, лишь введя в механику совершенно новое понятие "кванта энергии". 14 декабря 1900 на заседании Немецкого физического общества Планк в своем докладе показал, что формулу (4), а тем самым и остальные формулы можно объяснить, если предположить, что осциллятор с частотой n обменивается энергией с электромагнитным полем не непрерывно, а как бы ступенями, приобретая и теряя свою энергию дискретными порциями, квантами, каждый из которых равен hn.
См. также
ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ ;
ТЕПЛОТА ;
ТЕРМОДИНАМИКА .
Следствия из сделанного Планком открытия изложены в статьях ФОТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ ;
КОМПТОНА ЭФФЕКТ ;
АТОМ ;
АТОМА СТРОЕНИЕ ;
КВАНТОВАЯ МЕХАНИКА . Квантовая механика представляет собой общую теорию явлений в масштабе микромира. Открытие Планка выступает ныне как вытекающее из уравнений этой теории важное следствие особого характера. В частности, оказалось, что оно имеет силу для всех процессов обмена энергией, которые происходят при колебательном движении, например в акустике и в электромагнитных явлениях. Им объясняется высокая проникающая способность рентгеновского излучения, частоты которого в 100-10 000 раз превышают частоты, характерные для видимого света, и кванты которого имеют соответственно более высокую энергию. Открытие Планка служит основой всей волновой теории материи, имеющей дело с волновыми свойствами элементарных частиц и их комбинаций. Из теории Максвелла известно, что пучок света с энергией Е несет импульс р, равный

Где с - скорость света. Если кванты света рассматривать как частицы, каждая из которых имеет энергию hn, то естественно предположить наличие у каждой из них импульса p, равного hn/c. Фундаментальное соотношение, связывающее длину волны l с частотой n и скоростью света с, имеет вид

Так что выражение для импульса можно записать в виде h/l. В 1923 аспирант Л.де Бройль высказал предположение, что не только свету, но и всем формам материи свойствен корпускулярно-волновой дуализм, выражающийся в соотношениях

Между характеристиками волны и частицы. Эта гипотеза подтвердилась, что сделало постоянную Планка универсальной физической константой. Ее роль оказалась гораздо более значительной, чем можно было бы предполагать с самого начала.
ЛИТЕРАТУРА
Квантовая метрология и фундаментальные константы. М., 1973 Шепф Х.-Г. От Кирхгофа до Планка. М., 1981

Энциклопедия Кольера. - Открытое общество . 2000 .

Смотреть что такое "ПЛАНКА ПОСТОЯННАЯ" в других словарях:

    - (квант действия) основная постоянная квантовой теории (см. Квантовая механика), названа по имени М. Планка. Планка постоянная h ??6,626.10 34 Дж.с. Часто применяется величина. = h/2????1,0546.10 34 Дж.с, которую также называют Планка постоянная … Большой Энциклопедический словарь

    - (квант действия, обозначается h), фундаментальная физ. константа, определяющая широкий круг физ. явлений, для к рых существенна дискретность величин с размерностью действия (см. КВАНТОВАЯ МЕХАНИКА). Введена нем. физиком М. Планком в 1900 при… … Физическая энциклопедия

    - (квант действия), основная постоянная квантовой теории (см. Квантовая механика). Названа по имени М. Планка. Планка постоянная h≈6,626·10 34 Дж·c. Часто применяется величина h = h/2π≈1,0546·10 34 Дж·с, также называется Планка постоянной. * * *… … Энциклопедический словарь

    Постоянная Планка (квант действия) основная константа квантовой теории, коэффициент, связывающий величину энергии электромагнитного излучения с его частотой. Также имеет смысл кванта действия и кванта момента импульса. Введена в научный обиход М … Википедия

    Квант действия (См. Действие), фундаментальная физическая постоянная (См. Физические постоянные), определяющая широкий круг физических явлений, для которых существенна дискретность действия. Эти явления изучаются в квантовой механике (См … Большая советская энциклопедия

    - (квант действия), осн. постоянная квантовой теории (см. Квантовая механика). Названа по имени М. Планка. П. п. h 6,626*10 34 Дж*с. Часто применяется величина Н = h/2ПИ 1,0546*10 34 Дж*с, также наз. П. п … Естествознание. Энциклопедический словарь

    Фундаментальная физ. постоянная, квант действия, имеющий размерность произведения энергии на время. Определяет физ. явления микромира, для к рых характерна дискретность физ. величин с размерностью действия (см. Квантовая механика). По величине… … Химическая энциклопедия

    Одна из абсолютных физич. констант, имеющая размерность действия (энергия X время); в системе CGS П. п. hравна (6,62377 + 0,00018). 10 27 эрг x сек (+0,00018 возможная погрешность в измерении). Впервые была введена М. Планком (М. Planck, 1900) в… … Математическая энциклопедия

    Квант действия, одна из осн. постоянных физики, отражает специфику закономерностей в микромире и играет фундаментальную роль в квантовой механике. П. п. h (6,626 0755 ± 0,000 0040)*10 34 Дж*с. Часто пользуются величиной Л = й/2я = (1,054 572 66 ± … Большой энциклопедический политехнический словарь

    Планка постоянная (квант действия) - одна из фундаментальных мировых постоянных (констант), играющая определяющую роль в микромире, проявляющуюся в существовании дискретных свойств у микрообъектов и их систем, выражаемых целочисленными квантовыми числами, за исключением полуцелых… … Начала современного естествознания

Книги

  • Вселенная и физика без "темной энергии" (открытия, идеи, гипотезы). В 2 томах. Том 1 , О. Г. Смирнов. Книги посвящены проблемам физики и астрономии, существующим в науке десятки и сотни лет от Г. Галилея, И. Ньютона, А. Эйнштейна до наших дней. Мельчайшие частицы материи и планеты, звезды и…