Механизм реакции se. Ароматическое электрофильное замещение. Реакции ароматического электрофильного замещения

Замечание 1

Самой важной группой реакций для ароматических соединений являются реакции электрофильного замещения. Поскольку ароматическое кольцо притягивает электрофильные, а не нуклеофильные частицы, то реакции по этому проходят легко и широко используются как в лабораторном, так и в промышленном синтезе.

Данный процесс заключается в замещении одной электрофильной частицы (обычно - протона) другой электронно-дефицитной частью. В этой реакции используют разнообразные электрофильные реагенты обозначаемые символом $E^+$, и она является путем получения многих замещенных ароматических соединений. Более того, когда эту реакцию применяют к производным бензола, уже содержащим один или более заместитель, для процесса характерно явление региоселективности (специфичности и направленности замещения), а также выборочная реакционная способность, которые объясняются теорией.

Типы механизмов электрофильного ароматического замещения

Для электрофильного ароматического замещения предполагается два механизма идущих по альтернативным направлениям:

Механизм одностадийного бимолекулярного замещения типа $S_E2$

По данному механизму в конфигурация в ароматическом секстете $\pi$-электронов в ходе реакций сохраняется, и процесс замещения происходит путем взаимодействий НСМО электрофилов с ВЗМО связями ароматических соединей $C - H$:

Рисунок 2.

В переходных состояниях образуются трехцентровые двухэлектронные связи между $C-H$ и теми атомами электрофилов $E^+$, на которых плотность НСМО велика. Образование трехцентровых переходных состояний $(I)$ не вызывает теоретических возражений. Двухэлектронные трехцентровые фрагменты в этих переходных состояниях изоэлектроннв ароматическим $\pi$-системам циклопропенильных катионов, которые ароматичны. Значит, переходные состояния $(I)$ будут «ароматичными», т. е. не слишком высокими по энергии.

Механизм SE-аренониевого электрофильного замещения

Второму механизму было дано название $S_E(Ar)$ - $S_E$-аренониевое электрофильное замещение. По этому механизму ароматичность и шестиэлектронная система в интермедиатах исчезает, они заменяются на нециклические четырехэлектронные сопряженные системы пентадиенильных катионов $(C=C-C=C-C^+)$, а на второй стадии ароматические системы вновь восстанавливаются в результате отщеплений протонов. Атака НСМО электрофилов происходит не на $\sigma$-орбиталям связей, а на $\pi$- ВЗМО, поэтому взаимодействия граничных МО можно представить в виде двух альтернативных схемам:

Рисунок 3.

Однако в монозамещенном бензоле $C_6H_5X$ вырождение снимается. Так например, в феноле или анилине ВЗМО имеют форму (а). Строение аренониевых ионов $(II)$ можно изобразить различными способами:

Рисунок 4.

Наиболее часто употребляют первую формулу, однако и другие приведенные схематические формулы также актуальны. Используя эти альтернативные формулы можно показать, что положительные заряды аренониевых ионов в основном находятся в орто - и пара - положении к геминальным узлам циклогексадиенильных катионов. И поэтому $\sigma$-комплексы будут стабилизироваться донорными заместителями , которые находятся в орто - и пара - положениих, гораздо лучше, чем донорными заместителями в мета- положении. Если переходные состояния медленных стадий электрофильного замещения похожи на аренониевые ионы, то (+М)-заместитель будет направлять электрофил в пара - и орто - положение, т. е. реакция будет региоселективной.

Электрофильное замещение, несомненно, составляет самую важную группу реакций ароматических соединений. Вряд ли найдется какой-нибудь другой класс реакций, который так детально, глубоко и всесторонне исследован как с точки зрения механизма, так и с точки зрения применения в органическом синтезе. Именно в области электрофильного ароматического замещения впервые была поставлена проблема связи между структурой и реакционной способностью, которая является основным предметом изучения в физической органической химии. В общем виде этот тип реакций ароматических соединений может быть представлен следующим образом:

ArE + H +

1. Литературный обзор

1.1 Электрофильное замещение в ароматическом ряду

Эти реакции характерны не только для самого бензола, но и вообще для бензельного кольца, где бы оно ни находилось, а также для других ароматических циклов - бензоидных и небензоидных. Реакции электрофильного замещения охватывают широкий круг реакций: нитрование, галогенирование, сульфирование и реакции Фриделя - Крафтса свойственны почти всем ароматическим соединениям; реакции типа нитрозирования и азосочетания присущи лишь системам с повышенной активностью; такие реакции, как десульфирование, изотопный обмен, и многочисленные реакции циклизации, которые с первого взгляда кажутся совсем различными, но которые также оказывается целесообразным отнести к реакциям того же типа.

Электрофильные агенты Е + , хотя наличие заряда не обязательно, т.к. электрофил может быть и незаряженной электронодефицитной частицей (например, SO 3 , Hg(OCOCH 3) 2 и т.п.). Условно их можно разделить на три группы: сильные, средней силы и слабые.

NO 2 + (Ион нитрония, нитроил-катион); комплексы Cl 2 или Br 2 с различными кислотами Льюиса (FeCl 3 , AlBr 3 , AlCl 3 , SbCl 5 и т.д.); H 2 OCl + , H 2 OBr + , RSO 2 + , HSO 3 + , H 2 S 2 O 7 . Сильные электропилы взаимодействуют с соединениями ряда бензола, содержащими как электронодонорные, так и практически любые электроноакцепторные заместители.

Электрофилы средней силы

Комплексы алкилгалогенидов или ацилгалогенидов с кислотами Льюиса (RCl . AlCl 3 , RBr . GaBr 3 , RCOCl . AlCl 3 и др.); комплексы спиртов с сильными кислотами Льюиса и Бренстеда (ROH . BF 3 , ROH . H 3 PO 4 , ROH . HF). Реагируют с бензолом и его производными, содержащими электронодонорные (активирующие) заместители или атомы галогенов (слабые дезактивирующие заместители), но обычно не реагируют с производными бензола, содержащими сильные дезактивирующие электроноакцепторные заместители (NO 2 , SO 3 H, COR,CN и др.).

Слабые электрофилы

Катионы диазония ArN +є N, иминия CH 2 =N+ H 2 , нитрозония NO + (нитрозоил-катион); оксид углерода (IY) СО 2 (один из самых слабых электрофилов). слабые электрофилы взаимодействуют только с производными бензола, содержащими очень сильные электронодонорные заместители (+М)-типа (OH, OR, NH 2 , NR 2 , O- и др.).

1.1.2 Механизм электрофильного ароматического замещения

В настоящее время ароматическое электрофильное замещение рассматривается как двухстадийная реакция присоединения-отщепления с промежуточным образованием аренониевого иона, называемого σ-комплексом


I-Аренониевый ион (

-комплекс), как правило, короткоживущий. Такой механизм получил название S E Ar, т.е. S Е (аренониевый). В этом случае на первой стадии в результате атаки электрофила циклическая ароматическая 6-электронная π-система бензола исчезает и заменяется в интермедиате I на нециклическую 4-электронную сопряженную систему циклогексадиенильного катиона. На второй стадии вновь восстанавливается ароматическая -система за счет отщепления протона.Строение аренониевого иона I изображают различными способами:

Наиболее часто употребляется первая формула. σ-комплекс будет гораздо лучше стабилизироваться донорными заместителями, находящимися в орто- и пара-положениях, чем донорными заместителями в мета-положении.

π -Комплексы

Как известно, арены являются π-основаниями и могут образовывать донорно-акцепторные комплексы со многими электрофильными реагентами.Так, при пропускании сухих газообразных HCl или DCl в раствор бензола, толуола, ксилолов или других полиалкилбензолов в н-гептане при -78 о С удалось обнаружить образование молекулярных комплексов состава 1:1 (Г.Браун, 1952 г.).

Эти комплексы не окрашены, их растворы в ароматических углеводородах неэлектропроводны. При растворении газообразного DCl в бензоле, толуоле, ксилолах, мезитилене, пентаметилбензоле не происходит обмен H на D. Поскольку растворы комплексов не проводят электрический ток, они не являются ионными частицами, т.е. это не аренониевые ионы.

Такие донорно-акцепторные комплексы получили название π-комплексов. Например, кристаллы комплексов бензола с бромом или хлором состава 1:1 согласно рентгеноструктурным данным состоят из цепочек чередующихся молекул π-донора состава (C 6 H 6) и акцептора (Cl 2 ,Br 2), в которых молекула галогена расположена перпендикулярно плоскости кольца вдоль оси, проходящей через его центр симметрии.

σ-комплексы (аренониевые ионы)

При введении в раствор HCl и DCl в алкилбензолах AlCl 3 или AlBr 3 раствор начинает проводить электрический ток. Такие растворы окрашены и их окраска изменяется от желтой до оранжево-красной при переходе от пара-ксилола к пентаметилбензолу. В системах ArH-DCl-AlCl 3 или ArH-DF-BF 3 атомы водорода ароматического кольца уже обмениваются на дейтерий. Электропроводность растворов определенно указывает на образование ионов в тройной системе арен-галогенводород-галогенид алюминия. Строение таких ионов было установлено с помощью ЯМР-спектроскопии на ядрах 1 Н и 13 С в системе ArH-HF (жидк) -BF 3 или ArH-HF-SbF 5 в SO 2 ClF при низкой температуре.

1.1.3 Классификация заместителей

Монозамещенные бензолы С 6 Н 5 Х могут быть более или менее реакционноспособны, чем сам бензол. Если в реакцию ввести эквивалентную смесь С 6 Н 5 Х и С 6 Н 6 , то замещение будет происходить селективно: в первом случае в реакцию будет вступать преимущественно С 6 Н 5 Х, а во втором случае - преимущественно бензол.

В настоящее время заместители делят на три группы с учетом их активирующего или дезактивирующего влияния, а также ориентации замещения в бензольном кольце.

1. Активирующие орто-пара-ориентирующие группы. К ним относятся: NH 2 , NHR, NR 2 , NHAc, OH, OR, OAc, Alk и др.

2. Дезактивирующие орто-пара-ориентирующие группы. Это галогены F, Cl, Br и I.

3. Дезактивирующие мета-ориентирующие группы. Эту группу составляют NO 2 , NO, SO 3 H, SO 2 R, SOR, C(O)R, COOH, COOR, CN, NR 3+ ,CCl 3 и др. Это ориентанты II-го рода.

Естественно, что существуют и группировки атомов промежуточного характера, обусловливающие смешанную ориентацию. Кним, например, относятся: CH 2 NO, CH 2 COCH 3 , CH 2 F, CHCl 2 , CH 2 NO 2 , CH 2 CH 2 NO 2 , CH 2 CH 2 NR 3 + , CH 2 PR 3 + , CH 2 SR 2 + идр.

1.2 Электрофильное замещение в π-избыточных гетероциклах

Фуран, пиррол и тиофен обладают значительной реакционной способностью по отношению к обычным электрофильным реагентам. В этом смысле они напоминают наиболее реакционно-способные производные бензола, такие, как фенолы и анилины. Повышенная чувствительность к электрофильному замещению вызвана несимметричным распределением заряда в этих гетероциклах, в результате чего на углеродных атомах цикла имеется больший отрицательный заряд, чем в бензоле. Фуран обладает несколько большей реакционной способностью, чем пиррол, а наименее реакционноспособен тиофен.

1.2.1 Электрофильное замещение пиррола

В то время как пиррол и его производные не склонны креакциям нуклеофильного присоединения и замещения, они очень чувствительны к электрофильным реагентам, и реакции пирролов с такими реагентами протекают практически исключительно как реакции замещения. Незамещенный пиррол, N- и С-моноалкилпирролы и в наименьшей степени С,С-диалкилпроизводные полимеризуются в сильнокислых средах, поэтому большинство электрофильных реагентов, использующихся в случае производных бензола, не применимы для пиррола и его алкилпроизводных.

Однако при наличии в пиррольном цикле электроноакцепторных групп, препятствующих полимеризации, например, таких, как сложноэфирная, становится возможным использование сильнокислых сред, нитрующих и сульфирующих агентов.


Протонирование

В растворе наблюдается обратимое присоединение протона по всем положениям пиррольного цикла. Наиболее быстро протонируется атом азота, присоединение протона по положению 2 проходит в два раза быстрее, чем по положению 3. В газовой фазе при использовании кислот умеренной силы, таких, как C 4 H 9 + и NH 4 + , пиррол протонируется исключительно по атомам углерода, причем склонность к присоединению протона по положению 2 выше, чем по положению 3. Наиболее термодинамически стабильный катион - 2Н-пирролиевый ион - образуется при присоединении протона по положению 2 и определяемое значение рК а для пиррола связано именно с этим катионом. Слабая N-основность пиррола обусловлена отсутствием возможности для мезомерной делокализации положительного заряда в 1H-пирролиевом катионе.

Для реакций электрофильного замещения S E наиболее характерны такие уходящие группы, которые могут существовать в состоянии с незаполненной валентной оболочкой.

Такой группой может быть протон, но его подвижность зависит от кислотности. В насыщенных алканах водород малоподвижен. Более легко замещение водорода происходит в тех положениях, где он достаточо кислый, это, например, -положение к карбонильной группе, или протон при ацетиленовой связи. Важным типом реакции S E является анионное расщепление, включающее разрыв связи углерод-углерод, при этом уходящей группой является углерод. Особенно склонны к реакциям S E металлорганические соединения.

Механизмы алифатического электрофильного замещения

Механизм алифатического S E в отличие от S N изучен недостаточно. Различают четыре типа механизмов S E : S E 1, S E 2 (с тыла), S E 2 (с фронта), S i . Бимолекулярный механизм S E аналогичен S N 2 в том смысле, что новая связь образуется одновременно с разрывом старой. Однако здесь есть существенное различие.

В S N 2 нуклеофил подходит со своей электронной парой и, поскольку электронные пары взаимно отталкиваются, он может подходить только с тыла к уходящей электронной паре. В электрофильном замещении вакантная орбиталь может подходить как с тыла, притягивая на себя электронную пару, так и с фронта. Поэтому теоретически рассматривают два возможных механизма.

S E 2 (с фронта)

S E 2 (с тыла)

Существует третий бимолекулярный механизм S E , когда часть молекулы электрофила способствует отделению уходящей группы, образуя с ней связь. Такой механизм называют S i .

Доказательства: Механизмы S E 2 и S i непросто различить. Всем им соответствует кинетика второго порядка. S i и S E 2(с фронта) протекают с сохранением конфигурации. S E 2(с тыла) протекает с обращением конфигурации. Подтверждением механизма S E 2(с фронта) является то, что электрофильное замещение может протекать у атомов углерода в голове моста.

Мономолекулярный механизм электрофильного замещения S E 1 аналогичен S N 1 и включает две стадии, медленную ионизацию и быструю рекомбинацию.

Доказательства механизма S E 1. Одним из доказательств служит кинетика первого порядка по субстрату. Важным является стереохимическое доказательство в реакции:

Обмен протона на дейтерий происходит с той же скоростью, что и рацемизация, и наблюдается кинетический изотопный эффект. Реакция S N 1 не происходит в голове моста, а S E 1 протекает легко, из чего следует, что карбанион не обязательно должен быть плоским, он может иметь пирамидальное строение.

При проведении электофильного замещения с аллильным субстратом может быть получен продукт перегруппировки:

Процесс такого типа аналогичен S N и может идти двумя путями.

Первый протекает через образование промежуточного аллильного карбаниона:

Второй путь включает электрофильное присоединение по двойной связи с промежуточным образованием карбокатиона и последующим отщеплением электрофуга:

Важнейшие реакции алифатического электрофильнорго замещения

Реакции СН кислот

Если в реакциях электрофильного замещения уходящей группой является водород, отщепляющийся в виде протона, то такие субстраты называются СН-кислотами. Наиболее важные реакции этого типа идущие по механизму S E 1 :

Изтопный обмен водорода

;

Миграция двойных и тройных связей

- Сочетание с солями диазония

В суперкислой среде замещение водорода может идти по механизму S E 2 , через образование карбониевых ионов:

Реакции металлорганических соединений

Основные реакции металлорганических соединений - протодеметаллирование, галогендеметаллирование и переметаллирование

Протодеметаллированием называют реакцию замещения металла в металлорганическом соединении на водород под действием кислот

Галогендеметаллированием называют реакции замещения металла на галоген под действием галогенов или интергалогенов:

Переметаллированием называют реакцию обмена одного металла на другой. В качестве регента может выступать как неорганическая соль металла, так и металлорганическое соединение:

Реакции с гетеролитическим разрывом связи углерод-углерод

Ракции протекающие с расщеплением углерод-углеродной связи, называются анионным расщеплением, часто проходят по механизму S E 1 с промежуточным образованием карбаниона:

Реакции анионного расщепления условно делят на две группы. К первой группе относят процессы, в которых в качнстве уходящей группы выступают карбонильные соединения. Субстратави этой реакции являются гидроксилсодержащие соединения. Наиболее важные реакции этой группы: ретроальдольная реакция, расщепление циангидринов, расщепление третичных алкоголятов. Вторая группа реакций анионного расщепления носит название ацильного расщепления, так как электрофуг отщепляется в виде карбоновой кислоты или ее производного. Субстратами в этой группе являются карбонильные соединения, а процесс начинается с нуклеофильного присоединения основания к карбонильной группе:

Наиболее важные реакции этого типа: расщепление β-кетоэфиров и β-дикетонов (кислотное расщепление под действием оснований), галоформная реакция, реакции декарбоксилирования солей карбоновых кислот.

В 1950 -70-х годах в двух исследовательских группах - К. Ингольда (Университетский колледж Лондонского университета) и О.А. Реутова (Химический факультет Московского государственного университета им. М. В. Ломоносова) проводились интенсивные исследования механизма электрофильного замещения у насыщенного атома углерода. В качестве основных объектов были выбраны ртутьорганические соединения, в которых связь углерод-ртуть достаточно легко расщепляется при действии электрофилов (кислоты, галогены, соли металлов и др.).

В этот период также проводились и другие чрезвычайно важные работы в этом направлении, в частности изучение механизмов реакций присоединения и элиминирования, ароматического нуклеофильного замещения, имеющих значение для моделирования биологических систем, механизмов катализа нуклеофильных реакций карбонильных соединений, механизмов неорганических реакций, реакций органических соединений переходных металлов и т.д.

$Se$-Реакции металлорганических соединений

В $Se$-реакции вступают $\sigma$-связанные органические соединения различных металлов - от щелочных и щелочноземельных до тяжелых непереходных, а также переходных металлов, лантаноидов и актинидов. При этом механизм и скорость реакции сильно зависят от природы металла. Например, с таким электрофилом, как вода, цинкдиалкилы $R_2Zn$ реагируют со взрывом, $R_2Cd$ - медленно, а $R_2Hg$ практически не взаимодействуют, хотя ртутьдиалкилы расщепляются под действием растворов $HCl$.

С точки зрения синтетической значимости наиболее важными являются литий- и магнийорганические соединения, поэтому необходимо знать механизмы реакций именно этих соединений. Однако соответствующие исследования сильно осложняются из-за чрезвычайно высокой реакционной способности соединений лития и магния (обычно их используют in situ, а хранить и работать с ними можно только в анаэробных условиях). Кроме того, литийорганические соединения в растворах сильно ассоциированы, а магнийорганические соединения находятся в равновесии Шленка. Поэтому литий- и магнийорганические соединения были признаны не очень удобными субстратами для изучения количественных закономерностей электрофильного замещения. И хотя механизмы реакций с участием $RLi$ или $RMgX$, естественно, изучаются, наиболее важную роль в выяснении механизма $Se$-реакций сыграли ртуть- и в меньшей степени оловоорганические соединения, которые достаточно устойчивы на воздухе и реагируют с электрофилами со скоростями, которые могут быть измерены обычными методами.

Особенности механизмов реакций электрофильного замещения

Теоретическое рассмотрение стереохимии реакций электрофильного замещения по механизму $Se2$ приводит к выводу, что в отличие от $Sn2$- реакций, которые по орбитальной симметрии разрешены при атаке нуклеофила с тыла и запрещены при фронтальной атаке, реакции $Se2$ не запрещены ни при фронтальной, ни при тыловой атаке электрофила. Тем не менее, теоретически несколько более предпочтительна фронтальная атака, поскольку электрофил атакует высшую занятую МО (ВЗМО) связи $C-Z$, а электронная плотность этой орбитали концентрируется в основном в межъядерной области:

Рисунок 1.

Фронтальная атака соответствует трехцентровому (5), а тыловая - линейному (6) переходным состояниям; в первом случае стереохимическим результатом будет сохранение конфигурации углеродного центра, а во втором - инверсия конфигурации:

Рисунок 2.

Подавляющее большинство реакций электрофильного замещения второго порядка протекает с сохранением конфигурации. Так, очень легко происходит электрофильное замещение второго порядка у атомов углерода в голове моста мостиковых соединений. Легко протекают также $Se$-реакции неопен- тильных субстратов $(CH_3)_3CCH_2Z$, которые в случае нуклеофильного замещения реагируют исключительно медленно из-за пространственных препятствий тыловой атаке.

Однако известны примеры обращения конфигурации, что свидетельствует о тыловой атаке электрофила.

Виды механизмов электрофильного замещения

На основании результатов исследования $Se$-реакций $\sigma$-металлоорганических соединений была сформулирована концепция нуклеофильного содействия электрофильному замещению. Суть ее заключается в том, что на скорость и механизм $Se$-реакций в растворах оказывает значительное влияние присутствие тех или иных продуцентов нуклеофильных частиц. Такими нуклеофильными частицами могут бытькак «внутренние» нуклеофилы $Nu^-$, входящие в состав электрофильных агентов $E-Nu$ (например, $C1^-$ в $HgCl_2$ ($E = HgCl^+$), $Br^-$ в $Br_2$ ($E = Br^+$), два аниона $I^-$ в $I^{3-}$ ($E = I^+$) и др.), так и обычные нуклеофильные частицы.

Таким образом, добавка нуклеофилов, которые способны координироваться с атомами металлов, также должна увеличивать скорость $SE1$-реакций. Мономолекулярные реакции с содействием обозначаются символом $Se(N)$, а бимолекулярные реакции с внутренним содействием - символом $Sei$. Для механизма $Sei$ характерно четырехцентровое переходное состояние 7, в котором образование связей $C-E$ и $M-Nu$ и разрыв связей $E-Nu$ и $C-M$ происходят в большей или меньшей степени синхронно. Механизмы $Se(N)$ и $SEi$ представлены на схеме ниже:

Нуклеофилы могут катализировать также и реакции $Se2$, координируясь исключительно с металлами, например:

Рисунок 5.