Непрерывность функции на отрезке. Основные теоремы о функциях, непрерывных на отрезке. Наименьшее и наибольшее значения функции на отрезке Функции на отрезке

Определение 3 . 3 Пусть -- некоторая функция, -- её область определения и -- некоторый (открытый) интервал (может быть, с и/или ) 7 . Назовём функцию непрерывной на интервале , если непрерывна в любой точке , то есть для любого существует (в сокращённой записи:

Пусть теперь -- (замкнутый) отрезок в . Назовём функцию непрерывной на отрезке , если непрерывна на интервале , непрерывна справа в точке и непрерывна слева в точке , то есть

Пример 3 . 13 Рассмотрим функцию (функция Хевисайда ) на отрезке , . Тогда непрерывна на отрезке (несмотря на то, что в точке она имеет разрыв первого рода).

Рис.3.15.График функции Хевисайда

Аналогичное определение можно дать и для полуинтервалов вида и , включая случаи и . Однако можно обобщить данное определение на случай произвольного подмножества следующим образом. Введём сначала понятие индуцированной на базы: пусть -- база, все окончания которой имеют непустые пересечения с . Обозначим через и рассмотрим множество всех . Нетрудно тогда проверить, что множество будет базой. Тем самым для определены базы , и , где , и -- базы непроколотых двусторонних (соответственно левых, правых) окрестностей точки (их определение см. в начале текущей главы).

Определение 3 . 4 Назовём функцию непрерывной на множестве , если

Нетрудно видеть, что тогда при и при это определение совпадает с теми, что были выше даны специально для интервала и отрезка.

Напомним, что все элементарные функции непрерывны во всех точках своих областей определения и, следовательно, непрерывны на любых интервалах и отрезках, лежащих в их областях определения.

Поскольку непрерывность на интервале и отрезке определяется поточечно, имеет место теорема, которая является непосредственным следствием теоремы 3.1:

Теорема 3 . 5 Пусть и -- функции и -- интервал или отрезок, лежащий в . Пусть и непрерывны на . Тогда функции , , непpеpывны на . Если вдобавок пpи всех , то функция также непpеpывна на .

Из этой теоpемы вытекает следующее утвеpждение, точно так же, как из теоpемы 3.1 -- пpедложение 3.3:

Предложение 3 . 4 Множество всех функций, непpеpывных на интеpвале или отpезке -- это линейное пpостpанство:

Более сложное свойство непрерывной функции выражает следующая теорема.

Теорема 3 . 6 (о корне непрерывной функции) Пусть функция непрерывна на отрезке , причём и -- числа разных знаков. (Будем для определённости считать, что , а .) Тогда существует хотя бы одно такое значение , что (то есть существует хотя бы один корень уравнения ).

Доказательство . Рассмотрим середину отрезка . Тогда либо , либо , либо . В первом случае корень найден: это . В остальных двух случаях рассмотрим ту часть отрезка, на концах которой функция принимает значения разных знаков: в случае или в случае . Выбранную половину отрезка обозначим через и применим к ней ту же процедуру: разделим на две половины и , где , и найдём . В случае корень найден; в случае рассматриваем далее отрезок , в случае -- отрезок и т. д.

Рис.3.16.Последовательные деления отрезка пополам

Получаем, что либо на некотором шаге будет найден корень , либо будет построена система вложенных отрезков

в которой каждый следующий отрезок вдвое короче предыдущего. Последовательность -- неубывающая и ограниченная сверху (например, числом ); следовательно (по теореме 2.13), она имеет предел . Последовательность -- невозрастающая и ограниченная снизу (например, числом ); значит, существует предел . Поскольку длины отрезков образуют убывающую геометрическую прогрессию (со знаменателем ), то они стремятся к 0, и , то есть . Положим теперь . Тогда

и

поскольку функция непрерывна. Однако, по построению последовательностей и , и , так что, по теореме о переходе к пределу в неравенстве (теорема 2.7), и , то есть и . Значит, , и -- корень уравнения .

Пример 3 . 14 Рассмотрим функцию на отрезке . Поскольку и -- числа разных знаков, то функция обращается в 0 в некоторой точке интервала . Это означает, что уравнение имеет корень .

Рис.3.17.Графическое представление корня уравнения

Доказанная теорема фактически даёт нам способ нахождения корня , хотя бы приближённого, с любой заданной наперёд степенью точности. Это -- метод деления отрезка пополам, описанный при доказательстве теоремы. Более подробно с этим и другими, более эффективными, способами приближённого нахождения корня мы познакомимся ниже, после того, как изучим понятие и свойства производной.

Заметим, что теорема не утверждает, что если её условия выполнены, то корень -- единственный. Как показывает следующий рисунок, корней может быть и больше одного (на рисунке их 3).

Рис.3.18.Несколько корней функции, принимающей значения разных знаков в концах отрезка

Однако, если функция монотонно возрастает или монотонно убывает на отрезке, в концах которого принимает значения разных знаков, то корень -- единственный, так как строго монотонная функция каждое своё значение принимает ровно в одной точке, в том числе и значение 0.

Рис.3.19.Монотонная функция не может иметь более одного корня

Непосредственным следствием теоремы о корне непрерывной функции является следующая теорема, которая и сама по себе имеет очень важное значение в математическом анализе.

Теорема 3 . 7 (о промежуточном значении непрерывной функции) Пусть функция непрерывна на отрезке и (будем для определённости считать, что ). Пусть -- некоторое число, лежащее между и . Тогда существует такая точка , что .

Рис.3.20.Непрерывная функция принимает любое промежуточное значение

Доказательство . Рассмотрим вспомогательную функцию , где . Тогда и . Функция , очевидно, непрерывна, и по предыдущей теореме существует такая точка , что . Но это равенство означает, что .

Заметим, что если функция не является непрерывной, то она может принимать не все промежуточные значения. Например, функция Хевисайда (см. пример 3.13) принимает значения , , но нигде, в том числе и на интервале , не принимает, скажем, промежуточного значения . Дело в том, что функция Хевисайда имеет разрыв в точке , лежащей как раз в интервале .

Для дальнейшего изучения свойств функций, непрерывных на отрезке, нам понадобится следующее тонкое свойство системы вещественных чисел (мы уже упоминали его в главе 2 в связи с теоремой о пределе монотонно возрастающей ограниченной функции): для любого ограниченного снизу множества (то есть такого, что при всех и некотором ; число называется нижней гранью множества ) имеется точная нижняя грань , то есть наибольшее из чисел , таких что при всех . Аналогично, если множество ограничено сверху, то оно имеет точную верхнюю грань : это наименьшая из верхних граней (для которых при всех ).

Рис.3.21.Нижняя и верхняя грани ограниченного множества

Если , то существует невозрастающая последовательность точек , которая стремится к . Точно так же если , то существует неубывающая последовательность точек , которая стремится к .

Если точка принадлежит множеству , то является наименьшим элементом этого множества: ; аналогично, если , то .

Кроме того, для дальнейшего нам понадобится следующая

Лемма 3 . 1 Пусть -- непрерывная функция на отрезке , и множество тех точек , в которых (или , или ) не пусто. Тогда в множестве имеется наименьшее значение , такое что при всех .

Рис.3.22.Наименьший аргумент, при котором функция принимает заданное значение

Доказательство . Поскольку -- ограниченное множество (это часть отрезка ), то оно имеет точную нижнюю грань . Тогда существует невозрастающая последовательность , , такая что при . При этом , по определению множества . Поэтому, переходя к пределу, получаем, с одной стороны,

а с другой стороны, вследствие непрерывности функции ,

Значит, , так что точка принадлежит множеству и .

В случае, когда множество задано неравенством , мы имеем при всех и по теореме о переходе к пределу в неравенстве получаем

откуда , что означает, что и . Точно так же в случае неравенства переход к пределу в неравенстве даёт

откуда , и .

Теорема 3 . 8 (об ограниченности непрерывной функции) Пусть функция непрерывна на отрезке . Тогда ограничена на , то есть существует такая постоянная , что при всех .

Рис.3.23.Непрерывная на отрезке функция ограничена

Доказательство . Предположим обратное: пусть не ограничена, например, сверху. Тогда все множества , , , не пусты. По предыдущей лемме в каждом из этих множеств имеется наименьшее значение , . Покажем, что

Действительно, . Если какая-либо точка из , например , лежит между и , то

то есть -- промежуточное значение между и . Значит, по теореме о промежуточном значении непрерывной функции, существует точка , такая что , и . Но , вопреки предположению о том, что -- наименьшее значение из множества . Отсюда следует, что при всех .

Точно так же далее доказывается, что при всех , при всех , и т. д. Итак, -- возрастающая последовательность, ограниченная сверху числом . Поэтому существует . Из непрерывности функции следует, что существует , но при , так что предела не существует. Полученное противоречие доказывает, что функция ограничена сверху.

Аналогично доказывается, что ограничена снизу, откуда следует утверждение теоремы.

Очевидно, что ослабить условия теоремы нельзя: если функция не является непрерывной, то она не обязана быть ограниченной на отрезке (приведём в качестве примера функцию

на отрезке . Эта функция не ограничена на отрезке, так как при имеет точку разрыва второго рода, такую что при . Также нельзя заменить в условии теоремы отрезок интервалом или полуинтервалом: в качестве примера рассмотрим ту же функцию на полуинтервале . Функция непрерывна на этом полуинтервале, но неограничена, вследствие того что при .

Поиск наилучших постоянных, которыми можно ограничить функцию сверху и снизу на заданном отрезке, естественным образом приводит нас к задаче об отыскании минимума и максимума непрерывной функции на этом отрезке. Возможность решения этой задачи описывается следующей теоремой.

Теорема 3 . 9 (о достижении экстремума непрерывной функцией) Пусть функция непрерывна на отрезке . Тогда существует точка , такая что при всех (то есть -- точка минимума: ), и существует точка , такая что при всех (то есть -- точка максимума: ). Иными словами, минимальное и максимальное 8 значения непрерывной функции на отрезке существуют и достигаются в некоторых точках и этого отрезка.

Рис.3.24.Непрерывная на отрезке функция достигает максимума и минимума

Доказательство . Так как по предыдущей теореме функция ограничена на сверху, то существует точная верхняя грань значений функции на -- число . Тем самым, множества , ,..., ,..., не пусты, и по предыдущей лемме в них есть наименьшие значения : , . Эти не убывают (доказывается это утверждение точно так же, как в предыдущей теореме):

и ограничены сверху числом . Поэтому, по теореме о пределе монотонной ограниченной последовательности, существует предел Так как , то и

по теореме о переходе к пределу в неравенстве, то есть . Но при всех , и в том числе . Отсюда получается, что , то есть максимум функции достигается в точке .

Аналогично доказывается существование точки минимума.

В этой теореме, как и в предыдущей, нельзя ослабить условия: если функция не является непрерывной, то она может не достигать своего максимального или минимального значения на отрезке, даже будучи ограниченной. Для примера возьмём функцию

на отрезке . Эта функция ограничена на отрезке (очевидно, что ) и , однако значение 1 она не принимает ни в одной точке отрезка (заметим, что , а не 1). Дело в том, что эта функция имеет разрыв первого рода в точке , так что при предел не равен значению функции в точке 0. Далее, непрерывная функция, заданная на интервале или другом множестве, не являющемся замкнутым отрезком (на полуинтервале, полуоси) также может не принимать экстремального значения. В качестве примера рассмотрим функцию на интервале . Очевидно, что функция непрерывна и что и , однако ни значения 0, ни значения 1 функция не принимает ни в какой точке интервала . Рассмотрим также функцию на полуоси . Эта функция непрерывна на , возрастает, принимает своё минимальное значение 0 в точке , но не принимает ни в какой точке максимального значения (хотя ограничена сверху числом и

Определение и формулировки основных теорем для функций, непрерывных на отрезке. Сюда входят: первая теорема Вейерштрасса об ограниченности непрерывной на отрезке функции; вторая теорема Вейерштрасса о максимуме и минимуме непрерывной функции; теорема Больцано – Коши о промежуточном значении.

Содержание

См. также: Непрерывность функции в точке - свойства и теоремы

Определения и теоремы

Определение функции, непрерывной на отрезке
Функция называется непрерывной на отрезке (при ), если она непрерывна во всех точках открытого интервала (при ) и непрерывна справа и слева в точках a и b , соответственно.

Первая теорема Вейерштрасса об ограниченности непрерывной на отрезке функции

Если функция непрерывна на отрезке , то она ограничена на этом отрезке.
Доказательство

Определение достижимости максимума (минимума)
Функция достигает своего максимума (минимума) на множестве , если существует такой аргумент , для которого
для всех .

Определение достижимости верхней (нижней) грани
Функция достигает своей верхней (нижней) грани на множестве , если существует такой аргумент , для которого
.

Легко заметить, что эти определения эквивалентны. Если при ,
, то .
Если , то .

Различие между максимумом (минимумом) и верхней (нижней) гранью в том, что максимум (минимум) принадлежит множеству (в данном случае множеству значений функции), а верхняя (нижняя) грань может не принадлежать этому множеству. Пусть, например, на открытом интервале задана функция . На этом интервале функция имеет верхнюю и нижнюю грани:
.
Но максимума и минимума не имеет. Действительно, для любого всегда можно указать такие числа и , принадлежащие , значения функции от которых будут больше и меньше :
.
На отрезке функция имеет как верхнюю и нижнюю грани, так максимум и минимум:
.
Также верхняя (нижняя) грань может равняться плюс (минус) бесконечности: , а максимум (минимум) не может быть бесконечным числом.

Любое множество, в котором определены операции сравнения, имеет верхнюю и нижнюю грани.

Вторая теорема Вейерштрасса о максимуме и минимуме непрерывной функции

Непрерывная на отрезке функция достигает на нем своих верхней и нижней граней или, что тоже самое, достигает на отрезке своего максимума и минимума.
Доказательство

Эта теорема означает, что существуют такие точки и , принадлежащие отрезку : , значения функции в которых равны, соответственно, нижней и верхней граням:
.
Поскольку, исходя из определений верхней и нижней граней:
при ,
при ,
и поскольку , то и являются минимумом и максимумом функции на отрезке .

Вторая теорема Больцано - Коши о промежуточном значении

Пусть функция непрерывна на отрезке . И пусть C есть произвольное число, находящееся между значениями функции на концах отрезка: и . Тогда существует точка , для которой
.
непрерывна на отрезке . И пусть . Тогда функция принимает на отрезке все значения из и только эти значения:
при .

Использованная литература:
О.И. Бесов. Лекции по математическому анализу. Часть 1. Москва, 2004.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.

См. также:

Непрерывность функции на отрезке.

Наряду с непрерывностью функции в точке рассматривают ее непрерывность на разных промежутках.

Функция f (x) называется непрерывной на интервале (a , b), если она непрерывна в каждой точке этого интервала.

Функция f (x) называется непрерывной на отрезке [ a , b ], если она непрерывна на интервале (a , b), непрерывна справа в точке a и непрерывна слева в точке b .

Функция называется непрерывной на отрезке , если она является непрерывной в интервале , непрерывной справа в точке , то есть и непрерывной слева в точке , то есть .

Замечание. Функция, непрерывная на отрезке [ a , b ] может быть разрывной в точках a и b (рис. 1)

Множество функций, непрерывных на отрезке [ a , b ] обозначается символом C [ a , b ].

Основные теоремы о функциях, непрерывных на отрезке.

Теорема 1 ( об ограниченности непрерывной функции ). Если функция f (x) непрерывна на отрезке [ a , b ], то она ограничена на этом отрезке, т.е. существует такое число C > 0, что " x О [ a , b ] выполняется неравенство | f (x)| ≤ C .

Теорема 2 (Вейерштрасс). Если функция f (x) непрерывна на отрезке [ a , b ], то она достигает на этом отрезке своего наибольшего значения M и наименьшего значения m , т.е. существуют точки α , β О [ a , b ] такие, что m = f (α) ≤ f (x) ≤ f (β) = M для всех x О [ a , b ] (рис.2).

Наибольшее значение M обозначается символом max x О [ a , b ] f (x), а наименьшее значение m — символом min x О [ a , b ] f (x).
Теорема 3 (о существовании нуля). Если функция f (x) непрерывна на отрезке [ a , b ] и на концах отрезка принимает ненулевые значения разных знаков, то на интервале (a , b) найдется по крайней мере одна точка ξ в которой f (ξ) = 0.
Геометрический смысл теоремы состоит в том, что график функции, удовлетворяющей условиям теоремы, обязательно пересечет ось OX (рис.3).

Замечание. На этой теореме основан метод приближенного решения уравнения
f (x) = 0, (1)
называемый методом бисекции (дихотомии) , или методом половинного деления.

Теорема 4 (Больцано–Коши). Если функция f (x) непрерывна на отрезке [ a , b ], то она принимает на (a , b) все промежуточные значения между f (a) и f (b).
Cуществование непрерывной обратной функции
Пусть функция y = f (x) определена, строго монотонна и непрерывна на отрезке [ a , b ]. Тогда на отрезке [ α , β ] (α = f (a), β = f (b)) cуществует обратная функция x = g (y), также строго монотонная и непрерывная на отрезке (α , β).

Непрерывность элементарных функций

Теоремы о непрерывности функций следуют непосредственно из соответствующих теорем о пределах.

Теорема. Сумма, произведение и частное двух непрерывных функций есть функция непрерывная (для частного за исключением тех значений аргумента, в которых делитель равен нулю).

Теорема. Пусть функции u = φ (x ) непрерывна в точке х 0 , а функция y = f (u ) непрерывна в точке u 0 = φ (х 0). Тогда сложная функция f (φ (x )) состоящая из непрерывных функций, непрерывна в точке x 0 .

Теорема. Если функция у = f (х ) непрерывна и строго монотонна на [а ; b ] оси Ох , то обратная функция у = φ (х ) также непрерывна и монотонна на соответствующем отрезке [c ;d ] оси Оу (без доказательства).

Непрерывные на отрезке функции имеют ряд важных свойств. Сформулируем их в виде теорем, не приводя доказательств.

Теорема (Вейерштрасса) . Если функция непрерывна на отрезке, то она достигает на этом отрезке своего наибольшего и наименьшего значений.

Изображенная на рисунке 5 функция у = f (x ) непрерывна на отрезке [а ; b ], принимает свое наибольшее значение М в точке x 1 , а наименьшее m - в точке х 2 . Для любого х [а ; b ] имеет место неравенство m f (x ) ≤ М .

Следствие. Если функция непрерывна на отрезке, то она ограничена на этом отрезке.

Теорема (Больцано - Коши). Если функция у = f (x ) непрерывна на отрезке [a ; b ] и принимает на его концах неравные значения f (a ) = A и f (b ) = =В , то на этом отрезке она принимает и все промежуточные значения между А и В .

Геометрически теорема очевидна (см. рис. 6).

Для любого числа С , заключенного между А и В , найдется точка с внутри этого отрезка такая, что f (с ) = С . Прямая у = С пересечет график функции по крайней мере в одной точке.

Следствие. Если функция у = f (x ) непрерывна на отрезке [а ; b ] и на его концах принимает значения разных знаков, то внутри отрезка [а ; b ] найдется хотя бы одна точка с , в которой данная функция f (x ) обращается в нуль: f (с ) = 0.

Геометрический смысл теоремы: если график непрерывной функции переходит с одной стороны оси Ох на другую, то он пересекает ось Ox (см. рис. 7).

Рис. 7.

СВОЙСТВА ФУНКЦИЙ, НЕПРЕРЫВНЫХ НА ОТРЕЗКЕ

Рассмотрим некоторые свойства функций непрерывных на отрезке. Эти свойства приведём без доказательства.

Функцию y = f(x) называют непрерывной на отрезке [a , b ], если она непрерывна во всех внутренних точках этого отрезка, а на его концах, т.е. в точках a и b , непрерывна соответственно справа и слева.

Теорема 1. Функция, непрерывная на отрезке [a , b ], хотя бы в одной точке этого отрезка принимает наибольшее значение и хотя бы в одной – наименьшее.

Теорема утверждает, что если функция y = f(x) непрерывна на отрезке [a , b ], то найдётся хотя бы одна точка x 1 Î [a , b ] такая, что значение функции f(x) в этой точке будет самым большим из всех ее значений на этом отрезке: f(x 1) ≥ f(x) . Аналогично найдётся такая точка x 2 , в которой значение функции будет самым маленьким из всех значений на отрезке: f(x 1) ≤ f(x) .

Ясно, что таких точек может быть и несколько, например, на рисунке показано, что функция f(x) принимает наименьшее значение в двух точках x 2 и x 2 ".

Замечание . Утверждение теоремы можно стать неверным, если рассмотреть значение функции на интервале (a , b ). Действительно, если рассмотреть функцию y = x на (0, 2), то она непрерывна на этом интервале, но не достигает в нём ни наибольшего, ни наименьшего значений: она достигает этих значений на концах интервала, но концы не принадлежат нашей области.

Также теорема перестаёт быть верной для разрывных функций. Приведите пример.

Следствие. Если функция f(x) непрерывна на [a , b ], то она ограничена на этом отрезке.

Теорема 2. Пусть функция y = f(x) непрерывна на отрезке [a , b ] и на концах этого отрезка принимает значения разных знаков, тогда внутри отрезка найдется, по крайней мере, одна точка x = C , в которой функция обращается в ноль: f(C) = 0, где a < C< b

Эта теорема имеет простой геометрический смысл: если точки графика непрерывной функции y = f(x) , соответствующие концам отрезка [a , b ] лежат по разные стороны от оси Ox , то этот график хотя бы в одной точке отрезка пересекает ось Ox . Разрывные функции этим свойством могут не обладать.

Эта теорема допускает следующее обобщение.

Теорема 3 (теорема о промежуточных значениях). Пусть функцияy = f(x) непрерывна на отрезке [a , b ] и f(a) = A , f(b) = B . Тогда для любого числа C , заключённого между A и B , найдётся внутри этого отрезка такая точка C Î [a , b ], что f(c) = C .

Эта теорема геометрически очевидна. Рассмотрим график функции y = f(x) . Пусть f(a) = A , f(b) = B . Тогда любая прямая y = C , где C – любое число, заключённое между A и B , пересечёт график функции, по крайней мере, в одной точке. Абсцисса точки пересечения и будет тем значением x = C , при котором f(c) = C .

Таким образом, непрерывная функция, переходя от одного своего значения к другому, обязательно проходит через все промежуточные значения. В частности:

Следствие. Если функция y = f(x) непрерывна на некотором интервале и принимает наибольшее и наименьшее значения, то на этом интервале она принимает, по крайней мере, один раз любое значение, заключённое между её наименьшим и наибольшим значениями.

ПРОИЗВОДНАЯ И ЕЕ ПРИЛОЖЕНИЯ. ОПРЕДЕЛЕНИЕ ПРОИЗВОДНОЙ

Пусть имеем некоторую функцию y=f(x), определенную на некотором промежутке. Для каждого значения аргумента x из этого промежутка функция y=f(x) имеет определенное значение.

Рассмотрим два значения аргумента: исходное x 0 и новое x .

Разность x– x 0 называется приращением аргумента x в точке x 0 и обозначается Δx . Таким образом, Δx = x – x 0 (приращение аргумента может быть как положительным, так и отрицательным). Из этого равенства следует, что x=x 0 +Δx , т.е. первоначальное значение переменной получило некоторое приращение. Тогда, если в точке x 0 значение функции было f(x 0 ), то в новой точке x функция будет принимать значение f(x) = f(x 0 +Δx) .

Разность y – y 0 = f(x) – f(x 0 ) называется приращением функции y = f(x) в точке x 0 и обозначается символом Δy . Таким образом,

Δy = f(x) – f(x 0 ) = f(x 0 +Δx) - f(x 0 ) . (1)

Обычно исходное значение аргумента x 0 считается фиксированным, а новое значение x – переменным. Тогда y 0 = f(x 0 ) оказывается постоянной, а y = f(x) – переменной. Приращения Δy и Δx также будут переменными и формула (1) показывает, что Dy является функцией переменной Δx .

Составим отношение приращения функции к приращению аргумента

Найдем предел этого отношения при Δx →0. Если этот предел существует, то его называют производной данной функции f(x) в точке x 0 и обозначают f "(x 0). Итак,

Производной данной функции y = f(x) в точке x 0 называется предел отношения приращения функции Δy к приращению аргумента Δx , когда последнее произвольным образом стремится к нулю.

Заметим, что для одной и той же функции производная в различных точках x может принимать различные значения, т.е. производную можно рассматривать как функцию аргумента x . Эта функция обозначается f "(x )

Производная обозначается символами f "(x),y ", . Конкретное значение производной при x = a обозначается f "(a ) или y "| x=a .

Операция нахождения производной от функции f(x) называется дифференцированием этой функции.

Для непосредственного нахождения производной по определению можно применить следующее практическое правило :

Примеры.

МЕХАНИЧЕСКИЙ СМЫСЛ ПРОИЗВОДНОЙ

Из физики известно, что закон равномерного движения имеет вид s = v·t , где s – путь, пройденный к моменту времени t , v – скорость равномерного движения.

Однако, т.к. большинство движений происходящих в природе, неравномерно, то в общем случае скорость, а, следовательно, и расстояние s будет зависеть от времени t , т.е. будет функцией времени.

Итак, пусть материальная точка движется по прямой в одном направлении по закону s=s(t).

Отметим некоторый момент времени t 0 . К этому моменту точка прошла путь s=s(t 0 ). Определим скорость v материальной точки в момент времени t 0 .

Для этого рассмотрим какой-нибудь другой момент времени t 0 + Δt . Ему соответствует пройденный путь s=s(t 0 + Δt ). Тогда за промежуток времени Δt точка прошла путь Δs=s(t 0 + Δt) s(t).

Рассмотрим отношение . Оно называется средней скоростью в промежутке времени Δt . Средняя скорость не может точно охарактеризовать быстроту перемещения точки в момент t 0 (т.к. движение неравномерно). Для того, чтобы точнее выразить эту истинную скорость с помощью средней скорости, нужно взять меньший промежуток времени Δt .

Итак, скоростью движения в данный момент времени t 0 (мгновенной скоростью) называется предел средней скорости в промежутке от t 0 до t 0 +Δt , когда Δt →0:

,

т.е. скорость неравномерного движения это производная от пройденного пути по времени.

ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ПРОИЗВОДНОЙ

Введем сначала определение касательной к кривой в данной точке.

Пусть имеем кривую и на ней фиксированную точку М 0 (см. рисунок).Рассмотрим другую точку М этой кривой и проведем секущую M 0 M . Если точка М начинает перемещаться по кривой, а точка М 0 остается неподвижной, то секущая меняет свое положение. Если при неограниченном приближении точки М по кривой к точке М 0 с любой стороны секущая стремится занять положение определенной прямой М 0 Т , то прямая М 0 Т называется касательной к кривой в данной точке М 0 .

Т.о., касательной к кривой в данной точке М 0 называется предельное положение секущей М 0 М , когда точка М стремится вдоль кривой к точке М 0 .

Рассмотрим теперь непрерывную функцию y=f(x) и соответствующую этой функции кривую. При некотором значении х 0 функция принимает значение y 0 =f(x 0). Этим значениям x 0 и y 0 на кривой соответствует точка М 0 (x 0 ; y 0). Дадим аргументу x 0 приращение Δх . Новому значению аргумента соответствует наращенное значение функции y 0 +Δ y=f(x 0 –Δx) . Получаем точку М(x 0 x ; y 0 y). Проведем секущую М 0 М и обозначим через φ угол, образованный секущей с положительным направлением оси Ox . Составим отношение и заметим, что .

Если теперь Δx →0, то в силу непрерывности функции Δу →0, и поэтому точка М , перемещаясь по кривой, неограниченно приближается к точке М 0 . Тогда секущая М 0 М будет стремиться занять положение касательной к кривой в точке М 0 , а угол φ→α при Δx →0, где через α обозначили угол между касательной и положительным направлением оси Ox . Поскольку функция tg φ непрерывно зависит от φ при φ≠π/2 то при φ→α tg φ → tg α и, следовательно, угловой коэффициент касательной будет:

т.е. f "(x) = tg α .

Т.о., геометрически у "(x 0) представляет угловой коэффициент касательной к графику этой функции в точке x 0 , т.е. при данном значении аргумента x , производная равна тангенсуугла, образованного касательной к графику функции f(x) в соответствующей точке М 0 (x; y) с положительным направлением оси Ox.

Пример. Найти угловой коэффициент касательной к кривой у = х 2 в точке М (-1; 1).

Ранее мы уже видели, что (x 2)" = 2х . Но угловой коэффициент касательной к кривой есть tg α = y "| x=-1 = – 2.

ДИФФЕРЕНЦИРУЕМОСТЬ ФУНКЦИЙ. НЕПРЕРЫВНОСТЬ ДИФФЕРЕНЦИРУЕМОЙ ФУНКЦИИ

Функция y=f(x) называется дифференцируемой в некоторой точке x 0 , если она имеет в этой точке определенную производную, т.е. если предел отношения существует и конечен.

Если функция дифференцируема в каждой точке некоторого отрезка [а ; b ] или интервала (а ; b ), то говорят, что она дифференцируема на отрезке [а ; b ] или соответственно в интервале (а ; b ).

Справедлива следующая теорема, устанавливающая связь между дифференцируемыми и непрерывными функциями.

Теорема. Если функция y=f(x) дифференцируема в некоторой точке x 0 , то она в этой точке непрерывна.

Таким образом,из дифференцируемости функции следует ее непрерывность.

Доказательство . Если , то

,

где α бесконечно малая величина, т.е. величина, стремящаяся к нулю при Δx →0. Но тогда

Δy =f "(x 0 ) Δx +αΔx => Δy →0 при Δx →0, т.е f(x) – f(x 0) →0 при x x 0 , а это и означает, что функция f(x) непрерывна в точке x 0 . Что и требовалось доказать.

Таким образом, в точках разрыва функция не может иметь производной. Обратное утверждение неверно: существуют непрерывные функции, которые в некоторых точках не являются дифференцируемыми (т.е. не имеют в этих точках производной).

Рассмотрим на рисунке точки а, b, c.

В точке a при Δx →0 отношение не имеет предела (т.к. односторонние пределы различны при Δx →0–0 и Δx →0+0). В точке A графика нет определенной касательной, но есть две различные односторонние касательные с угловыми коэффициентами к 1 и к 2 . Такой тип точек называют угловыми точками.

В точке b при Δx →0 отношение является знакопостоянной бесконечно большой величиной . Функция имеет бесконечную производную. В этой точке график имеет вертикальную касательную. Тип точки – "точка перегиба" cвертикальной касательной.

В точке c односторонние производные являются бесконечно большими величинами разных знаков. В этой точке график имеет две слившиесявертикальные касательные. Тип – "точка возврата" с вертикальной касательной – частный случай угловой точки.