Солитоны — волны, хранящие информацию. Ударные волны. Уединенные волны Что такое солитоны

Аннотация . Доклад посвящен возможностям солитонного подхода в надмолекулярной биологии, прежде всего, для моделирования широкого класса естественных волнообразных и колебательных движений в живых организмах. Автором выявлено множество примеров существования солитоноподобных надмолекулярных процессов («биосолитонов») в локомоторных, метаболических и иных явлениях динамической биоморфологии на самых разных линиях и уровнях биологической эволюции. Под биосолитонами понимаются, прежде всего, характерные одногорбые (однополярные) локальные деформации, движущиеся вдоль биотела с сохранением своей формы и скорости.

Солитоны, называемые иногда «волновыми атомами», наделены необычными с классической (линейной) точки зрения свойствами. Они способны к актам самоорганизации и саморазвития: автолокализации; улавливания энергии; размножения и гибели; образования ансамблей с динамикой пульсирующего и иного характера. Солитоны были известны в плазме, жидких и твердых кристаллах, классических жидкостях, нелинейных решетках, магнитных и других полидоменных средах, и пр. Обнаружение биосолитонов свидетельствует, что в связи со своей механохимией живое вещество является солитонной средой с разнообразным физиологическим использованием солитонных механизмов. Возможна исследовательская охота в биологии за новыми видами солитонов – бризерами, вобблерами, пульсонами и т.п., выведенными математиками на «кончике пера» и лишь затем обнаруживаемыми физиками в природе. Доклад базируется на монографиях: С.В.Петухов «Биосолитоны. Основы солитонной биологии», 1999; С.В.Петухов «Бипериодическая таблица генетического кода и число протонов», 2001.

Солитоны являются важным объектом современной физики. Интенсивное развитие их теории и приложений началось после опубликования в 1955 году Ферми, Паста и Уламом работы по компьютерному расчету колебаний в простой нелинейной системе из цепи грузиков, связанных нелинейными пружинками. Вскоре были развиты необходимые математические методы, позволяющие решать солитонные уравнения, представляющие собой нелинейные дифференциальные уравнения в частных производных. Солитоны, называемые иногда «волновыми атомами», обладают свойствами волн и частиц одновременно, но не являются в полном смысле ни тем, ни другим, а составляют новый объект математического естествознания. Они наделены необычными с классической (линейной) точки зрения свойствами. Солитоны способны к актам самоорганизации и саморазвития: автолокализации; улавливанию энергии, приходящей извне в «солитонную» среду; размножению и гибели; образованию ансамблей с нетривиальной морфологией и динамикой пульсирующего и иного характера; самоусложнению этих ансамблей при поступлении в среду дополнительной энергии; преодолению тенденции к беспорядку в содержащих их солитонных средах; и пр. Их можно трактовать как специфическую форму организации физической энергии в веществе, и соответственно можно говорить о «солитонной энергии» по аналогии с известными выражениями «волновая энергия» или «вибрационная энергия». Солитоны реализуются как состояния особых нелинейных сред (систем) и имеют принципиальные отличия от обычных волн. В частности, солитоны зачастую представляют собой устойчивые автолокализованные сгустки энергии с характерной формой одногорбой волны, движущейся с сохранением формы и скорости без диссипации своей энергии. Солитоны способны к неразрушающим столкновениям, т.е. способны при встрече проходить сквозь друг друга без нарушения своей формы. Они имеют многочисленные применения в технике.

Под солитоном обычно понимается уединенный волноподобный объект (локализованное решение нелинейного дифференциального уравнения в частных производных, принадлежащего к определенному классу так называемых солитонных уравнений), который способен существовать без диссипации своей энергии и при взаимодействии с другими локальными возмущениями всегда восстанавливает свою первоначальную форму, т.е. способен к неразрушающим столкновениям. Как известно, солитонные уравнения «возникают самым естественным образом при изучении слабо нелинейных дисперсионных систем различных типов в различных пространственных и временных масштабах. Универсальность этих уравнений оказывается настолько поразительной, что многие были склонны видеть в этом нечто магическое… Но это не так: дисперсионные слабо затухающие или незатухающие нелинейные системы ведут себя одинаково, независимо от того, встречаются ли они при описании плазмы, классических жидкостей, лазеров или нелинейных решеток» . Соответственно, известны солитоны в плазме, жидких и твердых кристаллах, классических жидкостях, нелинейных решетках, магнитных и других полидоменных средах, и пр. (Движение солитонов в реальных средах зачастую не носит абсолютно недиссипативного характера, сопровождаясь малыми потерями энергии, что теоретиками учитывается посредством добавления малых диссипативных членов в солитонные уравнения).

Отметим, что живое вещество пронизано множеством нелинейных решеток: от молекулярных полимерных сеток до надмолекулярных цитоскелетов и органического матрикса. Перестройки этих решеток имеют важное биологическое значение и вполне могут вести себя солитоноподобным образом. Кроме того, солитоны известны как формы движения фронтов фазовых перестроек, например, в жидких кристаллах (см., например, ). Поскольку многие системы живых организмов (в том числе, жидкокристаллические) существуют на грани фазовых переходов, то естественно полагать, что фронты их фазовых перестроек в организмах также будут зачастую двигаться в солитонной форме.

Еще первооткрыватель солитонов Скотт Рассел в прошлом веке экспериментально показал , что солитон выступает как концентратор, ловушка и транспортер энергии и вещества, способный к неразрушающим столкновениям с другими солитонами и локальными возмущениями. Очевидно, что эти особенности солитонов могут быть выгодны для живых организмов, а потому биосолитонные механизмы могут специально культивироваться в живой природе механизмами естественного отбора. Перечислим некоторые из таких выгод:

  • - 1) самопроизвольное улавливание энергии, вещества и пр., а также их самопроизвольная локальная концентрация (автолокализация) и бережная, без потерь транспортировка в дозированной форме внутри организма;
  • - 2) легкость управления потоками энергии, вещества и пр. (при их организации в солитонной форме) за счет возможного локального переключения характеристик нелинейности биосреды с солитонного на несолитонный вид нелинейности и обратно;
  • - 3) развязка для множества тех одновременно и в одном месте протекающих в организме, т.е. накладывающихся друг на друга процессов (локомоторных, кровеобеспечивающих, метаболических, ростовых, морфогенетических и пр.), которые нуждаются в относительной независимости своего протекания. Эта развязка может быть обеспечена именно способностью солитонов к неразрушающим столкновениям.

Впервые проведенное нами исследование надмолекулярных кооперативных процессов в живых организмах с солитонной точки зрения выявило наличие в них множества макроскопических солитоноподобных процессов . Предметом изучения явились, прежде всего, непосредственно наблюдаемые локомоторные и иные биологические движения, высокая энергоэкономичность которых давно предполагалась биологами. На первом этапе исследования нами было обнаружено, что у множества живых организмов биологические макродвижения зачастую имеют солитоноподобный вид характерной одногорбой волны локальной деформации, движущейся вдоль живого тела с сохранением своей формы и скорости и иногда демонстрирующей способность к неразрушающим столкновениям. Эти «биосолитоны» реализуются на самых разных ветвях и уровнях биологической эволюции у организмов, различающихся по размерам на несколько порядков величины.

В докладе представлены многочисленные примеры таких биосолитонов. В частности, рассмотрен пример ползания улитки Helix, происходящего за счет пробегания по ее телу одногорбой волнообразной деформации с сохранением своей формы и скорости. Подробные регистрации этого вида биологического движения взяты из книги . В одном варианте ползания (при одной «походке») у улитки реализуются деформации локального растяжения, идущие по опорной поверхности ее тела спереди назад. При другом, более медленном варианте ползания по той же телесной поверхности проходят деформации локального сжатия, идущие в обратном направлении от хвостовой части к голове. Оба названных типа солитонных деформаций — прямой и ретроградный — могут реализовываться у улитки одновременно со встречными столкновениями между ними. Подчеркнем, что их столкновение носит неразрушающий характер, характерный для солитонов. Другими словами, после столкновения они сохраняют форму и скорость, то есть свою индивидуальность: «присутствие больших ретроградных волн не влияет на распространение нормальных и много более коротких прямых волн; оба типа волн распространялись без какого-либо признака взаимного вмешательства» . Этот биологический факт известен с начала века, хотя до нас никогда исследователями не связывался с солитонами.

Как подчеркивали Gray и другие классики исследования локомоций (пространственных перемещений у организмов), последние являются в высокой степени энергоэкономичными процессами. Это существенно для жизненно важного обеспечения организму возможности перемещаться без утомления на длительные дистанции в поисках пищи, спасения от опасности и т.п. (организмы вообще крайне бережно обращаются с энергией, запасать которую им вовсе не просто). Так, у улитки солитонная локальная деформация тела, за счет которой осуществляется перемещение ее тела в пространстве, происходит только в зоне отрыва тела от поверхности опоры. А вся контактирующая с опорой часть тела является недеформированной и покоится относительно опоры. Соответственно, во все время протекания по телу улитки солитоноподобной деформации такая волнообразная локомоция (или процесс массопереноса) не требует энергетических затрат на преодоление сил трения улитки об опору, являясь в этом плане максимально экономной. Конечно, можно предполагать, что часть энергии при локомоции все-таки диссипируется на взаимное трение тканей внутри тела улитки. Но если эта локомоторная волна является солитоноподобной, то она обеспечивает также минимизацию потерь на трение внутри тела. (Насколько нам известно, вопрос о потерях энергии на внутрителесное трение при локомоциях недостаточно изучен экспериментально, однако, вряд ли организм прошел мимо возможности минимизировать их). При рассмотренной организации локомоции все (или почти все) энергозатраты на нее сводятся к затратам на начальное создание каждой такой солитоноподобной локальной деформации. Именно физика солитонов дает предельно энергоэкономичные возможности обращения с энергией. И ее использование живыми организмами выглядит закономерным, тем более, что окружающий мир насыщен солитонными средами и солитонами.

Нельзя не отметить, что, по крайней мере, с начала века исследователи представляли волнообразные локомоции как некоторый эстафетный процесс. В ту пору «досолитонной физики» естественной физической аналогией такого эстафетного процесса был процесс горения, при котором локальная телесная деформация передавалась от точки к точке подобно поджиганию. Это представление об эстафетных диссипативных процессах типа горения, называемых в наши дни автоволновыми, было наилучшим из возможного в то время и оно давно стало привычным для многих. Однако сама физика не стояла на месте. И в ней в последние десятилетия развилось представление о солитонах как новом типе недиссипативных эстафетных процессов высшей энергоэкономичности с немыслимыми прежде, парадоксальными свойствами, что дает основу для нового класса нелинейных моделей эстафетных процессов.

Одно из важных преимуществ солитонного подхода перед традиционным автоволновым при моделировании процессов в живом организме определено способностью солитонов к неразрушающим столкновениям. Действительно, автоволны (описывающие, например, перемещение зоны горения вдоль горящего шнура) характеризуются тем, что за ними остается зона невозбудимости (сгоревший шнур), а потому две автоволны при столкновении друг с другом прекращают свое существование, не имея возможности двигаться по уже «выгоревшему участку». Но на участках живого организма одновременно протекает множество биомеханических процессов – локомоторных, кровеобеспечивающих, метаболических, ростовых, морфогенетических и пр., а потому, моделируя их автоволнами, теоретик сталкивается со следующей проблемой взаимного уничтожения автоволн. Один автоволновой процесс, двигаясь по рассматриваемому участку организма за счет непрерывного выжигания на нем энергетических запасов, делает эту среду невозбудимой для других автоволн на некоторое время до тех пор, пока на данном участке не восстановятся запасы энергии для их существования. В живом веществе эта проблема особенно актуальна еще и потому, что виды энергохимических запасов в нем сильно унифицированы (в организмах имеется универсальная энергетическая валюта – АТФ). Поэтому трудно полагать, что факт одновременного существования многих процессов на одном участке в организме обеспечивается тем, что каждый автоволновой процесс в организме движется за счет выжигания своего специфического вида энергии, не выжигая энергии для других. Для солитонных моделей этой проблемы взаимного уничтожения сталкивающихся в одном месте биомеханических процессов не существует в принципе, поскольку солитоны в силу их способности к неразрушающим столкновениям спокойно проходят друг сквозь друга и на одном участке одновременно их число может быть как угодно велико. По нашим данным, для моделирования биосолитонных феноменов живого вещества особое значение имеют солитонное уравнение синус-Гордона и его обобщения.

Как известно, в полидоменных средах (магнетики, сегнетоэлектрики, сверхпроводники и пр.) солитоны выступают в качестве междоменных стенок. В живом веществе феномен полидоменности играет важную роль в морфогенетических процессах. Как и в других полидоменных средах, в полидоменных биологических средах он связан с классическим принципом Ландау-Лифшица минимизации энергии в среде. В этих случаях солитонные междоменные стенки оказываются местами повышенной концентрации энергии, в которых зачастую особенно активно протекают биохимические реакции.

Способность солитонов играть роль паровозиков, транспортирующих порции вещества в нужное место в пределах солитонной среды (организма) по законам нелинейной динамики, также заслуживает всяческого внимания в связи с биоэволюционными и физиологическими проблемами. Добавим, что биосолитонная физическая энергия способна гармонично сосуществовать в живом организме с известными химическими видами его энергии. Развитие концепции биосолитонов позволяет, в частности, открыть исследовательскую «охоту» в биологии за аналогами разных видов солитонов — бризеров, вобблеров, пульсонов и пр., выведенных математиками «на кончике пера» при анализе солитонных уравнений и затем обнаруживаемых физиками в природе. Многие колебательные и волновые физиологические процессы могут в итоге получить для своего описания содержательные солитонные модели, связанные с нелинейным, солитонным характером биополимерного живого вещества.

Например, это относится к базовым физиологическим движениям живого биополимерного вещества типа сердечных биений и т.п. Напомним, что у человеческого эмбриона в возрасте трех недель, когда он имеет рост всего в четыре миллиметра, первым приходит в движении сердце. Начало сердечной деятельности обусловлено какими-то внутренними энергетическими механизмами, так как в это время у сердца еще нет никаких нервных связей для управления этими сокращениями и оно начинает сокращаться, когда еще нет крови, которую надо перекачивать. В этот момент сам эмбрион представляет собой по существу кусочек полимерной слизи, в которой внутренняя энергия самоорганизуется в энергоэкономичные пульсации. Аналогичное можно сказать о возникновении сердечных биений в яйцах и икринках животных, куда подвод энергии извне минимизирован существованием скорлупы и других изолирующих покровов. Подобные формы энергетической самоорганизации и самолокализации известны в полимерных средах, в том числе, небиологического типа и по современным представлениям имеют солитонную природу, поскольку солитоны являются наиболее энергоэкономичными (недиссипативными или малодиссипативными) самоорганизующимися структурами пульсирующего и иного характера. Солитоны реализуются во множестве природных сред, окружающих живые организмы: твердых и жидких кристаллах, классических жидкостях, магнетиках, решетчатых структурах, плазме и пр. Эволюция живого вещества с ее механизмами естественного отбора не прошло мимо уникальных свойств солитонов и их ансамблей.

Имеют ли данные материалы какое-либо отношение к синергетике? Да, безусловно. Как определено в монографии Хагена /6, с.4/, «в рамках синергетики изучается такое совместное действие отдельных частей какой-либо неупорядоченной системы, в результате которого происходит самоорганизация – возникают макроскопические пространственные, временные или пространственно-временные структуры, причем рассматриваются как детерминированные, так и стохастические процессы». Существует много типов нелинейных процессов и систем, которые изучаются в рамках синергетики. Курдюмов и Князева /7, с.15/, перечисляя ряд этих типов, специально отмечают, что среди них одним из важных и интенсивно изучаемых являются солитоны. В последние годы начал издаваться международный журнал «Хаос, солитоны и фракталы» («Chaos, Solitons & Fractals»). Солитоны, наблюдаемые в самых разных природных средах, представляют собой яркий пример нелинейного кооперативного поведения множества элементов системы, приводящего к формированию специфических пространственных, временных и пространственно-временных структур. Наиболее известный, хотя далеко не единственный вид таких солитонных структур – описанная выше самолокализующаяся устойчивая по форме одногорбая локальная деформация среды, бегущая с постоянной скоростью. Солитоны активно используются и изучаются в современной физике. С 1973 года, начиная с работ Давыдова /8/, солитоны применяются также в биологии для моделирования молекулярных биологических процессов. В настоящее время во всем мире имеется множество публикаций по применению таких «молекулярных солитонов» в молекулярной биологии, в частности, для осмысления процессов в белках и ДНК. Наши работы /3, 9/ явились первыми в мировой литературе публикациями на тему «надмолекулярных солитонов» в биологических явлениях надмолекулярного уровня. Подчеркнем, что из существования молекулярных биосолитонов (которое, по мнению многих авторов, еще предстоит доказать) никак не следует существование солитонов в кооперативных биологических надмолекулярных процессах, объединяющих мириады молекул.

ЛИТЕРАТУРА:

  1. Додд Р. и др. Солитоны и нелинейные волновые уравнения. М., 1988, 694 с.
  2. Каменский В.Г. ЖЭТФ, 1984, т.87, вып. 4(10), с. 1262-1277.
  3. Петухов С.В. Биосолитоны. Основы солитонной биологии. – М., 1999, 288 с.
  4. Gray J. Animal locomotion. London, 1968.
  5. Петухов С.В. Бипериодическая таблица генетического кода и число протонов. – М., 2001, 258 с.
  6. Хаген Г. Синергетика. – М., Мир, 1980, 404 с.
  7. Князева Е.Н., Курдюмов С.П. Законы эволюции и самоорганизации сложных систем. — М., Наука, 1994, 220 с.
  8. Давыдов А.С. Солитоны в биологии. – Киев, Наукова Думка, 1979.
  9. Петухов С.В. Солитоны в биомеханике. Депонировано в ВИНИТИ РАН 12 февраля 1999 г, №471-В99. (Указатель ВИНИТИ «Депонированные научные работы», № 4 за 1999 г.)

Summary . The report discusses the opportunities opened up by a solitonic approach to supramolecular biology, first of all, for modeling a wide class of natural wave movements in living organisms. The results of author’s research demonstrate the existence of soliton-like supramolecular processes in locomotor, metabolic and other manifestations of dynamic biomorphology on a wide variety of branches and levels of biological evolution.

Solitons, named sometimes « wave atoms », have unusual properties from the classical (linear) viewpoint. They have ability for self-organizing: auto-localizations; catching of energy; formation of ensembles with dynamics of pulsing and other character. Solitons were known in plasma, liquid and firm crystals, classical liquids, nonlinear lattices, magnetic and others poly-domain matters, etc. The reveal of biosolitons points out that biological mechano-chemistry makes living matter as solitonic environment with opportunities of various physiological use of solitonic mechanisms. The report is based on the books: S.V. Petoukhov «Biosolitons. Bases of solitonic biology », Moscow, 1999 (in Russian).

Петухов С.В., Солитоны в кооперативных биологических процессах надмолекулярного уровня // «Академия Тринитаризма», М., Эл № 77-6567, публ.13240, 21.04.2006


), к-рое в каждый момент времени локализовано в конечной области пространства и относительно медленно изменяет свою структуру при распространении.

Примеры уединённых волн: а - стационарное возвышение (солитон) на мелкой воде; h - смещение поверхности жидкости; б - небольшой амплитуды в газе; р - изменение давления; в - возбуждения в аксоне нерва; и - мембраны. По оси абсцисс отложена переменная

Типичная У. в. имеет вид одиночного импульса или перепада (рис.), но У. в. может иметь и более сложную структуру.

В более узком смысле под У. в. понимают локализованную стационарную нелинейную волну, распространяющуюся без изменения формы с постоянной скоростью и описываемую ур-ниями в обыкновенных производных. В фазовом пространстве У. в. отвечает , соединяющая две различные точки равновесия или возвращающаяся в ту же самую точку. К У. в. относят, напр., такие типы нелинейных волн, как ударные волны в диссипативной среде, стационарные импульсные волны возбуждения в активных средах (напр., ) и в среде без потерь.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

УЕДИНЁННАЯ ВОЛНА

Волновое движение (см. Волны), к-рое в каждый момент времени локализовано в конечной области пространства и достаточно быстро убывает с удалением от этой области. Типичная У. в. имеет вид одиночного импульса или перепада (рис.), но У. в. может иметь и более сложную структуру.

В более узком смысле под У. в. понимают локализованную стационарную нелинейную волну, распространяющуюся без изменения формы с пост. скоростью и описываемую ур-ниями в обыкновенных производных. В фазовом пространстве У. в. отвечает траектория, соединяющая две разл. точки равновесия или возвращающаяся в ту же самую точку. К У. в. относят, напр., такие типы нелинейных волн, как ударные волны в диссипативной среде, стационарные импульсные волны возбуждения в активных средах (напр., нервный импульс) и солитон в среде без потерь. Лит. см. при ст. Солитон. Л. А. Островский.



Примеры уединённых волн: а - стационарное возвышение (соли-тон) на мелкой воде; h - смещение поверхности жидкости; б - ударная волна небольшой амплитуды в газе; p - изменение давления; в - импульс возбуждения в аксоне нерва; и - потенциал мембраны. По оси абсцисс отложена переменная где t - время, x -координата, u- скорость уединённой волны.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "УЕДИНЕННАЯ ВОЛНА" в других словарях:

    - (уединенная волна), структурно устойчивая уединенная волна, которая, распространяясь, не расширяется и сохраняет свою форму и скорость. Солитоны ведут себя, как частицы. Они важны во многих областях МЕХАНИКИ ТЕКУЧИХ СРЕД, а также ФИЗИКИ ТВЕРДОГО… … Научно-технический энциклопедический словарь

    Структурно устойчивая уединённая волна, распространяющаяся в нелинейной среде. Солитоны ведут себя подобно частицам (частицеподобная волна): при взаимодействии друг с другом или с некоторыми другими возмущениями они не разрушаются, а расходятся,… … Энциклопедический словарь

    Структурно устойчивая уединенная волна, распространяющаяся в нелинейной среде. Солитоны ведут себя подобно частицам (частицеподобная волна): при взаимодействии друг с другом или с некоторыми другими возмущениями они не разрушаются, а расходятся,… … Большой Энциклопедический словарь

    Солитон - структурно устойчивая уединенная волна, распространяющаяся в нелинейной среде, которая может характеризоваться как частицеподобная волна, частица … Начала современного естествознания

    1) Л. т. в д е с к р и п т и в н о й теории множеств: топологич. отображение между двумя множествами в можно продолжить до гомеоморфизма нек рых содержащих их множеств типа Следствием этой Л. т. является топологич. инвариантность хаусдорфова типа … Математическая энциклопедия

    Здесь описаны В.: а) водяные, б) воздушные звуковые, в) световые, г) электрические волны и д) математическая теория В. А) Волны в воде обыкновенно являются следствием косвенного удара ветра о воду. Поверхность воды от этого делается вогнутой, но… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

После расчетов и поиска аналогий эти ученые установили, что уравнение, которое использовали Ферми, Паста и Улам, при уменьшении расстояния между грузиками и при неограниченном росте их числа переходит в уравнение Кортевега-де Фриса. То есть по существу задача, предложенная Ферми, сводилась к численному решению уравнения Кор­тевега-де Фриса, предложенного в 1895 году для описания уединенной волны Рассела. Примерно в те же годы было показано, что для описания ионно-звуковых волн в плазме используется также уравне­ние Кортевега-де Фриса. Тогда стало ясно, что это уравнение встречается во многих областях физики и, следовательно, уединенная волна, которая опи­сывается этим уравнением, является широко рас­пространенным явлением.

Продолжая вычислительные эксперименты по моделированию распространения таких волн, Крус­кал и Забуски рассмотрели их столкновение. Оста­новимся подробнее на обсуждении этого замеча­тельного факта. Пусть имеются две уединенные волны, описываемые уравнением Кортевега-де Фриса, которые различаются амплитудами и дви­жутся друг за другом в одном направлении (рис. 2). Из формулы для уединенных волн (8) следует, что скорость движения таких волн тем выше, чем боль­ше их амплитуда, а ширина пика уменьшается с ростом амплитуды. Таким образом, высокие уеди­ненные волны движутся быстрее. Волна с большей амплитудой догонит движущуюся впереди волну с меньшей амплитудой. Далее в течение некоторого времени две волны будут двигаться вместе как еди­ное целое, взаимодействуя между собой, а затем они разъединятся. Замечательным свойством этих-волн является то, что после своего взаимодействия форма и

Рис. 2. Два солитона, описываемые уравнением Кортевега-де Фриса,

до взаимодействия (вверху) и после (внизу)

скорость этих волн восстанавливаются. Обе волны после столкновения лишь смещаются на не­которое расстояние по сравнению с тем, как если бы они двигались без взаимодействия.

Процесс, у которого после взаимодействия волн сохраняются форма и скорость, напоминает упру­гое столкновение двух частиц. Поэтому Крускал и Забуски такие уединенные волны назвали солитонами (от англ. solitary- уединенный). Это специ­альное название уединенных волн, созвучное элек­трону, протону и многим другим элементарным частицам, в настоящее время общепринято.

Уединенные волны, которые были открыты Рас­селом, и в самом деле ведут себя как частицы. Боль­шая волна не проходит через малую при их взаимо­действии. Когда уединенные волны соприкасаются, то большая волна замедляется и уменьшается, а волна, которая была малой, наоборот, ускоряется и подрастает. И когда малая волна дорастает до разме­ров большой, а большая уменьшается до размеров малой, солитоны разделяются и больший уходит вперед. Таким образом, солитоны ведут себя как уп­ругие теннисные мячи.

Дадим определение солитона . Солитоном на­зывается нелинейная уединенная волна, которая сохраняет свою форму и скорость при собственном движении и столкновении с себе подобными уеди­ненными волнами, то есть представляет собой ус­тойчивое образование. Единственным результатом взаимодействия солитонов может быть некоторый сдвиг фаз.

Открытия, связанные с уравнением Кортевега - де Фриса, не закончились открытием солитона. Следующим важным шагом, имеющим отношение к этому замечательному уравнению, было создание нового метода решения нелинейных уравнений в частных производных. Хорошо известно, что най­ти решения нелинейных уравнений очень сложно. До 60-х годов нашего столетия считалось, что такие уравнения могут иметь только некоторые частные решения, удовлетворяющие специально заданным начальным условиям. Однако уравнение Кортевега-де Фриса и в этом случае оказалось в исключи­тельном положении.

В 1967 году американские физики К.С. Гарднер, Дж.М. Грин, М. Крускал и Р. Миура показали, что решение уравнения Кортевега-де Фриса может быть в принципе получено для всех начальных усло­вий, которые определенным образом обращаются в нуль при стремлении координаты к бесконечности. Они использовали преобразование уравнения Кортевега - де Фриса к системе двух уравнений, называ­емой теперь парой Лакса (по имени американского математика Питера Лакса, внесшего большой вклад в развитие теории солитонов), и открыли новый ме­тод решения ряда очень важных нелинейных урав­нений в частных производных. Этот метод получил название метода обратной задачи рассеяния, по­скольку в нем существенно используется решение задачи квантовой механики о восстановлении по­тенциала по данным рассеяния.

2.2. Групповой солитон

Выше мы говорили, что на практике волны, как правило, распространяются группами. Подобные группы волн на воде люди наблюдали с незапамят­ных времен. На вопрос о том, почему для волн на воде так типичны "стаи" волн, удалось ответить Т. Бенжамену и Дж. Фейеру только в 1967 году. Тео­ретическими расчетами они показали, что простая периодическая волна на глубокой воде неустойчива (теперь это явление называется неустойчивостью Бенжамена-Фейера), и поэтому волны на воде из-за неустойчивости разбиваются на группы. Уравнение, с помощью которого описывается распространение групп волн на воде, было получено В.Е. Захаровым в 1968 году. К тому времени это уравнение уже было известно в физике и носило название нелинейного уравнения Шрёдингера. В 1971 году В.Е. Захаров и А.Б. Шабат показали, что это нелинейное уравне­ние имеет решения также в виде солитонов, более того, нелинейное уравнение Шрёдингера, так же как и уравнение Кортевега-де Фриса, может быть проинтегрировано методом обратной задачи рассея­ния. Солитоны нелинейного уравнения Шрёдинге­ра отличаются от обсуждаемых выше солитонов Кортевега-де Фриса тем, что они соответствуют форме огибающей группы волн. Внешне они на­поминают модулированные радиоволны. Эти солитоны называются групповыми солитонами, а иногда солитонами огибающей. Это название от­ражает сохраняемость при взаимодействии огиба­ющей волнового пакета (аналог штриховой ли­нии, представленной на рис. 3), хотя сами волны под огибающей двигаются со скоростью, отличной от групповой. При этом форма огибающей описывается

Рис. 3. Пример группового солитона (штриховая линия)

зависимостью

a(x,t)=a 0 ch -1 ( )

где а а - амплитуда, а l - половина размера солитона. Обычно под огибающей солитона находится от 14 до 20 волн, причем средняя волна самая большая. С этим связан хорошо известный факт, что самая вы­сокая волна в группе на воде находится между седь­мой и десятой (девятый вал). Если в группе волн об­разовалось большее количество волн, то произойдет ее распад на несколько групп.

Нелинейное уравнение Шрёдингера, как и урав­нение Кортевега- де Фриса, также имеет широкую распространенность при описании волн в различ­ных областях физики. Это уравнение было предло­жено в 1926 году выдающимся австрийским физи­ком Э. Шрёдингером для анализа фундаментальных свойств квантовых систем и первоначально ис­пользовано при описании взаимодействия внут­риатомных частиц. Обобщенное или нелинейное уравнение Шрёдингера описывает совокупность явлений в физике волновых процессов. Например, оно используется для описания эффекта самофоку­сировки при воздействии мощного лазерного луча на нелинейную диэлектрическую среду и для опи­сания распространения нелинейных волн в плазме.


3. Постановка задачи

3.1. Описание модели.В настоящее время наблюдается значи­тельно возрастающий интерес к исследованию нелинейных волно­вых процессов в различных областях физики (например, в оптике, физике плазмы, радиофизике, гидродинамике и т.д.). Для изучения волн малой, но конечной амплитуды в дисперсионных средах в каче­стве модельного уравнения часто используют уравнение Кортевега-де Фриза (КдФ):

u t + ии х + b и ххх = 0 (3.1)

Уравнение КдФ было использовано для описания магнитозвуковых волн, распространяющихся строго поперек магнитного поля или под углами, близкими к

.

Основные предположения, которые делаются при выводе уравне­ния: 1) малая, но конечная амплитуда, 2) длина волны велика по сравнению с длиной дисперсии.

Компенсируя действие нелинейности, дисперсия дает возможность формироваться в дисперсионной среде стационарным волнам конеч­ной амплитуды - уединенным и периодическим. Уединенные волны для уравнения КдФ после работы стали называться солитонами . Периодические волны носят название кноидальных волн. Соот­ветствующие формулы для их описания даны в .

3.2. Постановка дифференциальной задачи.В работе иссле­дуется численное решение задачи Коши для уравнения Кортевега-де Фриза с периодическими условиями по пространству в прямоуголь­нике Q T ={(t , x ):0< t < T , x Î [0, l ].

u t + ии х + b и ххх = 0 (3.2)

u(x,t)| x=0 =u(x,t)| x=l (3.3)

с начальным условием

u(x,t)| t=0 =u 0 (x) (3.4)

4. Свойства уравнения Кортевега - де Фриза

4.1. Краткий обзор результатов по уравнению КдФ.Задача Коши для уравнения КдФ при различных предположениях отно­сительно u 0 (х) рассматривалась во многих работах . Задача о существовании и единственности решения с условиями периодично­сти в качестве краевых условий была решена в работе с помощью метода конечных разностей. Позже, при менее сильных предположе­ниях, существование и единственность были доказана в статье в пространстве L ¥ (0,T,H s (R 1)), где s>3/2, а в случае периодической задачи - в пространстве L ¥ (0,T,H ¥ (C))где С - окружность дли­ны, равной периоду, на русском языке эти результаты представлены в книге .

На теперешнем курсе семинары стали заключаються не в решении задач, а докладах на различную тематику. Думаю, будет верным оставлять их здесь в более или менее популярном виде.

Слово «солитон» происходит от английского solitary wave и означает именно уединенную волну (или говоря языком физики некоторое возбуждение).

Солитон возле острова Молокаи (Гавайский архипелаг)

Цунами - тоже солитон, но значительно более крупный. Уединенность не означает, что волна будет одна единственная на весь мир. Солитоны иногда встречаются группами, как возле Бирмы.

Солитоны в Андаманском море, омывающем берега Бирмы, Бенгалии и Тайланда.

В математическом смысле солитон является решением нелинейного уравнения в частных производных. Означает это следующее. Решать линейные уравнения что обыкновенные из школы, что дифференциальные человечество уже умеет достаточно давно. Но стоит возникнуть квадрату, кубу или еще более хитрой зависимости в дифференциальном уравнении от неизвестной величины и наработанный за все века математический аппарат терпит фиаско - человек пока не научился их решать и решения чаще всего угадываются или подбираются из различных соображений. Но Природу описывают именно они. Так нелинейные зависимости рождают практически все явления, чарующие глаз, да и позволяющие существовать жизни тоже. Радуга в своей математической глубине описывается функцией Ейри (правда, говорящая фамилия для ученого, чье исследование рассказывает о радуге?)

Сокращения человеческого сердца являются типичным примером биохимических процессов, под названием автокаталитические - такие, которые поддерживают сами свое существование. Все линейные зависимости и прямые пропорциональности хоть и просты для анализа, но скучны: в них ничего не меняется, ведь прямая остается одинаковой и в начале координат, и уходя в бесконечность. Более сложные функции имеют особенные точки: минимумы, максимумы, разломы и т. п., которые попав в уравнение создают бесчисленные вариации для развития систем.

Функции, объекты или явления, называющиеся солитонами, имеют два важных свойства: они стабильны во времени и сохраняют свою форму. Конечно, в жизни никто и ничто бесконечно долго им удовлетворять не будет, поэтому нужно сравнивать с аналогичными явлениями. Вернувшись к морской глади, рябь на её поверхности возникает и исчезает за доли секунды, большие волны, вздымаемые ветром взлетают и рассыпаются брызгами. Но цунами движется глухой стеной на сотни километров не теряя заметно в высоте волны и силе.

Есть несколько типов уравнений, приводящих к солитонам. Прежде всего, это задача Штурма-Лиувилля

В квантовой теории это уравнение известно под названием нелинейного уравнения Шредингера (Schrödinger) если функция имеет произвольный вид. В этой записи число называют собственным. Оно такое особенное, что его тоже находят при решении задачи, потому как не каждое его значение может дать решение. Роль собственных чисел в физике очень велика. Например, энергия является собственным числом в квантовой механике, переходы между различными системами координат так же не обходятся без них. Если потребовать, чтобы изменение параметра t в не изменяли собственные числа (а t может быть временем, например, или каким-то внешним влиянием на физическую систему), то придем к уравнению Кортевега-де Фриза (Korteweg-de Vries):

Есть и иные уравнения, но сейчас они не так важны.

В оптике фундаментальную роль играет явление дисперсии - зависимость частоты волны от её длины , а точнее так называемого волнового числа :

В простейшем случае она может быть линейна (, где - скорость света). В жизни ж часто получаем квадрат волнового числа, а то и что-то более хитрое. На практике, дисперсия ограничивает пропускную возможность оптоволокна, по которому только что бежали эти слова к вашему интернет-провайдеру с серверов WordPress’а. Но так же она позволяет пропускать по одному оптоволокну не один луч, а несколько. И в терминах оптики приведенные выше уравнения рассматривают простейшие случаи дисперсии.

Классифицировать солитоны можно по-разному. Например, солитоны, возникающие как некие математические абстракции в системах без трения и других потерь энергии зовут консервативными. Если рассматривать то же самое цунами на протяжении не очень длительного времени (а для здоровья так, должно быть, полезней), то оно будет консервативным солитоном. Иные солитоны существуют лишь благодаря потокам вещества и энергии. Их принято называть автосолитонами и дальше будем говорить именно об автосолитоне.

В оптике так же говорят про временные и пространственные солитоны. Из названия становится ясно, будем мы наблюдать солитон как некую волну в пространстве, или же это будет всплеск во времени. Временные возникают из-за балансировки нелинейных эффектов дифракцией - отклонения лучей от прямолинейного распространения. Например, посветили лазером в стекло (оптоволокно), и внутри лазерного луча показатель преломления стал зависеть от мощности лазера. Пространственные солитоны возникают из-за балансировки нелинейностей дисперсией.

Фундаментальный солитон

Как уже говорилось, широкополосность (то есть возможность передать много частот, а значит и полезной информации) волоконно-оптических линий связи ограничивается нелинейными эффектами и дисперсией, меняющими амплитуду сигналов и их частоту. Но с другой стороны, те же самые нелинейность и дисперсия могут привести к созданию солитонов, которые сохраняют свою форму и иные параметры существенно дольше чем все остальное. Естественным выводом отсюда является желание использовать сам солитон в качестве информационного сигнала (есть вспышка-солитон на конце волокна - передали единичку, нет - передали нолик).

Пример с лазером, изменяющим коэффициент преломления внутри оптоволокна по мере своего распространения достаточно жизненный, особенно если «запихнуть» в волокно тоньше человеческого волоса импульс в несколько ватт. Для сравнения много это или нет, типичная энергосберегающая лампочка мощностью в 9 Вт освещает письменный стол, но при этом размером с ладонь. В общем, мы не отойдем далеко от действительности предположив, что зависимость коэффициента преломления от мощности импульса внутри волокна будет выглядеть так:

После физических размышлений и математических преобразований различной сложности на амплитуду электрического поля внутри волокна можно получить уравнение вида

где и координата вдоль распространения луча и поперечная ему. Коэффициент играет важную роль. Он определяет соотношение между дисперсией и нелинейностью. Если он будет очень мал, то последнее слагаемое в формуле можно выкинуть в следствие слабости нелинейностей. Если он очень большой, то нелинейности задавив дифракцию будут единолично определять особенности распространения сигнала. Решить это уравнение пока пытались лишь при целых значениях . Так при результат особенно простой:
.
Функция гиперболического секанса хотя называется длинно, выглядит как обыкновенный колокольчик

Распределение интенсивности в поперечном сечении лазерного луча в форме фундаментального солитона.

Именно это решение и называется фундаментальным солитоном. Мнимая экспонента определяет распространение солитона вдоль оси волокна. На практике это все означает, что посветив на стенку мы увидели б яркое пятно в центре, интенсивность которого быстро спадала бы на краях.

Фундаментальный солитон как и все солитоны, возникающие с использованием лазеров, имеет определенные особенности. Во-первых, если мощность лазера окажется недостаточной, он не появится. Во-вторых, даже если где-то слесарь излишне перегнет волокно, капнет на него маслом или сделает иную пакость, солитон проходя сквозь поврежденную область возмутится (в физическом и переносном смыслах), но быстро вернется к своим изначальным параметрам. Люди и иные живые существа так же попадают под определение автосолитона и это умение возвращаться в спокойное состояние очень важно в жизни 😉

Потоки энергии внутри фундаментального солитона выглядят так:

Направление потоков энергии внутри фундаментального солитона.

Тут окружностью разделены области с различными направлениями потоков, а стрелками указано направление.

На практике можно получить несколько солитонов, если лазер имеет несколько каналов генерации, параллельных его оси. Тогда взаимодействие солитонов будет определяться степенью перекрытия их «юбок». Если рассеяние энергии не очень велико, можно считать, что потоки энергии внутри каждого солитона сохраняются во времени. Тогда солитоны начинают кружиться и сцепляться вместе. На следующем рисунке приведено моделирование столкновения двух троек солитонов.

Моделирование столкновения солитонов. На сером фоне изображены амплитуды (как рельеф), а на черном - распределение фазы.

Группы солитонов встречаются, цепляются и образуя Z-подобную структуру начинают вращаться. Еще более интересные результаты можно получить нарушением симметрии. Если расставить лазерные солитоны в шахматном порядке и выбросить один, структура начнет вращаться.

Нарушение симметрии в группе солитонов приводит к вращению центра инерции структуры в направлении стрелки на рис. справа и вращению вокруг мгновенного положения центра инерции

Вращений будет два. Центр инерции будет обращаться против часовой стрелки, а так же сама структура будет крутиться вокруг его положения в каждый момент времени. При чем периоды вращений будут равны, например, как у Земли и Луны, которая повернута к нашей планете лишь одной стороной.

Эксперименты

Столь необычные свойства солитонов обращают на себя внимание и заставляют задуматься о практическом применении уже около 40 лет. Сразу можно сказать, что солитоны можно использовать для сжатия импульсов. На сегодняшний день так можно получить длительность импульса до 6 фемтосекунд ( сек или дважды брать от секунды одну миллионную и результат поделить на тысячу). Отдельный интерес представляют солитонные линии связи, разработка которых идет уже довольно давно. Так Хасегавой было предложено следующую схему еще в 1983 году.

Солитонная линия связи.

Линия связи формируется из секций длиной около 50 км. Всего длина линии составляла 600 км. Каждая секция состоит из приемника с лазером передающих в следующий волновод усиленный сигнал, что позволило достичь скорости 160 Гбит/сек.

Презентация

Литература

  1. Дж. Лем. Введение в теорию солитонов. Пер. с англ. М.: Мир, - 1983. -294 с.
  2. Дж. Уизем Линейные и нелинейные волны. - М.: Мир, 1977. - 624 с.
  3. И. Р. Шен. Принципы нелинейной оптики: Пер. с англ./Под ред. С. А. Ахманова. - М.: Наука., 1989. - 560 с.
  4. С. А. Булгакова, А. Л. Дмитриев. Нелинейно-оптические устройства обработки информации// Учебное пособие. - СПб: СПбГУИТМО, 2009. - 56 с.
  5. Werner Alpers et. al. Observation of Internal Waves in the Andaman Sea by ERS SAR // Earthnet Online
  6. А. И. Латкин, А. В. Якасов. Автосолитонные режимы распространения импульса в волоконно-оптической линии связи с нелинейными кольцевыми зеркалами // Автометрия, 4 (2004), т.40.
  7. Н. Н. Розанов. Мир лазерных солитонов // Природа, 6 (2006). С. 51-60.
  8. О. А. Татаркина. Некоторые аспекты проектирования солитонных волоконно-оптических систем передачи // Фундаментальные исследования, 1 (2006), С. 83-84.

P. S. О диаграммах в .

СОЛИТОН

СОЛИТОН

Структурно устойчивая уединённая волна в нелинейной диспергирующей среде. С. ведут себя подобно ч-цам: при вз-ствии между собой или с нек-рыми др. возмущениями С. не разрушаются, а расходятся вновь, сохраняя свою структуру неизменной. Структура С. поддерживается стационарной за счёт баланса между действием нелинейности среды (см. НЕЛИНЕЙНЫЕ СИСТЕМЫ) и дисперсии (см. ДИСПЕРСИЯ ВОЛН). Напр., в случае гравитац. волн на поверхности жидкости для достаточно длинной плоской (l->2pH, где Н - глубина водоёма) дисперсия отсутствует, волны распространяются с фазовой скоростью v=?(g(H+h)), где g- , h - возвышение поверхности воды в данной точке профиля волны. Вершина волны движется быстрее её подножия (нелинейность), поэтому крутизна фронта волны растёт до тех пор, пока протяжённость фронта не станет соизмеримой с величиной 2pН, после чего v будет зависеть от крутизны фронта (дисперсия). В результате на профиле волны появляются (рис. 1), развитие к-рых приводит к образованию С.

Рис. 1. Эволюция профиля волны на поверхности водоёма глубины Н.

Рис. 5. Связанная пара солитонов.

В системах с сильной дисперсией, если профиль стационарной волны близок к синусоидальному, также возможно существование модулир. волн в виде локализованных волн. пакетов со стационарно движущейся огибающей, к-рые также обнаруживают «частицеподобное» поведение при вз-ствии (С. «огибающей»). Такие С. возможны для волн на поверхности глубокого водоёма, ленгмюровских волн в плазме, мощных коротких (пикосекундных) световых импульсов в рабочей среде лазера и т. д.

С. играют важную роль в теории конденсир. состояния в-ва, в частности в квант. статистике, теории фазовых переходов. Солитонные решения имеют нек-рые ур-ния, предложенные для описания элем. ч-ц. Изучение св-в С. как «частицеподобных» волн, в т. ч. и возможных трёхмерных С., в к-рых убывает по всем направлениям в трёхмерном пр-ве (а не только по одной координате, как в приведённых выше примерах), привело к попыткам использовать С. при построении квант. нелинейной теории поля.

Физический энциклопедический словарь. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1983 .

СОЛИТОН

(от лат. solus - один) - локализованное стационарноеили стационарное в среднем возмущение однородной или пространственно-периодич. С. характеризуется следующими свойствами: локализован в конечной области;распространяется без деформации, перенося энергию, момент импульса;сохраняет свою структуру при взаимодействии с др. такими же С.; может образовыватьсвязанные состояния, ансамбли. Профиль (форма) С. определяется в нелинейнойсреде двумя конкурирующими процессами: расплыванием волны из-за дисперсиисреды и «опрокидыванием» нарастающего волнового фронта из-за нелинейности.

До нач. 1960-х гг. С. называли уединённую волну - неизменнойформы, распространяющийся с пост. скоростью по поверхности тяжёлой жидкостиконечной глубины и в плазме. Ныне под определение С. попадает множестворазнообразных физ. объектов. Первая классификация С. может быть сделанапо числу пространственных измерений, вдоль к-рых происходит локализациястационарного возмущения нелинейной среды. К одномерным С. относятся классич. 2p -импульсы и огибающей в нелинейной оптике (см. Солитоны оптические), локализов. коллективной проводимости в молекулахорганич. полупроводников и в одномерных металлах (см. Волны зарядовойплотности), С. (кванты магн. потока) в джозефсоновских контактах всверхпроводниках (см. Джозефсона эффект )и т. д. К двумерным С. дислокации в кристаллич. решётке, дисклинации в жидкихкристаллах, вихревые структуры в тонком слое сверхтекучей жидкости, Сверхтекучесть), магн. трубки (вихри Абрикосова) в сверхпроводниках 2-го рода (см. Сверхпроводимость), антициклональные области в геофиз. гидродинамике, в т. ч. «Большоекрасное пятно» на Юпитере, каналы самофокусировки в нелинейной оптике. Солитон в квантовой теории поля), чёрные дыры втеории гравитации. В квантовой теории поля рассматривают С., локализованныев четырёхмерном пространстве-времени,- инстантоны.

Математически С. представляют собой локализованные стационарные решениянелинейных дифференциальных уравнений в частных производных или их обобщений(дифференциально-разностных, интегро-дифференциальных и т. п. ур-ний).Во мн. случаях разл. физ. ситуации и явления описываются одними и темиже ур-ниями, напр. Кортевега - де Фриса уравнением, синус-Гордона уравнением, - Петвиашвили уравнением. Линейные ур-ния (кроме одномерного волнового ур-ния) не имеют локализованныхстационарных решений. С. представляют собой существенно нелинейные объекты, топологическимзарядом, т. е. если конфигурация волнового поля в присутствии С. топологическиотлична от конфигурации невозмущённого состояния. Значит. часть ур-ний, обратной задачи рассеяния метод, большинство из них являются интегрируемымигамильтоновыми системами.

Одномерные солитоны. Уединённая волна на поверхности жидкости конечнойглубины впервые наблюдалась в 1834 Дж. С. Расселлом (J. S. Russell). Матем.

Здесь Н - невозмущённая глубина жидкости,- скорость длинных волн малой амплитуды, x 0 - положениецентра С., бесстолкновительных ударных волн в плазме, возникающих, Моделируя на поведение цепочки атомов, связанных нелинейными упругимисилами и описываемых ур-ниями движения

где л - номер атома в цепочке, Э. Ферми (Е. Fermi), Дж. Паста (J. Pasta) иС. Улам (S. Ulam) в 1954 обнаружили аномально медленную стохастизацию вэтой системе. Система не термализовалась (в ней не устанавливалось термодинамич.

выведенное в 1895 для описания эволюции волнового пакета на поверхностижидхости малой глубины. Ур-ние КдФ является универсальным ур-нием, описывающимодномерные или квазиодномерные среды, в к-рых конкурируют слабая квадратичнаянелинейность [член 6 ии х вур-нии (3)] и слабаялинейная дисперсия [член и ххх в ур-нии (3)].Оказалось, что оно описывает также и колебат. поведение цепочки атомов,

В зависимости от соотношения указанных выше двух факторов система переходитиз одного состояния в другое, а в случае их взаимной компенсации возникаетС.

Из численного решения ур-ния (3) [Н. Забуски (N. Zabusky) и М. Крускал(М. Kruskal), 1964] следует, что С. обладают значит. устойчивостью и пристолкновениях рассеиваются упруго, сохраняя свою форму и амплитуду. Анализируяэто явление, М. Крускал, Дж. Грин (G. Green), Ч. Гарднер (С. Gardner) иР. Миура (R. Miura) открыли в 1967 фундам. метод обратной задачи рассеяния, :

Ур-ние (5) представляет собой стационарное ур-ние Шрёдингера с потенциалом- u(x,t). Если удовлетворяет ур-нию КдФ (3), то дискретныесобств. значения ур-ния Шрёдингера не зависят от времени и непосредственносвязаны с С. Если ур-ние (5) имеет N дискретных собств. значений , то при будут присутствовать N С. вида (4) с параметрами .В общем случае в решении содержится также осциллирующая «несолитонная часть».Решение ур-ния (5), определённое методом обратной задачи рассеяния, имеетвид:

В чисто солитонном случае

N-солитонное решение описывает рассеяние N С. друг на друге. парном столкновении С. с амплитудами С. приобретают сдвиги

т. е. быстрый С. приобретает положительный, а медленный - отрицательныйсдвиги. При взаимодействии N С. полный каждого С. равен алгебраич. взаимодействие нерелятивистских частиц, между к-рыми действуют парныесилы отталкивания. Напр., для двух С. (4) с одинаковыми амплитудами ,разделённых расстоянием L, много большим характерного размера С., потенциал силы отталкивания

Типичная картина возникновения С. в океане, сфотографированная из космоса, изображенана рис.: чётко видны пять полос (солитонов), перемещающихся снизу справавверх налево.

Шрёдингера нелинейное ур-ние для комплексной ф-ции u(x,t )

является одним из осн. ур-ний нелинейной физики, описывающим эволюциюоптич. волн в нелинейных кристаллах, ленгмюровских волн в плазме, тепловыхволн в твёрдых телах и др. При распространении одномерных квазигармонич. и хх)и линейной дисперсии (член ) происходит самомодуляция - возникают волны огибающей. В случае равновесиянелинейного самосжатия и дисперсионного расплывания появляются С. огибающей.

Здесь и v - амплитуда и скорость С. [в отличие от С. (4), эти параметрыявляются взаимно независимыми], Ф 0 и х 0 описывают фазу и положение С. в нач. момент.

В. Е. Захаров и А. Б. Шабат показали (1971), что ур-ние (7) также являетсяточно интегрируемым в рамках метода обратной задачи рассеяния с помощьювспомогат. переопределённой системы линейных ур-ний типа (5), (6) для многокомпонентной(векторной) ф-ции . Следствием точной интегрируемости является наличие точных многосолитонныхрешений. Как и в случае ур-ния КдФ, эти решения описывают чисто упругиестолкновения С. с сохранением формы, амплитуды и скорости. Единств. следствиемстолкновения являются фазовые сдвиги - изменения параметров Ф 0 и х 0 .

Одномерное ур-ние синус-Гордона. Точно интегрируемым с помощью вспомогат.

Это ур-ние встречается во мн. физ. задачах, в к-рых ангармонич. потенциалнелинейного самовоздействия волнового поля периодичен по полевой переменной Ф(х,t). Примерами являются в джозефсоновских переходах, волны зарядовой плотности в одномерных металлах, нелинейные волнынамагниченности в легко плоскостных и слабых ферромагнетиках и т. д.

Ур-ние (9) имеет солитонные решения двух разл. типов: т. н. кинки ибризеры. К и н к

представляет собой уединённую волну, обладающую топологич. зарядом , движущуюся со скоростью v (v 2 < 1). Кинк имеет смыслт. н. флаксона - кванта магн. потока в теории длинных джозефсоновских переходов, x 0 , характеризующих положение кинков в нач. v 1 ,v 2 (v 1 v 2)фазовыесдвиги равны:

Видно, что фазовые сдвиги не зависят от топологич. зарядов кинков.

Как и для С., описываемых ур-ниями (3) и (7), полный фазовый сдвиг любогокинка при рассеянии на совокупности остальных кинков в точности равен суммесдвигов, порождённых его столкновениями с каждым из остальных кинков поотдельности.

Наглядно два кинка, разделённых расстоянием L, много большим их характерныхразмеров ~ (1 - v 2) -1/2 , можно представлять как дверелятивистские частицы, взаимодействующие с потенциалом

Т. о., кинки с одинаковыми зарядами отталкиваются, с противоположными - притягиваются.

Пара кинков с противоположным зарядом может образовать связанное осциллирующеесостояние - т. н. б р и з е р, представляющий собой 2-й тип точного солитонногорешения ур-ния (9):

[движущийся бризер может быть получен из (11) преобразованием Лоренца].Параметр ,изменяющийся в пределах , характеризует энергию связи бризера, определённую разность энергий пары удалённых покоящихся (v= 0) кинков (10) и энергии бризера (11):. Столкновения бризеров друг с другом и с кинками также являются чистоупругими и сопровождаются аддитивными фазовыми сдвигами. В реальных системахбризер не наблюдается вследствие диссипации.

В пределе Ф 2 1 подстановка

преобразует ур-ние (9) в нелинейное ур-ние Шрёдингера (7) (с верх. знаком).При этом бризер (11) (при ) преобразуется в покоящийся С. (8) с амплитудой

Многомерные солитоны. Двумерный С. является решением точно интегрируемогоур-ния Кадомцева - Петвиашвили

описывающего ионно-звуковые волны в плазме, на поверхности«мелкой» жидкости и т. д. Точное решение ур-ния (12)

содержащее произвольный комплексный параметр v, описывает устойчивыйдвумерный С. (т. н. л а м п), движущийся со скоростью и = (v x ,Vy),, . При решение. (13) убывает как ( х 2 + y 2 ) -1 ,т. е., в отличие от одномерных С. (4), (8), (10), (11), характеризующихсяэкспоненциальным спадом профиля при ,двумерный С. (13) имеет степенную асимптотику. Столкновения любого числалампов (13) являются чисто упругими, причём, в отличие от одномерных С.,фазовые сдвиги тождественно равны нулю.

Понятие С. можно обобщить и на случай неинтегрируемых нелинейных волновыхур-ний. Сюда можно отнести почти интегрируемые с и с т е м ы, отличающиесяот универсальных интегрируемых ур-ний малыми возмущающими членами, чтоимеет место в реальных физ. системах. Теория возмущений для почти интегрируемыхсистем также основана на методе обратной задачи рассеяния [Д. Кауп (D.Каир), 1976; В. И. Карпман и Е. М. Маслов, 1977]. В почти интегрируемыхсистемах С. более богата; в частности, малые возмущения могутпорождать неупругие взаимодействия С. и многосолитонные эффекты, отсутствующиев точно интегрируемом случае.

В системах, далёких от точно интегрируемых, взаимодействия С. оказываютсяглубоко неупругими. Так, неинтегрируемое релятивистски инвариантное волновоеур-ние

описывающее, напр., динамику параметра порядка при фазовых переходахтипа смещения в сегнетоэлектриках, имеет точное устойчивое решение типакинка: