Что такое кристаллические тела в физике. Школьная энциклопедия. Строение и свойство твердого вещества

Кристаллические тела — твёрдые тела, в которых атомы расположены закономерно, образуя трёхмерно-периодическую пространственную укладку — кристаллическую решётку. Порядок атомов может быть дальний и ближний.

Аморфные тела не имеют кристаллической структуры и в отличие от кристаллов не расщепляются с образованием кристаллических граней. Также они, как правило, изотропны (не обнаруживают различных свойств в разных направлениях). Не имеют определённой точки плавления.

Кристаллы характеризуются пространственной периодичностью в расположении равновесных положений атомов. В аморфных телах атомы колеблются вокруг хаотически расположенных точек.

2.Что такое кристаллическая решётка?

Кристалли́ческая решётка - вспомогательный геометрический образ, вводимый для анализа строения кристалла. Решётка имеет сходство с канвой или сеткой, что даёт основание называть точки решётки узлами. Решёткой является совокупность точек (атомов), которые возникают из отдельной произвольно выбранной точки кристалла под действием группы трансляции. Это расположение замечательно тем, что относительно каждой точки все остальные расположены совершенно одинаково. Применение к решётке в целом любой из присущих ей трансляций приводит к её параллельному переносу и совмещению. Для удобства анализа обычно точки решётки совмещают с центрами каких-либо атомов из числа входящих в кристалл, либо с центрами молекул.

3.Что такое узлы кристаллической решётки?

Точки размещния частиц

называют узлами кристаллической решѐтки.

В зависимости от типа частиц, расположенных в

узлах кристаллической решѐтки, и характера

связи между ними различают 4 типа

кристаллических решѐток: ионные, атомные,

молекулярные, металлические.

4.Чем отличаются монокристаллы от поликристаллов?

Монокристалл - отдельный однородный кристалл, имеющий непрерывную кристаллическую решётку и характеризующийся анизотропией свойств

Поликристалл — агрегат мелких кристаллов какого-либо вещества, иногда называемых из-за неправильной формы кристаллитами или кристаллическими зёрнами.

5.Как можно классифицировать кристаллы?

Виды кристаллов

Следует разделить идеальный и реальный кристалл.

Идеальный кристалл- Является, по сути, математическим объектом, имеющим полную, свойственную ему симметрию, идеализированно ровные гладкие грани.

Реальный кристалл- Всегда содержит различные дефекты внутренней структуры решетки, искажения и неровности на гранях и имеет пониженную симметрию многогранника вследствие специфики условий роста, неоднородности питающей среды, повреждений и деформаций. Реальный кристалл не обязательно обладает кристаллографическими гранями и правильной формой, но у него сохраняется главное свойство - закономерное положение атомов в кристаллической решётке.

6.Что такое ионная связь?

Ионная связь, электровалентная связь, гетеровалентная связь, один из видов химической связи, в основе которого лежит электростатическое взаимодействие между противоположно заряженными ионами.

7.Что такое ковалентная связь?

Ковалентная связь, один из видов химической связи между двумя атомами, которая осуществляется общей для них электронной парой (по одному электрону от каждого атома). К. с. существует как в молекулах (в любых агрегатных состояниях), так и между атомами, образующими решетку кристалла.

8. Какие типы кристалл. систем Вы знаете?

В зависимости от пространственной симметрии, все кристаллические решётки подразделяются на семь кристаллических систем.

1. триклинная сингония - наименьшая симметрия, нет одинаковых углов, нет осей одинаковой длины;

2. моноклинная сингония - два прямых угла, нет осей одинаковой длины;

3. ромбическая сингония - три прямых угла (поэтому ортогонально), нет осей одинаковой длины;

4. гексагональная сингония - две оси одинаковой длины в одной плоскости под углом 120°, третья ось под прямым углом;

5. тетрагональная сингония - две оси одинаковой длины, три прямых угла;

6. тригональная сингония - три оси одинаковой длины и три равных угла, не равных 90°;

7. кубическая сингония - высшая степень симметрии, три оси одинаковой длины под прямым углом.

Кристаллические тела и их свойства

В твёрдых телах частицы (молекулы, атомы и ионы) расположены настолько близко друг к другу, что силы взаимодействия между ними не позволяют им разлетаться.

Эти частицы могут лишь совершать колебательные движения вокруг положения равновесия. Поэтому твёрдые тела сохраняют форму и объём.

По своей молекулярной структуре твёрдые тела разделяются на кристаллические и аморфные .

Строение кристаллических тел

Кристаллическая решётка

Кристаллическими называют такие твёрдые тела, молекулы, атомы или ионы в которых располагаются в строго определённом геометрическом порядке, образуя в пространстве структуру, которая называется кристаллической решёткой .

Этот порядок периодически повторяется по всем направлениям в трёхмерном пространстве. Он сохраняется на больших расстояниях и не ограничен в пространстве. Его называют дальним порядком .

Типы кристаллических решёток

Кристаллическая решётка — это математическая модель, с помощью которой можно представить, как расположены частицы в кристалле. Мысленно соединив в пространстве прямыми линиями точки, в которых расположены эти частицы, мы получим кристаллическую решётку.

Расстояние между атомами, расположенными в узлах этой решётки, называется параметром решётки .

В зависимости от того, какие частицы расположены в узлах, кристаллические решётки бывают молекулярные, атомные, ионные и металлические .

От типа кристаллической решётки зависят такие свойства кристаллических тел, как температура плавления, упругость, прочность.

При повышении температуры до значения, при котором начинается плавление твёрдого вещества, происходит разрушение кристаллической решётки.

Молекулы получают больше свободы, и твёрдое кристаллическое вещество переходит в жидкую стадию. Чем прочнее связи между молекулами, тем выше температура плавления.

Молекулярная решётка

В молекулярных решётках связи между молекулами не прочные. Поэтому при обычных условиях такие вещества находятся в жидком или газообразном состоянии.

Твёрдое состояние для них возможно только при низких температурах. Температура их плавления (перехода из твёрдого состояния в жидкое) также низкая. А при обычных условиях они находится в газообразном состоянии.

Примеры — иод (I2), «сухой лёд» (двуокись углерода СО2).

Атомная решётка

В веществах, имеющих атомную кристаллическую решётку, связи между атомами прочные.

Поэтому сами вещества очень твёрдые. Плавятся они при высокой температуре. Кристаллическую атомную решётку имеют кремний, германий, бор, кварц, оксиды некоторых металлов и самое твёрдое в природе вещество — алмаз.

Ионная решётка

К веществам с ионной кристаллической решёткой относятся щёлочи, большинство солей, оксиды типичных металлов.

Так как сила притяжения ионов очень велика, то эти вещества способны плавиться только при очень высокой температуре. Их называют тугоплавкими. Они обладают высокой прочностью и твёрдостью.

Металлическая решётка

В узлах металлической решётки, которую имеют все металлы и их сплавы, расположены и атомы, и ионы.

Благодаря такому строению металлы обладают хорошей ковкостью и пластичностью, высокой тепло- и электропроводностью.

Чаще всего форма кристалла — правильный многогранник.

Грани и рёбра таких многогранников всегда остаются постоянными для конкретного вещества.

Одиночный кристалл называют монокристаллом . Он имеет правильную геометрическую форму, непрерывную кристаллическую решётку.

Примеры природных монокристаллов — алмаз, рубин, горный хрусталь, каменная соль, исландский шпат, кварц. В искусственных условиях монокристаллы получают в процессе кристаллизации, когда охлаждая до определённой температуры растворы или расплавы, выделяют из них твёрдое вещество в форме кристаллов.

При медленной скорости кристаллизации огранка таких кристаллов имеет естественную форму. Таким способом в специальных промышленных условиях получают, например, монокристаллы полупроводников или диэлектриков.

Мелкие кристаллики, беспорядочно сросшиеся друг с другом, называются поликристаллами . Ярчайший пример поликристалла — камень гранит. Все металлы также являются поликристаллами.

Анизотропия кристаллических тел

В кристаллах частицы расположены с различной плотностью по разным направлениям.

Если мы соединим прямой линией атомы в одном из направлений кристаллической решётки, то расстояние между ними будет одинаковым на всём этом направлении. В любом другом направлении расстояние между атомами тоже постоянно, но его величина уже может отличаться от расстояния в предыдущем случае. Это означает, что на разных направлениях между атомами действуют разные по величине силы взаимодействия. Поэтому и физические свойства вещества по этим направлениям также будут отличаться.

Это явление называется анизотропией — зависимостью свойств вещества от направления.

Электропроводность, теплопроводность, упругость, показатель преломления и другие свойства кристаллического вещества различаются в зависимости от направления в кристалле. По-разному в разных направлениях проводится электрический ток, по-разному нагревается вещество, по-разному преломляются световые лучи.

В поликристаллах явление анизотропии не наблюдается.

Свойства вещества остаются одинаковыми по всем направлениям.

Характеристика твердых тел.

Молекулы (или атомы) расположены строго упорядоченно. Расстояние между молекулами ≈ диаметру молекулы. Атомы или молекулы твердых тел колеблются около определенных положений равновесия.

Поэтому твердые тела сохраняют не только объем, но и форму. Если соединить центры положений равновесия атомом или ионов твердого тела, то получится правильная пространственная решетка, называемая кристаллической.

Твердые тела, в которых атомы или молекулы располо-жены упорядочение и образуют периодически повторяющуюся внутреннюю структуру, назы-ваются кристаллами. Поэтому кристаллы имеют плоские грани (Крупинка поваренной соли имеет плоские грани, составляющие друг с другом прямые углы).

Физические свойства кристал-лических тел неодинаковы в различных направлениях, но совпадают в параллельных на-правлениях.

Анизотропия кристаллов – это зависимость физических свойств от выбранного в кристалле направления.

Например, различная механическая прочность кристаллов по разным направлениям (Кусок слюды легко расслаивается в одном направлении, но разорвать его в направлении перпендикулярном пластинкам гораздо сложнее). Многие кристаллы по — разному проводят теплоту и электрический ток в различных направлениях. От направления зависят и оптические свойства кристаллов. Например, кристаллы кварца и турмалина по – разному преломляют свет в зависимости от направления падающих на него лучей.

Кристалл поваренной соли при раскалывании дробится на части, ограниченные пло-скими поверхностями, пересе-кающимися под прямыми угла-ми.

Эти плоскости перпендику-лярны особым направлениям в образце, по этим направлениям его прочность минимальна.

Анизотропия механических, тепловых, электрических и оп-тических свойств кристаллов объ-ясняется тем, что при упоря-доченном расположении атомов, молекул или ионов силы взаи-модействия между ними и меж-атомные расстояния оказывают-ся неодинаковыми по различным направлениям.

Кристаллические тела делят-ся на монокристаллы и поли-кристаллы.

Монокристаллы это одиночные кристаллы имеют правильную геометрическую форму, и их свойства различны по разным направлениям (анизотропия).

Монокристаллы ино-гда обладают геометрически пра-вильной внешней формой, но главный признак монокристалла - периодически повторяю-щаяся внутренняя структура во всем его объеме.

Поликристал-лическое тело представляет собой совокупность сросшихся друг с другом хаотически ориентиро-ванных маленьких кристаллов - кристаллитов. Поликристалличе-скую структуру чугуна, напри-мер, можно обнаружить, если рассмотреть с помощью лупы образец на изломе. Каждый ма-ленький монокристалл поликри-сталлического тела анизотропен, но поликристаллическое тело изо-тропно.

Поликристаллы– это твердые тела состоящие из большого числа маленьких сросшихся кристалликов (металлы, кусок сахара).

Все направления внутри поликристаллов равноправны и свойства поликристаллов одинаковы по всем направлениям (изотропия).

Аморфными называются тела, физические свойства которых одинаковы по всем направле-ниям. Примерами аморфных тел могут служить куски затвердев-шей смолы, янтарь, изделия из стекла. Аморфные тела яв-ляются изотропными телами.

Изотропность физических свойств аморфных тел объясняется бес-порядочностью расположения со-ставляющих их атомов и моле-кул. У аморфных тел нет строгого порядка в расположении атомов, нет строгой повторяемости по всем направлениям одного и того же элемента структуры.

Определенной температуры плавления у аморфных тел в отличие от кристаллических нет.

Свойства аморфных тел. Все аморфные тела изотропны, т.е. их физические свойства по всем направлениям одинаковы (стекло, смола, пластмасса и т.д.).

При внешних воздействиях аморфные тела обнаруживают одновременно упругие свойства, подобно твердым телам, и текучесть, подобно жидкости (При сильном ударе кусок смолы раскалывается на кусочки, а при длительном нахождении смолы на твердой поверхности, смола постепенно растекается, и чем выше температура, тем быстрее это происходит.).

Тема 5.2 Механические свойства твердых тел. Виды деформаций. Упругость, прочность, пластичность, хрупкость. Закон Гука. Плавление и кристаллизация.

Внутреннее строение Земли и планет*

Деформацией твердого тела называется изменение формы или объема тела под действием внешних сил.

Виды деформации.

Упругие деформации это деформации, которые полностью исчезают после прекращения действия внешних сил (пружина, резиновый шнур) и тело восстанавливает свою первоначальную форму.

Пластические деформации это деформации, которые не исчезают после прекращения действия внешних сил (пластилин, глина, свинец) и тело не восстанавливает свою первоначальную форму.

Механическим напряжением называют отношение модуля силы упругости F к площади поперечного сечения S тела:

;

Закон Гука: при малых деформациях напряжение прямо пропорционально относительному удлинению .

Закон Гука выполняется при небольших деформациях (участок ОА диаграммы).

1) , где — модуль упругости или модуль Юнга (он характеризует сопротивляемость материала упругой деформации); — относительная деформация (относительное удлинение); — начальная длина, ∆l – абсолютное удлинение тела.

2) , где — коэффициент жесткости.

Диаграмма растяжения. (рис.) Для исследования деформации растяжения стержень при помощи специальных устройств подвергают растяжению, а затем измеряют удлинение образца и возникающее в нем напряжение. По результатам опытов вычерчивают график зависимости напряжения от относительного удлинения , получивший название диаграммы растяжения (рис.).

Участок ОА – пропорциональная деформация; — предел пропорциональности (максимальное напряжение, при котором еще выполняется закон Гука); если увеличивать нагрузку, то деформация становится нелинейной, но после снятия нагрузки форма и размеры тела практически восстанавливаются.

(Участок АВ- упругая деформация); — предел упругости; По мере увеличения нагрузки деформация нарастает все быстрее и при некотором значении напряжения, соответствующем на диаграмме точке С, удлинение нарастает практически без увеличения нагрузки.

Это явление называется текучестью материала (участок СD). Разрыв образца происходит после того, как напряжение достигает максимального значения , называемого пределом прочности (образец растягивается без увеличения внешней нагрузки вплоть до разрушения).

Похожая информация:

Поиск на сайте:

СТРОЕНИЕ И СВОЙСТВО ТВЕРДОГО ВЕЩЕСТВА

Теоретические сведения

Вещество может существовать в трех агрегатных состояниях: газообразном, жидком и твердом.

Плазму часто называют четвертым агрегатным состоянием. Зависимость свойств вещества от агрегатного состояния указана в табл. 33.

Таблица 1

Свойства веществ в разных агрегатных состояниях

Агрегатное состояние вещества определяется силами, действующими между молекулами, расстоянием между частицами и характером их движения.

В твердом состоянии частицы занимают определенное положение относительно друг друга.

Вещество обладает низкой сжимаемостью, механической прочностью, поскольку молекулы не имеют свободы движения, а только колебания. Молекулы, атомы или ионы, образующие твердое вещество, называют структурными единицами.

Твердые вещества делятся на аморфные и кристаллические
(табл.

34). Кристаллические вещества плавятся при строго определенной температуре Тпл, аморфные – не имеют резко выраженной температуры плавления; при нагревании они размягчаются (характеризуются интервалом размягчения) и переходят в жидкое или вязкотекучее состояние рис.

Таблица 2

Сравнительная характеристика аморфных и кристаллических веществ

18. Изменение объема веществ при нагревании: а – кристаллических; б – аморфных

Внутреннее строение аморфных веществ характеризуется беспорядочным расположением молекул(табл.

34). Кристаллическое состояние вещества предполагает правильное расположение в пространстве частиц, составляющих кристалл, и образованиемкристаллической (пространственной ) решетки Основной особенностью кристаллических тел является их анизотропия – неодинаковость свойств (тепло-, электропроводность, механическая прочность, скорость растворения и т.

д.) по разным направлениям, в то время как аморфные тела – изотропны . Твердые кристаллы – трехмерные образования, характеризующиеся строгой повторяемостью одного и того же элемента структуры (элементарной ячейки) во всех направлениях. Элементарная ячейка представляет собой наименьший объем кристалла в виде параллелепипеда, повторяющегося в кристалле бесконечное число раз. Задают элементарную ячейку с помощью осей и углов (рис. 19).

Существуют основные параметры кристаллических решеток.

Энергия кристаллической решетки Екр., кДж/моль, –это энергия, которая выделяется при образовании 1 моля кристалла из микрочастиц (атомы, молекулы, ионы), находящихся в газообразном состоянии и удаленных друг от друга на расстояние, исключающее их взаимодействие.

Константа кристаллической решетки d, –наименьшее расстояние между центром двух частиц в кристалле, соединенных химической связью.

Координационное число к.ч.

–число частиц, окружающих в пространстве центральную частицу, связанных с ней химической связью.

Точки, в которых размещены частицы кристалла, называются узлами кристаллической решетки

Несмотря на многообразие форм кристаллов, их можно строго и однозначно классифицировать. Систематизация форм кристаллов была введена русским академиком А.В. Гадолиным (1867), она основана на особенностях симметрии кристаллов. В соответствии с геометрической формой кристаллов возможны следующие их системы (сингонии): кубическая, тетрагональная, орторомбическая, моноклинная, триклинная, гексагональная и ромбоэдрическая (рис.

Рис. 20. Основные системы кристаллов

Одно и то же вещество может иметь различные кристаллические формы, которые отличаются по внутреннему строению, а значит, и по физико-химическим свойствам. Такое явление называется полиморфизмом .

Изоморфизм –два разных по природе вещества образуют кристаллы одинаковой структуры. Такие вещества могут замещать друг друга в кристаллической решетке, образуя смешанные кристаллы.

В зависимости от вида частиц, находящихся в узлах кристаллической решетки и типа связей между ними кристаллы бывают четырех типов: молекулярные, атомные, ионные и металлические (рис.


21. Виды кристаллов

Кристаллические решетки, состоящие из молекул (полярных и неполярных) называются молекулярными . Молекулы в таких кристаллических решетках соединены между собой сравнительно слабыми водородными, межмолекулярными и электростатическими силами. Поэтому вещества с молекулярной решеткой имеют малую твердость и низкие температуры плавления. Они малорастворимы в воде, не проводят электрический ток и обладают высокой летучестью.

Примерами веществ с молекулярными решетками являются лед, твердый углекислый газ («сухой лед»), твердые галогенводороды, твердые простые вещества, образованные одно- (благородные газы), двух- (F2, Cl2, Br2, J2, H2, N2,O2), трех- (O3), четырех- (P4), восьми- (S8) атомными молекулами.

Большинство кристаллических органических соединений также имеют молекулярную решетку.

Кристаллические решетки, в узлах которых находятся отдельные атомы, называют атомными (ковалентными) .

Атомы в таких решетках соединены между собой прочными ковалентными связями.

Примером кристалла с атомной кристаллической решеткой может служить алмаз (рис. 21) – одна из модификаций углерода. Данный кристалл состоит из атомов углерода, каждый из которых связан с четырьмя соседними атомами (к.ч. = 4).

Число веществ с атомной кристаллической решеткой велико.

Все они имеют высокую температуру плавления, не растворимы в жидкостях, обладают высокой прочностью, твердостью, имеют широкий диапазон электропроводимости (от изоляторов и полупроводников до электронных проводников). Атомная кристаллическая решетка характерна для элементов III и IV групп главных подгрупп (Si, Ge, B, C).

Кристаллические решетки, состоящие из ионов, называются ионными . Их образуют вещества с ионной связью. Примером образования ионной кристаллической решетки может служить кристалл хлорида натрия (NaCl ) (рис.

21). Вещества с ионной кристаллической решеткой обладают высокой твердостью, хрупкостью, являются тугоплавкими и малолетучими. Плавление ионных кристаллов приводит к нарушению геометрически правильной ориентации ионов относительно друг друга и ослаблению прочности связи между ними. Поэтому расплавы, растворы таких кристаллов проводят электрический ток. Вещества с ионными кристаллическими решетками легко растворяются в полярных жидкостях, являются диэлектриками.

Ионные кристаллические решетки образуют многие соли, оксиды, основания.

Кристаллическая решетка, состоящая из атомов и ионов металлов, соединенных металлической связью (рис. 21), называется металлической .

Металлическая решетка является, как правило, весьма прочной. Этим объясняются свойственные большинству металлов твердость, малая летучесть, высокая температура плавления и кипения.

Она же обусловливает такие характерные свойства металлов как электро- и теплопроводность, блеск, ковкость, пластичность, непрозрачность, фотоэффект. Металлической кристаллической решеткой обладают чистые металлы и сплавы.

4. . 5. . 6. . 7. .

Каждый может легко разделить тела на твердые и Жидкие. Однако это деление будет только по внешним признакам. Для того чтобы выяснить, какими же свойствами обладают твердые тела, будем их нагревать. Одни тела начнут гореть (дерево, уголь) - это органические вещества. Другие будут размягчаться (смола) даже при невысоких температурах - это аморфные. Особую группу твердых тел составляют такие, для которых зависимость температуры от времени нагревания представлена на рисунке 12. Это и есть кристаллические тела. Такое поведение кристаллических тел при нагревании объясняется их внутренним строением. Кристаллические тела - это такие тела, атомы и молекулы которых расположены в определенном порядке, и этот порядок сохраняется на достаточно большом расстоянии. Пространственное периодическое расположение атомов или ионов в кристалле называют кристаллической решеткой . Точки кристаллической решетки, в которых расположены атомы или ионы, называют узлами кристаллической решетки.

Кристаллические тела бывают монокристаллами и поликристаллами. Монокристалл обладает единой кристаллической решеткой во всем объеме.

Анизотропия монокристаллов заключается в зависимости их физических свойств от направления. Поликристалл представляет собой соединение мелких, различным образом ориентированных монокристаллов (зерен) и не обладает анизотропией свойств. Большинство твердых тел имеют поликристаллическое строение (минералы, сплавы, керамика).

Основными свойствами кристаллических тел являются: определенность температуры плавления, упругость, прочность, зависимость свойств от порядка расположения атомов, т. е. от типа кристаллической решетки.

Аморфными называют вещества, у которых отсутствует порядок расположения атомов и молекул по всему объему этого вещества. В отличие от кристаллических веществ аморфные вещества изотропны . Это значит, что свойства одинаковы по всем направлениям. Переход из аморфного состояния в жидкое происходит постепенно, отсутствует определенная температура плавления. Аморфные тела не обладают упругостью, они пластичны. В аморфном состоянии находятся различные вещества: стекла, смолы, пластмассы и т. п.

Упругость - свойство тел восстанавливать свою форму и объем после прекращения действия внешних сил или других причин, вызвавших деформацию тел. По характеру смещения частиц твердого тела происходящие при изменении его формы деформации делятся на: растяжение - сжатие, сдвиг, кручение и изгиб. Для упругих деформаций справедлив закон Гук, согласно которому упругие деформации прямо пропорциональны вызывающим их внешним воздействиям. Для деформации растяжения - сжатия закон Гука имеет вид: , где - механическое напряжение, - относительное удлинение, - абсолютное удлинение, - модуль Юнга (модуль упругости). Упругость обусловлена взаимодействием и тепловым движением частиц, из которых состоит вещество.

В зависимости от физических свойств и молекулярной структуры выделяют два основных класса твердых тел – кристаллические и аморфные.

Определение 1

Аморфные тела обладают такой чертой, как изотропность. Это понятие означает, что они относительно независимы от оптических, механических и других физических свойств и направления, в котором на них воздействуют внешние силы.

Основная черта афморных тел – хаотичное расположение атомов и молекул, которые собираются лишь в небольшие локальные группы, не более чем по несколько частиц в каждой.

Это свойство сближает аморфные тела с жидкостями. К таким твердым телам относятся янтарь и другие твердые смолы, различные виды пластика и стекло. Под воздействием высоких температур аморфные тела размягчаются, однако для их перевода в жидкость необходимы сильные воздействия тепла.

Все кристаллические тела имеют четкую внутреннюю структуру. Группы частиц в одном и том же порядке периодически повторяются во всем объеме такого тела. Чтобы наглядно представить такую структуру, обычно используют пространственные кристаллические решетки. Они состоят из определенного количества узлов, которые образуют центры молекул или атомов конкретного вещества. Обычно такая решетка построена из ионов, входящих в состав нужных молекул. Так, в поваренной соли внутренняя структура состоит из ионов натрия и хлора, попарно объединенных в молекулы. Подобные кристаллические тела называются ионными.

Рисунок 3 . 6 . 1 . Кристаллическая решетка поваренной соли.

Определение 2

В структуре каждого вещества можно выделить одну минимальную составляющую – элементарную ячейку .

Вся решетка, из которой состоит кристаллическое тело, может быть составлена путем трансляции (параллельного переноса) такой ячейки в определенных направлениях.

Число видов кристаллических решеток не бесконечно. Всего насчитывается 230 видов, большинство которых создано искусственным путем или найдено в природных материалах. Структурные решетки могут принимать формы объемно центрированных кубов (например, у железа), гранецентрированных кубов (у золота, меди), призмы с шестью гранями (магний, цинк).

В свою очередь кристаллические тела подразделяются на поликристаллы и монокристаллы. Большинство веществ относятся к поликристаллам, т.к. они состоят из так называемых кристаллитов. Это маленькие кристаллики, сросшиеся между собой и ориентированные хаотически. Монокристаллические вещества встречаются сравнительно редко, даже среди искусственных материалов.

Определение 3

Поликристаллы обладают свойством изотропности, то есть одинаковыми свойствами во всех направлениях.

Поликристаллическая структура тела хорошо видна под микроскопом, а у некоторых материалов, например, чугуна, и невооруженным взглядом.

Определение 4

Полиморфизм – это возможность вещества существовать в нескольких фазах, т.е. кристаллических модификациях, которые отличаются друг от друга физическими свойствами.

Процесс перехода в другую модификацию получил название полифморного перехода .

Примером такого явления может быть превращение графита в алмаз, который в промышленных условиях происходит при высоком давлении (до 100 000 атмосфер) и высоких температурах
(до 2000 К).

Чтобы изучить структуру кристаллической решетки монокристалла или поликристаллического образца, используется дифракция рентгеновского излучения.

Простые кристаллические решетки показаны на рисунке ниже. Необходимо учитывать, что расстояние между частицами так мало, что сопоставимо с размерами самих этих частиц. Для наглядности на схемах показаны только положения центров.

Рисунок 3 . 6 . 2 . Простые кристаллические решетки: 1 – простая кубическая решетка; 2 – гранецентрированная кубическая решетка; 3 – объемноцентрированная кубическая решетка; 4 – гексагональная решетка.

Наиболее простой является кубическая решетка: такая структура состоит из кубов с частицами в вершинах. Гранецентрированная решетка имеет частицы не только в вершинах, но и на гранях. Например, кристаллическая решетка поваренной соли представляет собой две гранецентрированные решетки, вложенные друг в друга. Объемноцентрированная решетка имеет дополнительные частицы в центре каждого куба.

У решеток металлов есть одна важная черта. Ионы вещества удерживаются на своих местах благодаря взаимодействию с газом свободных электронов. Так называемый электронный газ образуется за счет одного или нескольких электронов, отдаваемых атомами. Такие свободные электроны могут перемещаться по всему объему кристалла.

Рисунок 3 . 6 . 3 . Структура металлического кристалла.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Твёрдое тело является одним из четырёх фундаментальных состояний материи, кроме жидкости, газа и плазмы. Оно характеризуется структурной жёсткостью и устойчивостью к изменению формы или объёма. В отличие от жидкости, твёрдый объект не течёт, не принимает форму контейнера, в который его помещают. Твёрдое тело не расширяется, чтобы заполнить весь доступный объём, как это делает газ.
Атомы в твёрдом теле тесно связаны друг с другом, находятся в упорядоченном состоянии в узлах кристаллической решётки (это металлы, обычный лёд, сахар, соль, алмаз), или располагаются нерегулярно, не имеют строгой повторяемости в структуре кристаллической решётки (это аморфные тела, такие как оконное стекло, канифоль, слюда или пластмасса).

Кристаллические тела

Кристаллические твёрдые тела или кристаллы имеют отличительную внутреннюю особенность - структуру в виде кристаллической решётки, в которой определённое положение занимают атомы, молекулы или ионы вещества.
Кристаллическая решётка приводит к существованию особенных плоских граней у кристаллов, которые отличают одно вещество от другого. При воздействии рентгеновских лучей, каждая кристаллическая решётка излучает характерный рисунок, который можно использовать для идентификации вещества. Грани кристаллов пересекаются под определёнными углами, отличающими одно вещество от другого. Если кристалл расщепить, то новые грани будут пересекаться под теми же углами, что у исходного.

Они имеют два характерных свойства: изотропность и отсутствие определённой температуры плавления.
Изотропность аморфных тел понимают, как одинаковость физических свойств вещества по всем направлениям.
В аморфном твёрдом теле расстояние до соседних узлов кристаллической решётки и количество соседних узлов изменяется по всему материалу. Поэтому, чтобы разорвать межмолекулярные взаимодействия, требуется различное количество тепловой энергии. Следовательно, аморфные вещества медленно размягчаются в широком диапазоне температур и не имеют чёткой температуры плавления.
Особенностью аморфных твёрдых тел является то, что при низких температурах они имеют свойства твёрдых тел, а при повышении температуры - свойства жидкостей.