Физико химические свойства океанической воды. Физические и химические свойства воды в мировом океане. Движение воды в Мировом океане

Температурный режим вод МО. Температурный режим вод МО определяется тепловым балансом. Океан получает теплоту за счет суммарной солнечной радиации. от конденсации влаги на водной поверхности, льдообразования и химико-биологических процессов, идущих с выделением теплоты; в океан поступает теплота, приносимая атмосферными осадками, речными водами; на температуре глубоководных слоев сказывается теплота Земли (об этом свидетельствуют высокие до 260 0 С температуры во впадинах Красного моря – вода здесь горячий рассол с соленостью 270 0 / 00). Теряется теплота за счет эффективного излучения водной поверхности, испарения воды, таяния льда, турбулентного обмена с атмосферой, нагрева холодной воды рек и течений. Определяющее значение в тепловом балансе имеет приход солнечной радиации и расход тепла на испарение.

Средняя годовая температура МО составляет 17,4 0 С, наибольшая средняя годовая температура воды отмечена для Тихого океана (19,1 0 С), наименьшая – для Северного Ледовитого океана (0,75 0 С). Распределение теплоты в толще океанской воды происходит благодаря конвекции и перемешиванию в результате волнения и течений. Температура воды с глубиной понижается. На некоторой глубине в толще воды наблюдается резкое понижение температуры, здесь выделяется слой температурного скачка – термоклин. По изменению температуры воды с глубиной выделяется несколько типов распределения температур.

В экваториальном типе температура воды быстро уменьшается от 26,65 0 С на поверхности до 10,74 0 С на глубине 300 м. Термоклин наблюдается на глубине 200-300 м. Далее до глубины 1000 м температура воды уменьшается медленно, а глубже остается практически постоянной.

В тропическом типе температура воды резко падает от 26,06 0 С до 13,60 0 С на глубине 300 м, далее температура воды изменяется более плавно.

В субтропическом типе температура воды уменьшается от 20,3 0 С на поверхности до 13,1 0 С на глубине 300 м. В субполярном типе температура уменьшается от 8,22 0 С на поверхности до 5,20 0 С на глубине 150 м. Полярный тип характеризуется уменьшением температуры воды до глубины 100 м, затем температура начинает повышаться до 1,8 0 С на глубине 400 м. За счет притока теплых атлантических вод. На глубине 1000 м температура воды равна 1,55 0 С. В слое от поверхности до глубины 1000 м наблюдается зональное изменение температуры и солености воды, глубже характеристики воды остаются практически постоянными.

Физико-химические свойства вод МО. Еще в начале 19 в. было замечено, что количество растворенных в водах океана солей может сильно различаться, но солевой состав, соотношение различных солей вод МО одинаковы. Эта закономерность формулируется как свойство постоянства солевого состава морских вод. На 1 кг морской воды приходится 19,35 г хлора, 2,70 г сульфатов, 0,14 г гидрокарбонатов, 10,76 г натрия, 1,30 г магния, 0,41 г кальция. Количественное соотношение между главными солями в воде МО остается постоянным. Общая соленость определяется по количеству хлора в воде (формулу получил М. Кнудсен в 1902 г.):

S = 0,030 + 1,805 Cl

Воды океанов и морей относятся к хлоридному классу и натриевой группе, этим они резко отличаются от речных вод. Всего восемь ионов дают более 99,9% общей массы солей в морской воде. На оставшиеся 0,1% приходятся все остальные элементы таблицы Д.И. Менделеева.

Распределение солености в водных массах зонально и зависит от соотношения осадков, притока речных вод и испарения. Кроме того, на соленость воды оказывает влияние циркуляция вод, деятельность организмов и другие причины. На экваторе отмечается пониженная соленость воды (34-33 0 / 00), обусловленная резким увеличением атмосферных осадков, стоком полноводных экваториальных рек и немного пониженным испарением из-за высокой влажности. В тропических широтах наблюдается самая высокая соленость вод (до 36,5 0 / 00), связанная с высоким испарением и небольшим количеством осадков в барических максимумах давления. В умеренных и полярных широтах соленость вод понижена (33-33,5 0 / 00), что объясняется увеличением количества осадков, стоком речных вод и таянием морских льдов.

Широтное распределение солености нарушают течения, реки и льды. Теплые течения в океанах переносят более соленые воды в направлении высоких широт, холодные течения переносят менее соленые воды к низким широтам. Реки опресняют приустьевые районы океанов и морей. Очень велико влияние рек Амазонки (опресняющее влияние Амазонки ощущается на расстоянии 1000 км от устья), Конго, Нигера и др. Льды оказывают сезонное влияние на соленость вод: зимой при образовании льда соленость воды возрастает, летом при таянии льда – уменьшается.

Соленость глубинных вод МО однообразна и в целом составляет 34,7-35,0 0 / 00 . Соленость придонных вод более разнообразна и зависит от вулканической деятельности на дне океана, выходов гидротермальных вод, разложения организмов. Характер изменения солености вод океана с глубиной различен на разных широтах. Выделяют пять основных типов изменения солености с глубиной.

В экваториальных широтах соленость с глубиной постепенно возрастает и достигает максимального значения на глубине 100 м. На этой глубине к экватору подходят более соленые и плотные воды их тропических широт океанов. До глубины 1000 м соленость очень медленно повышается до 34,62 0 / 00 , глубже соленость практически не меняется.

В тропических широтах соленость немного увеличивается до глубины 100 м, затем плавно уменьшается до глубины 800 м. На этой глубине в тропических широтах наблюдается самая низкая соленость (34,58 0 / 00). Очевидно, здесь распространяются менее соленые, но более холодные воды высоких широт. С глубины 800 м она немного увеличивается.

В субтропических широтах соленость быстро уменьшается до глубины 1000 м (34,48 0 / 00), затем становится почти постоянной. На глубине 3000 м она составляет 34,71 0 / 00 .

В субполярных широтах соленость с глубиной медленно увеличивается с 33,94 до 34,71 0 / 00 , в полярных широтах соленость с глубиной возрастает более существенно – с 33,48 до 34,70 0 / 00 .

Соленость морей сильно отличается от солености МО. Соленость воды Балтийского (10-12 0 / 00), Черного (16-18 0 / 00), Азовского (10-12 0 / 00), Белого (24-30 0 / 00) морей обусловлена опресняющим влиянием речных вод и атмосферных осадков. Соленость воды в Красном море (40-42 0 / 00) объясняется малым количеством осадков и большим испарением.

Средняя соленость вод Атлантического океана – 35,4; Тихого – 34,9; Индийского – 34,8; Северного Ледовитого океана – 29-32 0 / 00 .

Плотность – отношение массы вещества к его объему (кг/м 3). Плотность воды зависит от содержания солей, температуры и глубины, на которой находится вода. При увеличении солености воды плотность возрастает. Плотность воды увеличивается при понижении температуры, при увеличении испарения (так как увеличивается соленость воды), при образовании льда. С глубиной плотность растет, хотя и очень незначительно из-за малого коэффициента сжимаемости воды.

Плотность воды изменяется зонально от экватора к полюсам. На экваторе плотность воды небольшая – 1022-1023, что обусловлено пониженной соленостью и высокими значениями температуры воды. К тропическим широтам плотность воды возрастает до 1024-1025 из-за увеличения солености воды вследствие повышенного испарения. В умеренных широтах плотность воды средняя, в полярных – увеличивается до 1026-1027 из-за понижения температуры.

Способность воды растворять газы зависит от температуры, солености и гидростатического давления. Чем выше температура и соленость воды, тем меньше газов может в ней раствориться.

В воде океанов растворены различные газы: кислород, углекислый газ, аммиак, сероводород и др. Газы попадают в воду из атмосферы, за счет речного стока, биологических процессов, подводных вулканических извержений. Наибольшее значение для жизни в океане имеет кислород. Он участвует в планетарном газообмене между океаном и атмосферой. В активном слое океана ежегодно образуется 5 х 10 10 т кислорода. Поступает кислород из атмосферы и выделяется при фотосинтезе водных растений, расходуется на дыхание и окисление.

Углекислый газ находится в воде в основном в связанном состоянии, в виде углекислых соединений. Он выделяется при дыхании организмов, при разложении органического вещества, расходуется на строительство скелета кораллами.

Азот всегда есть в воде океана, но его содержание по отношению к другим газам меньше, чем в атмосфере. В некоторых морях в глубине может накапливаться сероводород, происходит это благодаря деятельности бактерий в бескислородной среде. В Черном море отмечено сероводородное загрязнение, содержание его достигло 6,5 см 3 /л, организмы в такой среде не живут.

Прозрачность воды зависит от рассеяния и поглощения солнечной радиации, от количества минеральных частиц и планктона. Наибольшая прозрачность отмечена в открытом океане в тропических широтах и равна 60 м. Уменьшается прозрачность воды на мелководье вблизи устьев рек. Особенно резко уменьшается прозрачность воды после шторма (до 1 м на мелководье). Наименьшая прозрачность наблюдается в океане в период активного размножения планктона. От прозрачности воды зависит глубина проникновения солнечных лучей в толщу океана и, следовательно, распространение фотосинтезирующих растений. Организмы, способные усваивать солнечную энергию, живут на глубине до 100 м.

Толща чистой воды имеет голубой или синий цвет, большое количество планктона приводит к появлению зеленоватого оттенка, вблизи рек вода может быть коричневой.

Мирово́й океа́н - основная часть гидросферы, непрерывная, но не сплошная водная оболочка Земли, окружающая материки и острова, и отличающаяся общностью солевого состава. Мировой океан покрывает почти 70 % земной поверхности.

Общие физико-географические сведения :

· Средняя температура: 5 °C;

· Среднее давление: 20 МПа;

· Средняя плотность: 1,024 г/см³;

· Средняя глубина: 3711 м [источник не указан 339 дней ] ;

· Общая масса: 1,4·10 21 кг;

· Общий объём: 1370 млн км³ ;

· pH: 8,1±0,2.

Глубочайшей точкой океана является Марианский жёлоб, находящийся в Тихом океане вблизи Северных Марианских островов. Его максимальная глубина - 11 022 м.

Физические свойства

Плотность морской воды колеблется в пределах от 1020 до 1030 кг/м³ и зависит от температуры и солености. При солености, превышающей 24‰, температура максимальной плотности становится ниже температуры замерзания - при охлаждении морская вода всегда сжимается, и плотность её растет .

Скорость звука в морской воде - около 1500 м/с.

Как известно, за международную единицу измерения массы принят килограмм. Платиновый килограммовый эталон хранится в Палате мер и весов в Париже, а очень точные дубликаты имеются в аналогичных учреждениях многих стран. Но почему именно килограмм (а не фунт, унция или золотник) принят теперь во всем мире за единицу измерения массы? Дело в том, что все другие единицы были произвольными, а килограмм имеет свой природный эквивалент: такова масса одного кубического дециметра воды при 4 градусах Цельсия.



Учитывать температуру совершенно необходимо, так как с ее изменением меняется и плотность воды. Всякая ли вода годится для установления эталона массы? В учебниках об этом обычно ничего не говорится, так как в данном случае под словом «вода» подразумевают вовсе не ту жидкость, которая течет из водопроводного крана, а химически чистое вещество: воду, подвергшуюся специальной обработке или же синтезированную из водорода и кислорода и не содержащую никаких примесей.

Морская вода, представляющая собой сложный раствор, таким требованиям совершенно не удовлетворяет: ее физические свойства, в том числе и плотность, значительно отличаются от свойств химически чистой воды. В среднем плотность морской воды равна 1,025 грамма на кубический сантиметр. Стало быть, ее литр на 25 граммов тяжелее пресной. Но плотность воды неодинакова по всему Мировому океану, она несколько меняется в зависимости от солености и температуры. Чем выше соленость, тем больше и плотность. Зависимость плотности от температуры обратная: чем вода теплее, тем плотность ее меньше. Так, наименьшая плотность морской воды - 1,022 грамма на кубический сантиметр - была отмечена в поверхностных слоях экваториальной зоны Тихого океана, а наибольшая-1,028 грамма на кубический сантиметр - вблизи океанского дна.

Даже незначительное изменение плотности морской воды влечет за собой весьма существенные последствия. Так, при охлаждении верхних слоев океана вода становится плотнее и опускается. Навстречу ей устремляются менее плотные глубинные воды. Возникают вертикальные токи. В сочетании с горизонтальными течениями они придают Мировому океану вид слоеного пирога, каждый слой которого характеризуется своими особыми показателями плотности, солености и температуры. Благодаря вертикальным токам вода в океане до известной степени перемешивается, в глубину проникают насыщенные кислородом поверхностные воды, из придонных слоев поднимаются богатые биогенными солями придонные массы воды.

Азбучная истина о том, что вода замерзает при О градусов, не распространяется на морскую воду. Из-за растворенных солей она остается жидкой и при отрицательной температуре. Только охлажденная ниже минус 1,9 градуса Цельсия, она начинает переходить в твердое состояние. Правда, это касается только воды с нормальной океанической соленостью. Если же в ней растворено не 35 граммов соли на килограмм, а меньше, то она станет замерзать при более высокой температуре. Так, Азовское море, соленость которого равна 12 промилле, замерзает при 0,6 градуса ниже нуля, а Белое море (соленость его 25 промилле) - при 1,4 градуса ниже нуля.

Когда изменяется агрегатное состояние пресной воды, ее состав не меняется. Совсем иначе обстоит дело с морской водой. Замерзание моря начинается с образования тонких, похожих на иглы ледяных кристалликов, совершенно лишенных соли. Если в этот момент марлевым сачком собрать такие иглы и растопить, то получится вполне чистая пресная вода. Естественно, что на первых порах образования льда соленость верхних слоев воды несколько повышается за счет поступления в эти слои тех порций соли, которые не вошли в кристаллические ледяные иглы. Только потом, когда начинается смерзание комков этих кристаллов, лед также становится соленым, но его соленость все же ниже солености окружающей морской воды. Во время таяния льда прилежащие слои воды несколько распресняются.

Распространение в морской воде световых и звуковых волн также имеет свои особенности. Еще 20- 25 лет назад большинство людей могло судить о том, как выглядит подводный мир, только Наблюдая его через поверхность воды. Но с тех пор, как подводные очки и маски повсюду вошли в моду, любой желающий может лично познакомиться с красотами царстве Нептуна. При этом стала очевидной одна весьма существенная деталь: в маске не очень хорошо виден подводный мир реки, в море же видимость превосходна. Удивительного в этом ничего нет: морская воде значительно прозрачнее воды большинства пресноводных водоемов.

Самая высокая прозрачность отмечена в центральной части Атлантического океана, где служащий эталоном белый металлический круг диаметром в 30 сантиметров - «диск Секки» - виден через поверхность воды на глубине более 65 метров. Прозрачность вод Тихого и Индийского океанов несколько меньше и равна соответственно 60 и 50 метрам. Чем ближе к берегу, тем больше в морской воде различных взвешенных частиц и мельчайших планктонных организмов, поэтому прозрачность там ниже, чем в открытом океане.

В Средиземном море «диск Секки» не виден уже на глубине 30 метров, в Черном море - на глубине 20 метров, а в Балтийском - даже на 13 метрах. В большинстве пресноводных водоемов прозрачность воды не превышает 10 метров, в реках она, как правило, значительно меньше, иногда лишь 0,5-1 метр. Только в Байкале, который славится чистотой своей воды, ее прозрачность равна 30-40 метрам.

По сравнению с атмосферой водная среда пропускает свет хуже, потому что сильнее поглощает его и рассеивает. Когда солнце находится в зените (это возможно только в тропиках), в воду проникает почти весь его световой поток; косые же лучи утреннего или полуденного времени в значительной степени отражаются водной гладью. Поэтому сумерки под водой наступают раньше, чем на суше; день там короче, а ночь длиннее.

Даже в прозрачной воде открытых частей океана яркость света убывает с глубиной примерно в десять раз на каждые 50 метров. Человек, совершающий глубоководное погружение, уже ниже 400 метров не различает за стеклом иллюминатора аппарата никаких следов дневного света. Правда, чувствительная фотографическая пластинка после часовой экспозиции на глубине 1000 метров при проявлении темнеет, но на глубине 1700 метров она вообще не засвечивается.

Прозрачность морской воды неодинакова для разных частей видимого спектра: более короткие световые волны (фиолетовая часть спектра) проникают через нее легче и дальше, чем длинные (красная часть спектра). Первыми в море поглощаются красные лучи, поэтому на глубине более метра красные предметы кажутся уже не такими яркими, как на воздухе. Синие и фиолетовые лучи проникают значительно дальше, они придают подводным пейзажам своеобразный цветовой колорит, за который освещаемая днем часть морского дна получила образное название «голубого континента».

На глубине цвет самых обыденных и хорошо известных предметов меняется до неузнаваемости. Жак Кусто рассказывает: «Мы брали с собой таблицы с ярко-красными, голубыми, желтыми, зелеными, пурпурными и оранжевыми квадратами, а также шкалу серых тонов от белого до черного и фотографировали на различной глубине вплоть до сумеречной зоны. На глубине пять метров красный цвет казался розовым, а на двенадцатом метре абсолютно черным. Одновременно исчезал и оранжевый цвет. На глубине 35 метров желтый цвет начал превращаться в зеленый, здесь царит уже почти полная монохроматия.

Как-то раз мы охотились в море под уединенными скалами Ла Кассадань. Нырнув на 35 метров, Дюма подстрелил гигантскую ставриду. Гарпун прошел сквозь тело позади головы, но не задел позвоночника. Загарпуненная рыба отчаянно сопротивлялась. Дюма стал подтягиваться все ближе и ближе к ставриде по тросу. Наконец он подобрался вплотную, схватил кинжал и вонзил его прямо в сердце рыбины. Кровь брызнула мощным фонтаном.

Но кровь была зеленая! Ошеломленный этим зрелищем, я подплыл и уставился на струю. Она была изумрудного цвета. Мы с Дюма переглянулись в недоумении. Мы не раз плавали среди гигантских ставрид, но никогда не подозревали, что у них зеленая кровь. Потрясая гарпуном со своим поразительным трофеем, Дюма направился к поверхности. На глубине пятнадцати метров кровь стала коричневой. Шесть метров - она уже розовая, а на поверхности она растеклась алым потоком».

Цвет моря зависит именно от того, что часть лучей поглощается морской водой. Чем вода чище и прозрачней, тем синее цвет. Впервые попав в открытый океан, трудно поверить, что вода в нем не подкрашена. Ближе к материкам цвет воды зеленеет от примеси взвешенных частиц, у самого берега он может быть желтоватым. Вообще говоря, чистая вода обладает крайне низкой по сравнению с другими жидкостями способ» полностью рассеивать свет. Это связано с тем, что рассеяние в любой чистой оптической среде происходит из-за неоднородности ее плотности. Вода же в отличи от многих других жидкостей очень малосжимаема, поэтому плотность ее почти однородна. По-видимому, наблюдающееся светорассеяние в чистой морской воде и в воде чистых горных озер связано с наличием в ней мельчайших пузырьков воздуха.

При отражении от морской поверхности спектральный состав света не меняется. А поскольку источником света обычно служит небосвод, то его цвет и придает окраску морской воде. Чем чище небо, чем меньше в нем облаков и аэрозолей (дымов и пыли), тем оно синее и тем синее должен быть дальний план морской поверхности, поскольку дальний план отражает значительно большую часть света, чем передний. Практически можно считать, что дальний план в этом смысле начинается, когда луч зрения составляет с морской поверхностью угол менее 10 градусов; для человека, стоящего на борту судна высотой около 4 метров, эта зона начинается приблизительно на расстоянии 20-30 метров.

Вода служит хорошим проводником для звука. До тех пор, пока человек не проник во владения Нептуна, они казались ему безмолвными. Поэт В. Жуковский так представлял себе тишину подводного мира: «Все спало для слуха в той бездне глухой». Но ведь ни он сам, ни Ф. Шиллер, балладу которого «Ныряльщик» под новым названием «Кубок» перевел В. Жуковский, никогда не были под водой. Они лишь выражали в поэтической форме господствовавшее тогда общее мнение о полной тишине, царящей в морских глубинах. Действительно, человеческое ухо, приспособленное к воздушной среде, не воспринимает звуки, исходящие из воды, но стоит применить простейшие слуховые аппараты, как подводный мир окажется наполненным самыми разнообразными звуками.

В годы первой мировой войны по всем морям и океанам безнаказанно разбойничали немецкие подводные лодки, обнаружить которые военные корабли союзников никак не могли. Но вот удалось изготовить и спустить в воду гидрофоны. На оборудованных ими военных судах - охотниках за субмаринами - натренированные операторы с наушниками - «слухачи» - стали среди тысяч звуков распознавать шумы винтов немецких подводных лодок. Поначалу, правда, не только проплывающий кит, но даже стая сельдей нередко служили поводом для боевой тревоги.

Подводный мир оказался вовсе не безмолвным. Большой знаток морских животных зоолог Н. Тарасова так описывает подводную симфонию вблизи Севастополя: «...Непрекращающееся щелканье бесчисленного множества рачков-альфеусов, в которое по временам врываются «стоны» горбылей или ритмичное урчание морских петухов, а то и лающий «скрежет зубовный» ставрид, наполняют воду разнообразными и громкими звуками».

Звук распространяется в воздухе с постоянной скоростью 340 метров в секунду. В воде он успевает за это же время пробежать расстояние в 4,5 раза больше. Но скорость эта непостоянна и зависит от температуры, солености и давления воды, то есть в конечном счете от ее плотности. В воде с нормальной океанической соленостью при нуле градусов вблизи поверхности скорость звука равна 1440 метрам в секунду. На глубине 10 километров при тех же прочих условиях его скорость возрастает до 1630 метров в секунду. В нагретых до 30 градусов поверхностных водах тропической зоны океана скорость звука повышается до 1543 метров в секунду.

Ультразвук, то есть акустические волны с частотой свыше 16 тысяч колебаний в секунду, уже не воспринимаемый человеческим ухом, поглощается водной средой гораздо сильнее, чем звуки низкой частоты, но зато его можно направлять в виде узкого пучка. Эта особенность ультразвуковых колебаний использована в эхолоте, с помощью которого точно и быстро измеряется глубина. От специального ультразвукового датчика, помещенного на судне, через небольшие промежутки времени вертикально вниз посылается ультразвуковой сигнал. Отразившись от дна, он возвращается обратно и улавливается чувствительной приемной аппаратурой.

Зная скорость прохождения ультразвука и определив время между посылкой и возвращением сигнала, можно легко вычислить расстояние от поверхности до дна. В современных приборах регистрация глубины производится автоматически, а самописец на бумажной ленте вычерчивает кривую, соответствующую профилю дна моря. Так как скорость ультразвука, как и слышимых звуков, зависит от солености, температуры и давления воды, в данные эхолота необходимо вносить поправки.

Моряки, пользующиеся эхолотом, давно заметили, что любые препятствия, находящиеся между поверхностью моря и его дном, также регистрируются на ленте прибора. Оказалось возможным, слегка видоизменив эхолот, использовать его для поисков скоплений промысловых рыб. Хорошо натренированный специалист по характеру кривой на ленте может не только определить местонахождение и размер стаи, но и сказать, к какому виду относятся составляющие ее рыбы.

Соленость . Океанская вода по весу состоит на 96,5% из чистой воды и на 3,5% из растворенных в ней минеральных веществ, газов, микроэлементов, коллоидов и взвесей органического и неорга­нического происхождения. В состав морской воды входят все известные химические элементы. Больше всего в океанской воде натрия, т. е. поваренной соли NaCl (27,2 г на 1 л), поэтому вода Океана на вкус соленая. Затем следуют соли магния – MgCl (3,8 г на 1 л) и MgSO 4 (1,7 г на 1 л), придающие воде горький вкус. На все остальные элементы, среди которых и биоген­ные элементы (фосфор, азот и т. п.), и микроэлементы, приходится меньше 1%, т. е. их содержание ничтожно мало. Общее количество солей в Океане достигает 50 10 16 т. При осаждении эти …
соли могут покрыть дно Океана слоем примерно в 60 м, всю Землю слоем в 45 м, а сушу слоем в 153 м. Удивительная особенность океанской воды – постоянство солевого состава. Раствор может быть в разных частях Океана разной концентрации, но соотношение главнейших солей остается неизменным.

Средняя соленость Мирового океана 35‰. Наи­большую среднюю соленость имеет Атлантический океан – 35,4‰, наименьшую – Северный Ледовитый – 32‰. Отклонения от средней солености в ту и другую сторону вызываются главным образом изменениями в приходно-расходном балансе пресной воды. Атмосферные осадки, выпадающие на поверхность Океана, сток с суши, таяние льдов вызывают понижение солености; испа­рение, образование льда – наоборот, повышают ее. Так как изменения солености связаны в основном с прихо­дом и расходом пресной воды, они заметны только в поверхност­ном слое, непосредственно получающем атмосферные осадки и испаряющем воду, и в некотором слое под ним (до глубины 1500 м), определяемым глубиной перемешивания. Глубже соленость вод Мирового океана остается неизменной (34,7 – 34,9 ‰).

Соленость морской воды тесно связана с ее плотностью. Плотность воды Океана отношение массы единицы ее объема при данной температуре к массе чистой воды того же объема при температуре + 4°С. Плотность воды Океана с увеличением солености всегда по­вышается, поскольку растет содержание веществ, имеющих боль­ший, чем вода, удельный вес. Увеличению плотности поверхност­ных слоев воды способствует охлаждение, испарение и образова­ние льда. Нагревание, а также смешение соленой воды с водой атмосферных осадков или талой водой вызывают понижение плот­ности. На поверхности океана наблюдается изменение плотности в пределах от 0,9960 до 1,083. В открытом Океане плотность, как правило, определяется температурой и поэтому от экватора к по­люсам в общем растет. С глубиной плотность воды в Океане уве­личивается.

Газы в воде Океана . Газы попадают в воду из атмосферы, выделяются при химических и биологических процессах, их приносят реки, они поступают при подводных извержениях. Перераспределение га­зов происходит посредством перемешивания. Способность океанской воды растворять газы зависит от ее тем­пературы, солености и гидростатического давления. Чем выше температура и соленость воды, тем меньше газов может в ней раствориться. Растворены в воде прежде всего азот (63%), кислород (35%) и угле­кислый газ, а также сероводород, аммиак, метан и др.

Углекислый газ, как и кислород, лучше растворяется в холодной воде. Поэтому при по­вышении температуры вода отдает его атмосфере, при пониже­нии – поглощает. Днем, в связи с усиленным потреблением угле­кислого газа растениями, содержание его в воде уменьшается, ночью, наоборот, возрастает. В высоких широтах Океан поглощает углекислый газ, в низких – выделяет его в атмосферу. Обмен газами между Океаном и атмосферой – процесс непрерывный.

Давление. На каждый квадратный сантиметр поверхности Океана атмосфера давит приблизительно с силой 1 кг (одна атмосфера). То же давление на ту же площадь оказывает стол­бик воды высотой всего в 10,06 м. Таким образом, можно считать, что на каждые 10 м глубины давление увеличивается на 1 атм. Все процессы, происходящие на большой глубине, совершаются под сильным давлением, но это не препятствует развитию жизни в глубинах Океана.

Прозрачность. Лучистая энергия Солнца, прони­кая в толщу воды, рассеивается и поглощается. Степень рассеивания и поглощения солнечной энергии зависит от количества взвешенных частиц, содержащихся в воде. Наименьшая прозрачность наблюдается у берегов на мел­ководье, в связи с увеличением количества взвесей, вносимых реками, и взмучиванием грунта волнением. Значительно уменьшается прозрачность воды в период массового развития планктона и при таянии льдов (лед всегда содержит примеси; кроме того, масса пузырьков воздуха, заключенных во льду, переходит в воду). Прозрачность воды увеличивается в местах подъема на поверх­ность глубинных вод.

Прозрачность выражается числом метров, т. е. глубиной, на которой еще виден белый диск диаметром 30 см. Наибольшая прозрачность (67 м) наблюдалась в Центральной части Тихого океана, в Средизем­ном море – 60 м, в Индийском океане – 50 м. В Северном море она равна 23 м, в Балтийском – 13 м, в Белом – 9 м, в Азовском – 3 м.

Цвет воды океанов и морей. Толща чистой воды Океана в результате собирательного поглощения и рассеивания света имеет голубой или синий цвет. Присутствие планктона и неорга­нических взвесей отражается на цвете воды, и она приобретает зеленоватый оттенок. Большие количества органических примесей делают воду желтовато-зеленой, близ устья рек она может быть даже корич­невой.

В экваториальных и тропических широтах господствующий цвет воды Океана темно-голубой и даже синий. Такого цвета вода, например, в Бенгальском заливе, Аравийском море, южной части Китайского моря, Красном море. Синяя вода в Средизем­ном и Черном морях. В умерен­ных широтах во многих местах вода зеленоватая (особенно у берегов), заметно зеленеет она в районах таяния льдов. В по­лярных широтах зеленоватый цвет преобладает.

Свечение моря. Свечение морской воды со­здается организмами, испускающими «живой» свет. К таким ор­ганизмам относятся прежде всего светящиеся бактерии. В опресненных прибрежных водах, где распространены главным образом такие бактерии, свечение моря наблюдается в виде ровного молочного света. Свечение вызывается, кроме того, мелкими и мельчайшими простейшими организмами, из которых наиболее известна ночесветка (Noctiluca). Некоторые более крупные организмы (большие медузы, мшанки, рыбы, кольчатые черви и др.) также отличаются способ­ностью производить свет. Свечение моря представляет собой явление, распространенное по всему Мировому океану. Оно наблюдается только в морской воде и никогда не бывает в пресной.

Цветение моря представляет собой бурное развитие зоо- и фи­топланктона в поверхностных слоях моря. Массовые скопления этих организмов вызывают изменения в окраске поверхности моря в виде желтых, розовых, молочных, зеленых, красных, бурых и дру­гих полос и пятен.

Звукопроводность океанической воды в 5 раз больше, чем воздуха. В воздухе звуковая волна движется со скоростью 332 м/с, в пресной воде – 435 м/с, в океанической – 1500 м/с. Распространение звука в морской воде зависит от температуры, солености, давления, содержания газов, а также взвешенных при­месей органического и неорганического происхождения.

Температура воды Мирового Океана . Основной источник тепла, получаемого поверхностью Мирового океана – это прямая и рассеянная солнечная радиация. Дополнительным источником тепла могут служить речные воды. Часть поступившей солнечной радиации отражается водной поверхностью, часть излучается в атмосферу и межпланетное пространство. Большое количество тепла море теряет на испарение. Большая роль в распределении и изменении температуры вод океанов принадлежит материкам, господствующим вет­рам и особенно течениям.

Морские воды, соприкасаясь с атмосферой, обмениваются с ней теплом. Если вода теплее воздуха, то происходит отдача тепла в атмосферу, если же вода холоднее, она получает некоторое коли­чество тепла в процессе теплообмена.

Тепло, поступающее от Солнца, поглощается тонким поверхност­ным слоем и идет на нагревание воды, но благодаря малой тепло­проводности воды почти не передается на глубину. Проникновение тепла от поверхности к нижележащим слоям происходит главным образом путем вертикального перемешивания, а также за счет адвекции тепла глубинными течениями. В результате вер­тикального перемешивания в летнее время к поверхности под­нимаются более холодные воды и понижают температуру поверхностных слоев, а глубинные воды отепляются. В зимнее время, когда поверхностные воды охлаждены, с глубин в процессе верти­кального обмена происходит подток более теплых вод, задержи­вающих начало ледообразования.

Средняя годовая температура на поверхности Океана + 17,4°С, в то время как средняя годовая температура воздуха +14°С. Наиболее высокую среднюю температуру имеет поверхность Ти­хого океана, большая часть которой находится в низких широтах (+ 19,1°С), Индийского (+ 17,1°С), Атлантического (+ 16,9°С). Значительные изменения температуры происходят только в верхних слоях воды Океана мощностью 200 – 1000 м. Глубже температура не превышает + 4, + 5°С и изменяется очень мало. Благодаря большой теплоем­кости воды Океан является аккумулятором солнечного тепла на Земле.

Процесс ледообразования в морской и пресной воде происходит различно – пресная вода замерзает при темпера­туре 0°С (несколько ниже 0°С), а морская вода замерзает при разной температуре в за­висимости от солености. Образование льда в Океане начинается с возникновения прес­ных кристаллов, которые затем смерзаются. При этом в про­странстве между кристаллами льда остаются капельки крепкого рассола, поэтому при образовании лед соленый. Чем ниже температура, при кото­рой происходило льдообразование, тем солонее лед. Рассол постепенно стекает между кристаллами, поэтому с течением времени лед опресняется.

В высоких широтах северного полушария образовавшийся зи­мой лед не успевает растаять за лето, поэтому среди полярных льдов встречаются льды разного возраста – от однолетних до многолетних. Толщина однолетнего льда в Арктике достигает 2 – 2,5 м, в Антарктике 1 – 1,5 м. Многолетние льды имеют мощ­ность 3 – 5 м и более. В месте сжатия льдов их толщина дости­гает 40 м. Льды покрывают около 15% всей акватории Мирового океана, т. е. 55 млн. км 2 , в том числе 38 млн. км 2 в южном полушарии.

Ледовый покров оказывает огромное влияние на климат всей Земли, на жизнь в Океане.

Льды в океанах и особенно в морях затрудняют судоходство и морской промысел.

Понятие о водных массах . Воды Мирового океана обладают весьма различными физическими и химическими свойствами. Большие объемы воды, сформированные в данных физико-географических условиях в опре­деленные отрезки времени и отличающиеся характерными физиче­скими, химическими и биологическими свойствами, называют водными массами.

Вод­ные массы формируются главным образом в поверхностных слоях Мирового океана под влиянием климатических условий, процессов термического и динамического взаимодействия океана и атмо­сферы. В формировании водных масс основная роль при­надлежит конвективному перемешиванию, которое, так же как и другие типы вертикального обмена, завершается образованием од­нородной водной массы. Течениями водные массы переносятся в другие районы, где, соприкасаясь с водами иного происхождения, трансформируются, особенно по периферии.

Движение вод океана

Вся масса океанских вод непрерывно движется. Это обеспечи­вает постоянное перемешивание воды, перераспределение тепла, солей и газов. Различают 3 вида движения: колебательные –волны, поступательные – океанические течения, смешанные – приливы и отливы.

Волны . Главная причина возникновения волн на поверхности Мирового океана – ветер. В отдельных случаях волны достигают высоты 18 м и длины до 1 км. С глубиной волны затухают.

При землетрясении, подводном извержении вулкана и подводных оползнях возникают сейсмические волны, распространяющиеся от эпицентра во все стороны и охватывающие всю толщу воды. Они называются цунами. Обычные цунами – волны, следующие друг за другом с периодичностью 20 – 60 минут со скоростью – 400 – 800 км/час. В открытом океане высота цунами не превышает 1 м. При подходе к берегу – на мелководье, цунами превращается в гигантскую волну до 15 – 30 м. Такие волны вызывают огромные разрушения. Цунами чаще других поражает восточные побережья Евразии, Японии, Новой Зеландии, Австралии, Филиппинские и Гавайский острова, юго-восточную часть Камчатки.

Океанические течения . Поступательные движения огромных масс воды называются течениями . Это горизонтальное перемещение воды на большие расстояния. Течения бывают ветровыми (или дрейфовыми), когда причиной является ветер, дующий в одном направлении. Сточные течения возникают в случае постоянного поднятия уровня воды, вызванного ее притоком или обильными атмосферными осадками. Например, Течение Гольфстрим вызвано повышением уровня воды в связи с притоком из соседнего Карибского моря. Компенсационные течения возмещают убыль воды в какой-либо части океана. Когда ветер постоянно дует с суши на море, он отгоняет поверхностные воды, на место которых поднимаются холодные воды из глубин. Плотностные течения – результат различной плотности воды на одной глубине. Их можно наблюдать в проливах, соединяющих моря с различной соленостью. Например, по проливу Босфор по дну из Средиземного моря в Черное идет более соленая и плотная вода, а навстречу этому потоку оп поверхности – более пресная.

Те­чения нарушают широтную зональность в распределении темпе­ратуры. Во всех трех океанах – Атлантическом, Индийском и Ти­хом – под влиянием течений возникают температурные аномалии: положительные аномалии связаны с переносом теплых вод от эква­тора в более высокие широты течениями, имеющими близкое к ме­ридиональному направление; отрицательные аномалии вызваны противоположно направленными (от высоких широт к экватору) холодными течениями. Течения оказывают влияние на распределение и других океа­нологических характеристик: солености, содержания кислорода, биогенных веществ, цвета, прозрачности и др. Распределение этих характеристик оказывает огромное влияние на развитие биологи­ческих процессов, растительный и животный мир морей и океа­нов.

Смешанные течения – приливы и отливы, возникающие в результате осевого вращения Земли и притяжения планеты Солнцем и Луной. В каждой точке поверхности Океана 2 раза в сутки наблюдается прилив и 2 раза – отлив. Высота приливной волны в открытом океане – около 1,5 м, а у берегов – зависит от их конфигурации. Самый высокий прилив в заливе Фанди у берегов Северной Америки в Атлантическом океане – 18 м.

Океан как среда жизни

В Мировом океане жизнь существует повсюду – в разных формах и разных проявлениях. По условиям существования в Океане выделяются две различные области: толща воды (пелагиаль) и дно (бенталь).Бенталь разделяется на прибрежную – литораль, имеющую глубины до 200 м, и глубинную – абиссаль. Абиссальная область представлена своеобразными организмами, приспособленными к обитанию в условиях низкой температуры, вы­сокого давления, отсутствия света и относительно малого содержа­ния кислорода.

Органический мир Океана состоит из трех групп: бентоса, планктона, нектона. Бентос – обитатели дна (растения, черви, моллюски), неспособные надолго подниматься в толщу воды. Планктон – обитатели водной толщи (бактерии, грибки, водоросли, простейшие и т. д.), не обладающие способностью активно перемещаться на большие расстояния. Нектон – обитатели вод, свободно проплывающие большие расстояния (киты, дельфины, рыбы).

Зеленые растения могут развиваться только там, где освеще­ние достаточно для фотосинтеза (до глубины не более 200 м). Большую часть массы живого вещества в Океане составляет фитопланктон, населяющий верхний 100-метровый слой воды. Средняя масса фитопланктона 1,7 млрд. т, годовая продукция 550 млрд. т. Самая распро­страненная форма фитопланктона – диатомовые водоросли, пред­ставленные 15 тыс. видов. Одна диатомовая водоросль за месяц способна дать 10 млн. экземпляров. Только потому, что фито­планктон быстро отмирает и поедается в больших количествах, он не заполнил Океан. Фитопланктон – начальное звено пищевой цепи в Океане. Места обильного развития фитопланк­тона – места повышенного плодородия в Океане, богатые жизнью вообще.

Распределение жизни в Океане очень неравномерно и имеет отчетливо выраженный зональный характер . В высоких широтах северного, полушария условия развития фитопланктона неблаго­приятные – сплошной ледяной покров, полярная ночь, низкое по­ложение Солнца над горизонтом летом, холодная (ниже 0°С) вода, слабая вертикальная циркуляция (следствие опресненности верх­него слоя воды), не обеспечивающая выноса питательных веществ с глубин. Летом появляются в полыньях некоторые холодолюбивые рыбы и питающиеся рыбой тюлени.

В субполярных широтах происходит сезонная миграция кромки полярных льдов. В холодную часть года в слое в не­сколько сотен метров вода интенсивно перемешивается (следствие охлаждения), обогащаясь кислородом и питательными солями. Весной и летом поступает много света, и, несмотря на сравни­тельно низкую температуру воды (результат затрат тепла на таяние), в ней развивается масса фитопланктона. Затем следует короткий период развития зоопланктона, питающегося фито­планктоном. В этот период в субполярной зоне скапливается множество рыбы (сельдь, треска, пикша, морской окунь и др.). Приходят на откорм киты, которых особенно много в южном полушарии.

В умеренных широтах обоих полушарий сильное перемешива­ние воды, достаточное количество тепла и света создают наибо­лее благоприятные условия для развития жизни. Это самые про­дуктивные зоны Океана. Максимальное развитие фитопланктона наблюдается весной. Он усваивает питательные вещества, коли­чество их уменьшается – начинается развитие зоопланктона. Осенью – второй максимум развития фитопланктона. Обилие зоо­планктона обусловливает обилие рыбы (сельдь, треска, анчоус, лосось, сардина, тунец, камбала, палтус, навага и т. д.).

В субтропических и тропических широтах вода на поверх­ности Океана имеет повышенную соленость, но из-за высокой температуры оказывается сравнительно легкой, что мешает пе­ремешиванию. Частицы, содержащие питательные вещества, не задерживаясь, опускаются на дно. Кислорода в 2 раза меньше, чем в умеренной зоне. Фитопланктон развивается сла6o, мало и зоопланктона. В субтропических широтах вода обладает наиболь­шей прозрачностью и интенсивным голубым цветом (цвет океан­ской пустыни). В теплой воде растут не связанные с дном бурые водоросли – саргассы, типичные для этой части Океана.

В экваториальных широтах на границе пассатных течений и экваториального противотечения происходит перемешивание воды, и поэтому она относительно богата питательными солями и кислородом. Планктона здесь значительно больше, чем в соседних широтах, хотя и не так много, как на северной окраине уме­ренной зоны.

Теплая вода содержит мало углекислого газа и поэтому плохо растворяет углекислый кальций, который содержится в ней в изо­билии и легко усваивается растениями и животными. В резуль­тате раковины и скелеты животных приобретают массивность и прочность, а после отмирания организмов образуются мощные толщи карбонатовых отложений, коралловые рифы и острова, столь характерные для низких широт.

Широтная зональность распределения жизни в верхних слоях Океана, хорошо выраженная в его открытой части, нарушается на окраине под влиянием ветров и течений.

Соленость. Океанская вода состоит по весу на 96,5% из чистой воды и меньше чем на 4% из растворенных в ней солей, газов и взвешенных нерастворимых частиц. Присутствие сравнительно небольшого количества различных веществ придает ей существенные отличия от других природных вод.
Всего в воде Океана обнаружены в растворенном состоянии 44 химических элемента. Предполагают, что в ней растворены все имеющиеся в природе вещества, но из-за ничтожно малых количеств они не могут быть обнаружены. Различают основные компоненты солености океанской воды (Cl, Na, Mg, Ca, К и др.) и второстепенные, содержащиеся в ничтожно малых количествах (среди них золото, серебро, медь, фосфор, йод и др.).
Замечательная особенность воды Океана - постоянство ее солевого состава. Причиной этого может быть непрерывное перемешивание вод Мирового океана. Однако нельзя считать это объяснение исчерпывающим.
Общее количество солей, содержащихся в воде Мирового океана, 48*10в15 т. Этого количества солей достаточно, чтобы покрыть всю поверхность Земли слоем в 45 м, а поверхность суши - слоем в 153 м.
При очень малом содержании серебра (0,3 мг в1 м3) общее количество его в воде Океана в 20 000 раз больше, чем количество серебра» добытое людьми за весь исторический период. Золото содержится в океанской воде в количестве 0,006 мг в 1 м3, при этом общее количество его достигает 10 млрд. т.
По составу солей океанская вода значительно отличается от речной воды (табл. 19).


В океанской воде больше всего (27 г в 1 л воды) обыкновенной поваренной соли (NaCl), поэтому вода Океана на вкус соленая; соли магния (MgCl2, MgSO4) придают ей горький привкус.
Существенные отличия соотношения солей в воде Океана и в воде рек не могут не казаться удивительными, так как реки непрерывно выносят соли в Океан.
Предполагают, что солевой состав вод Океана, выделившихся из земных недр, связан с их происхождением. Океанские воды выделились уже с исходной соленостью. В дальнейшем сбалансировался определенный солевой состав. Количество выносимых реками солей в какой-то мере уравновешивается их расходом. В расходе солей имеют значение образование железо-марганцевых конкреций, унос солей ветром и, конечно, деятельность организмов, извлекающих соли (прежде всего соли кальция) из воды Океана на построение скелетов и раковин. Скелеты и раковины умерших организмов частично растворяются в воде, а частично образуют донные осадки и, таким образам, выпадают из круговорота вещества.
Растения и животные, обитающие в Океане, поглощают и концентрируют в своем теле различные вещества, находящиеся в воде, в том числе и те, которые человек не смог еще обнаружить. Особенно энергично поглощаются кальций и кремний. Водоросли ежегодно связывают миллиарды тонн углерода и выделяют миллиарды тонн кислорода. Вода проходит через жабры рыб при дыхании, многие животные, отфильтровывая пищу, пропускают через желудочно-кишечный тракт большое количество воды, все животные заглатывают воду с пищей. Вода Океана так или иначе проходит через тело животных и растений, и этим в конечном счете определяется ее современный солевой состав.
Океанские воды имеют среднюю соленость 35‰ (35 г солей на 1 л воды). Изменения солености вызываются изменениями в приходо-расходном балансе солей или пресной воды.
Соли поступают в Океан вместе с водой, стекающей с суши, приносятся и уносятся при водообмене с соседними участками Океана, выделяются или затрачиваются в результате различных процессов, происходящих в воде. Постоянное поступление в Океан солей с суши должно было бы вызвать постепенное увеличение солености его вод. Если это действительно происходит, то так медленно, что до настоящего времени остается необнаруженным.
Основная причина различий солености воды Океана - изменение баланса пресной воды. Осадки на поверхности Океана, сток с суши, таяние льдов вызывают понижение солености; испарение, образование льда, наоборот, повышают ее. Приток вод с суши заметно сказывается на солености у берегов и особенно близ впадения рек.
Поскольку соленость на поверхности Океана в его открытой части зависит в основном от соотношения осадков и испарения (т. е. от климатических условий), постольку в ее распределении обнаруживается широтная зональность. Это хорошо видно на карте изогалин - линий, соединяющих пункты с одинаковой соленостью. В экваториальных широтах поверхностные слои воды несколько распреснены (34-35‰) вследствие того, что осадки больше испарения. В субтропических и тропических широтах соленость поверхностных слоев повышенная и достигает максимума для поверхности открытого Океана (36-37‰. Это объясняется тем, что расход воды на испарение не покрывается осадками. Океан теряет влагу, соли же остаются. К северу и к югу от тропических широт соленость океанских вод постепенно понижается до 33-32‰, что определяется уменьшением испарения и увеличением количества осадков. Понижению солености на поверхности Океана способствуют тающие плавучие льды. Широтную зональность в распределении солености на поверхности Океана нарушают течения. Теплые течения повышают соленость, холодные, наоборот, понижают ее.
Средняя соленость на поверхности океанов различна. Наибольшую среднюю соленость имеет Атлантический океан (35,4 ‰), нименьшую - Северный Ледовитый (32‰). Повышенная соленость Атлантического океана объясняется влиянием материков при его сравнительной суженности. В Северном Ледовитом океане распресняющее действие оказывают сибирские реки (у берегов Азии соленость падает до 20‰).
Так как изменения солености связаны в основном с приходо-расходным балансом воды, они хорошо выражены только в поверхностных слоях, непосредственно получающих (осадки) и отдающих воду (испарение), а также в слое перемешивания. Перемешивание охватывает толщу воды мощностью до 1500 м. Глубже соленость вод Мирового океана остается неизменной (34,7-34,9‰). Характер изменения солености зависит от условий, определяющих соленость на поверхности. Выделяют четыре типа изменения солености в Океане по вертикали: I -экваториальный, II - субтропический, III - умеренный и IV - полярный,
I. В экваториальных широтах, где вода на поверхности распреснена, соленость постепенно возрастает, достигая максимума на глубине 100 м, где к экватору из тропической части Океана приходят более соленые воды. Глубже 100 м соленость убывает, а начиная с глубины 1000-1500 м становится почти постоянной. II. В субтропических широтах соленость быстро уменьшается до глубины 1000 м, глубже она постоянная. III. В умеренных широтах соленость с глубиной изменяется мало. IV. В полярных широтах соленость на поверхности Океана наиболее низкая, с глубиной она вначале быстро возрастает, а затем, примерно с глубины 200 м, почти не изменяется.
Соленость воды на поверхности морей может сильно отличаться от солености воды в открытой части Океана. Она также определяется прежде всего балансом пресной воды, а значит, зависит от климатических условий. Море испытывает влияние омываемой им суши в значительно большей степени, чем Океан. Чем глубже вдается море в сушу, чем меньше оно связано с Океаном, тем больше отличается его соленость от средней океанской солености.
Моря в полярных и умеренных широтах имеют положительный баланс воды, и поэтому соленость на их поверхности понижена, особенно у впадения рек. Моря в субтропических и тропических широтах, окруженные сушей с малым количеством рек, имеют повышенную соленость. Большая соленость Красного моря (до 42‰) объясняется его положением среди суши, в условиях сухого и жаркого климата. Осадки на поверхность моря выпадают всего в количестве 100 мм в год, сток с суши отсутствует, а испарение достигает 3000 мм в год. Водообмен с Океаном происходит через узкий Баб-эль-Мандебский пролив.
Повышенная соленость Средиземного моря (до 39‰) является результатом того, что сток с суши и осадки не компенсируют испарения, водообмен с Океаном затруднен. В Черном море (18‰), наоборот, испарение почти компенсируется стоком (годовой слой стока 80 см), и осадки делают баланс воды положительным. Отсутствие свободного водообмена с Мраморным морем способствует сохранению пониженной солености Черного моря.
В Северном море, испытывающем, с одной стороны, влияние Океана, а с другой - сильно распресненного Балтийского моря, соленость повышается с юго-востока на северо-запад от 31 до 35‰. Все окраины моря, тесно связанные с Океаном, имеют соленость, близкую к солености прилежащей части Океана. В прибрежных частях морей, принимающих реки, вода сильно распресняется и часто имеет соленость всего несколько промилле.
Изменение солености с глубиной зависит в морях от солености на поверхности и связанного с ней водообмена с Океаном (или с соседним морем).
Если соленость моря меньше, чем соленость Океана (соседнего моря) у соединяющего их пролива, более плотная океанская вода проникает через пролив в море и опускается, заполняя его глубины. В этом случае соленость в море с глубиной увеличивается. Если море более соленое, чем соседняя часть Океана (моря), вода в проливе двигается по дну в сторону Океана, по поверхности - в сторону моря. Поверхностные слои приобретают соленость и температуру, свойственные морю в данных физико-географических условиях. Соленость придонных вод соответствует солености на поверхности в период наиболее низких темпе-ператур.
Различные случаи изменения солености с глубиной хорошо видны на примере морей Средиземного, Мраморного и Черного. Средиземное море более соленое, чем Атлантический океан. В Гибралтарском проливе (глубина 360 м) существует глубинное течение из моря в Океан. Средиземноморская вода от порога опускается, создавая на некоторой глубине в Океане близ порога область повышенной солености. По поверхности в проливе океанская вода течет в море. Соленость воды у дна Средиземного моря на всем протяжении его 38,6‰, в то время как на поверхности она изменяется от 39,6‰ в восточной части до 37‰ - в западной. Соответственно в восточной части соленость с глубиной уменьшается, в западной - увеличивается.
Мраморное море расположено между двумя морями, более соленым Средиземным и менее соленым Черным. Соленая средиземноморская вода, проникая через Дарданеллы, заполняет глубины моря, и поэтому соленость у дна 38‰. Черноморская вода, двигаясь по поверхности, приходит в Мраморное море через Босфор и распресняет воду поверхностных слоев до 25‰.
Черное море сильно распреснено. Поэтому вода средиземноморского происхождения проникает из Мраморного моря в Черное по дну Босфора и, опускаясь, заполняет его глубины. Соленость воды в Черном море с глубиной увеличивается от 17-16 до 22,3‰.
В воде Мирового океана содержатся колоссальные количества ценнейшего химического сырья, использование которого пока еще очень ограниченно. Из воды океанов и морей ежегодно извлекается около 5 млн. т поваренной соли, в том числе более 3 млн. т - в странах Юго-Восточной Азии. Из морской воды добывают калиевые и магниевые соли. Как побочный продукт при извлечении поваренной соли и магния получают бромистый газ.
Для извлечения из воды химических элементов, содержащихся в очень незначительных количествах, можно использовать удивительную способность многих обитателей Океана поглощать и концентрировать в своем организме определенные элементы, например концентрация йода в ряде водорослей в тысячи и сотни тысяч раз превышает его концентрацию в воде Океана. Моллюски поглощают медь, аспидии - цинк, радиолярии - стронций, медузы - цинк, олово, свинец. В фукусах и ламинариях много алюминия, в серных бактериях - серы. Отобрав определенные организмы и усилив их свойства концентрировать элементы, можно будет создавать искусственные месторождения полезных ископаемых.
Современная химия получила иониты (обменные смолы), обладающие свойством поглощать из раствора и удерживать на своей поверхности различные вещества. Щепотка ионита может опреснить ведро соленой воды, извлечь из нее соли. Применение ионитов сделает более доступными для использования людьми богатства солей Океана.
Газы в воде Океана. В воде Океана растворены газы. Это главным образом кислород, азот, углекислый газ, а также сероводород, аммиак, метан. Вода растворяет газы соприкасающейся с ней атмосферы, газы выделяются при химических и биологических процессах, приносятся водами суши, поступают в воду Океана при подводных извержениях. Перераспределение газов в воде происходит при ее перемешивании. Благодаря высокой растворяющей способности воды Океан оказывает большое влияние на химический состав атмосферы.
Азот присутствует в Океане повсюду, причем содержание его почти не изменяется, так как он плохо вступает в соединения и мало потребляется. Некоторые инфильтрующие бактерии превращают его в нитраты и аммиак.
Кислород поступает в Океан из атмосферы и выделяется при фотосинтезе. Расходуется он в процессе дыхания, на окисление различных веществ, выделяется в атмосферу. Растворимость кислорода в воде определяется её температурой и соленостью. При нагревании поверхности Океана (весна, лето) вода отдает кислород атмосфере, при охлаждении (осень, зима) поглощает его из атмосферы. В океанской воде кислорода меньше, чем в пресной.
Так как интенсивность процессов фотосинтеза зависит от степени освещения воды солнечными лучами, количество кислорода в воде колеблется в течение суток, уменьшаясь с глубиной. Глубже 200 м света очень мало, растительность отсутствует и содержание кислорода в воде падает, но затем, на больших глубинах (>1800 м), в результате циркуляции океанских вод снова возрастает.
Содержание кислорода в поверхностных слоях воды (100-300 м) от экватора к полюсам возрастает: на широте 0° - 5 см3/л, на широте 50° - 8 см3/л. Вода теплых течений беднее кислородом, чем вода холодных течений.
Присутствие кислорода в воде Океана - необходимое условие развития в нем жизни.
Углекислый газ , в отличие от кислорода и азота, находится в воде Океана главным образом в связанном состоянии - в виде углекислых соединений (карбонатов и бикарбонатов). Он попадает в воду из атмосферы, выделяется при дыхании организмов и при разложении органического вещества, поступает из земной коры при подводных извержениях. Как и кислород, углекислый газ лучше растворяется в холодной воде. При повышении температуры вода отдает углекислый газ атмосфере, при понижении температуры она поглощает его. В воде Океана растворяется значительная часть углекислого газа атмосферы. Запасы углекислого газа в Океане составляют 45-50 см3 на 1 л воды. Достаточное количество его - обязательное условие жизнедеятельности организмов.
В воде морей количество и распределение газов могут быть существенно иными, чем в воде океанов. В морях, глубины которых не снабжаются кислородом, накапливается сероводород. Это происходит в результате деятельности бактерий, использующих для окисления питательных веществ в анаэробных условиях кислород сульфатов. Нормальная органическая жизнь в сероводородной среде не развивается.
Примером моря, глубины которого заражены сероводородом, может быть Черное море. Увеличение плотности воды С глубиной обеспечивает в Черном море равновесие водной массы. Полного перемешивания воды в нем не происходит, кислород с глубиной постепенно исчезает, содержание сероводорода увеличивается, достигая у дна 6,5 см3 на 1 л воды.
Неорганические и органические соединения, содержащие необходимые организмам элементы, называются питательным веществом.
Распределение в Океане питательных веществ и энергии (солнечного излучения) определяет распределение и продуктивность живого вещества.
Плотность воды Океана с увеличением солености всегда повышается, поскольку растет содержание веществ, имеющих больший, чем вода, удельный вес. Увеличению на поверхности Океана плотности способствуют охлаждение, испарение и образование льда. При увеличении плотности воды возникает конвекция. При нагревании, а также при смешении соленой воды с водой осадков и с талой водой плотность ее понижается.
На поверхности Океана наблюдается изменение плотности в пределах от 0,996 до 1,083. В открытом Океане плотность, как правило, определяется температурой и поэтому от экватора к полюсам растет. С глубиной плотность воды в Океане увеличивается.
Давление. На каждый квадратный сантиметр поверхности Океана атмосфера давит приблизительно с силой 1 кг (одна атмосфера). То же давление на ту же площадь оказывает столб воды высотой всего 10,06 м. Таким образом, можно считать, что на каждые 10 м глубины давление увеличивается на 1 атмосферу. Если учесть, что вода с глубиной сжимается и становится более плотной, окажется, что давление на глубине 10000 м равно 1119 атмосферам. Все процессы, происходящие на большой глубине, совершаются под сильным давлением, но это не препятствует развитию жизни в глубинах Океана.
Прозрачность воды Океана. Лучистая энергия Солнца, проникая в толщу воды, рассеивается и поглощается. От степени ее рассеивания и поглощения зависит прозрачность воды. Так как количество примеси, содержащейся в воде, не везде одинаково и изменяется во времени, прозрачность также не остается постоянной (табл. 20) . Наименьшая прозрачность наблюдается у берегов на мелководье, особенно после штормов. Значительно уменьшается прозрачность воды в период массового развития планктона. Уменьшение прозрачности вызывается таянием льдов (лед всегда содержит примеси, кроме того, масса пузырьков воздуха, заключенных во льдах, переходит в воду). Замечено, что прозрачность воды увеличивается в местах подъема на поверхность глубинных вод.

В настоящее время измерения прозрачности на разных глубинах производятся с помощью универсального гидрофотометра.
Цвет воды океанов и морей. Толща чистой воды Океана (моря) в результате собирательного поглощения и рассеивания света имеет голубой или синий цвет. Этот цвет воды называют «цветом морской пустыни». Присутствие планктона и неорганических взвесей отражается на цвете воды, и. она приобретает зеленоватый оттенок. Большие количества примесей делают воду желтовато-зеленой, близ устья рек она может быть даже коричневатой.
Для определения цвета воды Океана пользуются шкалой цвета моря (шкалой Фореля-Уле), включающей 21 пробирку с жидкостью разного цвета - от синего до коричневого.
В экваториальных и тропических широтах господствующий цвет воды Океана темно-голубой и даже синий. Такую воду имеют, например, Бенгальский залив, Аравийское море, южная часть Китайского моря, Красное море. Синяя вода в Средиземном море, близка к ней по цвету вода Черного моря. В умеренных широтах во многих местах вода зеленоватая (особенно у берегов), заметно зеленеет она в районах таяния льдов. В полярных широтах зеленоватый цвет преобладает.

Физико-химические свойства. Океаническая вода состоит по весу на 96,5% из чистой воды, а остальные приходятся на растворенные соли, газы и взвешенные нерастворимые частицы. В воде океанов обнаружено в растворенном состоянии 44 химических элемента. В процентном отношении на долю различных растворенных солей приходится следующее количество: хлориды 88,7, сульфаты 10,7, карбонаты 0,3, прочие 0,2. Больше всего содержится поваренной соли (NaCl ), поэтому вода океана на вкус соленая; соли магния (MgCl 2 , MgSO 4 ) придают ей горький привкус. Характерно постоянство солевого состава океана. Одна из причин этого - непрерывное перемешивание воды. Океанические воды выделились из недр Земли с исходной соленостью.

Средняя соленость вод Мирового океана 35°/ 00 . Изменения солености вызываются изменениями в приходо-расходном балансе солей, связанная главным образом с изменением баланса пресной воды.

Изменения солености хорошо выражены до глубины примерно 1500 м. На большей глубине соленость Мирового океана остается почти неизменной в пределах от 34,7 до 34, 9%.

Соленость воды на поверхности морей может сильно отличаться от солености вод в открытой части океана. Если соленость моря меньше, чем соленость соседнего участка океана, то более плотная океаническая вода проникает в море и опускается, заполняя его глубины. Если море более соленое, чем соседняя часть океана, то вода двигается по дну в сторону океана, по поверхности - в сторону моря.

В воде океана растворены газы. Преобладают кислород, азот, углекислый газ, сероводород, аммиак и метан. Газы поступают в воду из атмосферы, при химических и биологических процессах в воде, при подводных извержениях.

Плотность воды на поверхности океана изменяется в пределах от 0,996 до 1,083. С увеличением солености и понижением температуры воды плотность повышается. С глубиной плотность воды увеличивается. На каждые 10 м глубины давление увеличивается на 1 атм. Давление на глубине 10 000 м равно 1119 атм.

Термический режим. Основным источником тепла, получаемого океаном, является солнечная радиация. Кроме того океан получает тепло за счет поглощения длинноволнового излучения атмосферы, теплоты, освобождающейся при конденсации влаги и льдообразования, и при химико-биологических процессах. В океан поступает тепло, приносимое осадками, речными водами, воздухом, соприкасающимися с водой, и теплыми течениями. На температуру глубоких слоев океана влияют внутреннее тепло Земли и адиабатическое нагревание опускающейся воды.

Океан расходует тепло главным образом на испарение воды с его поверхности, на нагревание прилежащего слоя воздуха, на нагревание холодной воды рек и океанических течений, на таяние льдов и на другие процессы.

Суточные амплитуды температуры воды на поверхности океана значительно меньше суточных амплитуд температур воздуха над водой. Днем тепло поступает за счет солнечной радиации, но и расходуется в результате усиленного испарения влаги. Ночью вода излучает тепло в атмосферу и получает его при конденсации влаги на остывающей поверхности воды. Колебания температуры сглаживаются также вследствие большой теплоемкости воды. Суточная амплитуда температуры воды на поверхности океана не превышает в среднем 0,5°.

Годовые амплитуды температуры воды на поверхности океана больше, чем суточные. Они зависят от годового хода радиационного баланса, от морских течений, от преобладающих ветров и от широты. В низких широтах они составляют 1°, в высоких 2°.

Наибольшие средние годовые температуры воды (27-28°) наблюдаются в экваториальных широтах. В тропических широтах под действием течений на одной и той же широте температура воды на поверхности океана у западных берегов выше, чем у восточных. Этому способствуют пассаты, отгоняющие воды от восточных берегов. На месте ушедшей воды поднимаются нижележащие, более холодные ее слои. В умеренных широтах северного полушария в связи с течениями у восточных берегов температура воды выше, чем у западных. В южном полушарии, к югу от 40°, широтное распределение температуры почти не нарушается. В полярных широтах температура воды опускает до 0° и даже до -2°.

С глубиной температура в океане, как правило понижается. Значительные изменения температуры происходят только в верхних слоях океана (200-1000 м). На больших глубинах температура от + 2 до -1°.

Температура на поверхности морей под влиянием суши, водообмена с океаном, притока речных вод и других причин может значительно отличаться от температуры океана на той же широте. Самая высокая температура (до +36°) - на поверхности тропических морей. Изменение температуры с глубиной зависит в первую очередь от водообмена с соседними частями океана.

Ледовой режим. Температура замерзания воды в Мировом океане зависит от ее солености. Чем выше соленость, тем ниже температура замерзания.

Образование льда начинается с возникновения пресных кристаллов.

При скоплении ледяных кристаллов в штилевую погоду образуется тонкая ледяная пленка - сало. У берега появляется неподвижно прикрепленная к нему полоса льда - забереги. Постепенно нарастая, забереги превращаются в береговой припай. При спокойном состоянии поверхности воды при смерзании сала возникает прозрачный тонкий лед. Во время волнения появляются отдельные ледяные диски - блинчатый лед. При смерзании блинчатого льда образуется сплошной ледяной покров.

В высоких широтах северного полушария образовавшийся за зиму лед не успевает растаять за лето, поэтому здесь встречаются льды разного возраста - от однолетних до многолетних. Толщина однолетнего льда 1-2,5 м, многолетнего 3 м иболее. Многолетние мощные плавучие льды, занимающие центральные части Северного Ледовитого океана, называются паковыми льдами. Они занимают 70-80% общей площади льдов океана.

Пространства ровного льда пересекаются трещинами. При сжатии лед по трещинам ломается, льдины становятся на ребро и вмерзают, образуя торосы. При раздроблении дрейфующего льда возникают обширные ледяные поля (до 10 км в поперечнике), крупнобитый лед (20-100 м) и мелкобитый лед (менее 20 м).

По происхождению, кроме морских льдов, в океанах и морях встречаются речные и материковые льды, переместившиеся с суши. Обломки материковых льдов образуют плавающие ледяные горы - айсберги. Особенно они распространены в Антарктике.

Таяние льда начинается с загрязненных участков (обыкновенно от берегов). На поверхности льда в результате таяния образуются озерки. В прибрежной полосе возникают сплошные полосы чистой воды - водяные забереги, постепенно превращающиеся в полыньи. Тающий лед под воздействием волн и течений распадается на отдельные льдины. Льдины ломаются, превращаются в ледяную кашу и, наконец, лед распадается на кристаллы.

Льды покрывают около 15% площади Мирового океана. Границы положения льдов испытывают значительные сезонные изменения. В Арктике к югу от области сплошных льдов Центрального бассейна Северного Ледовитого океана расположена область несплошных плавучих льдов. Плавучие льды встречаются также в Беринговом и Охотском морях, в Гудзоновом заливе, полосой вокруг Гренландии и у побережья полуострова Лабрадор. В Антарктике зимой льды плотным широким кольцом окружают материк. Летом береговой припай взламывается, и лед уносится к северу. Граница плавучих льдов в южном полушарии доходит до 50-60° ю. ш. Далеко за пределы распространения плавучих льдов заходят айсберги. Они образуются главным образом около Антарктиды, Гренландии и островов Канадского Арктического архипелага. Большая масса и глубокая осадка в воде позволяет айсбергам достигать в северном полушарии 40-50° с. ш., а в южном, где айсберги крупнее,- 30- 40° ю. ш. Наблюдались айсберги высотой до 157 м и поперечником до 170 км.

Льды оказывают влияние на климат. Вода подо льдом защищена зимой от глубокого охлаждения, а летом - от прогревания. Тепло, выделяемое при льдообразовании, смягчает зимние температуры воздуха. Тепло, поглощаемое при таянии льда, понижает летние температуры.

— Источник—

Богомолов, Л.А. Общее землеведение/ Л.А. Богомолов [и д.р.]. – М.: Недра, 1971.- 232 с.

Post Views: 322