Как найти частоты интервального ряда. Определение вариационных рядов. Для чего используется парный t-критерий Стьюдента

Группа чисел, объединяемая каким-либо признаком, называется совокупностью.

Как было отмечено выше, первичный статистический спортивный материал представляет собой группу разрозненных чисел, не дающих тренеру представления о существе явления или процесса. Задача заключается в том, чтобы превратить эту совокупность в систему и воспользоваться ее показателями для получения требуемой информации.

Составление вариационного ряда как раз и представляет собой формирование определенной математической

Пример 2. У 34 спортсменов-лыжников зарегистрировано такое время восстановления пульса после прохождения дистанции (в секундах):

81; 78: 84; 90; 78; 74; 84; 85; 81; 84: 79; 84; 74; 84; 84;

85; 81; 84; 78: 81; 74; 84; 81; 84; 85; 81; 78; 81; 81; 84;

Как видно, данная группа цифр не несет никакой информации.

Для составления вариационного ряда вначале производим операцию ранжирования - расположения чисел в порядке возрастания или убывания. Например, в порядке возрастания ранжирование приводит к следующему;

78; 78; 78; 78; 78; 78;

81; 81; 81; 81; 81; 81; 81; 81; 81;

84; 84; 84; 84; 84; 84; 84; 84; 84; 84; 84;

В порядке убывания ранжирование приводит к такой группе чисел:

84; 84; 84; 84; 84; 84; 84; 84: 84: 84; 84;

81; 81; 81; 81; 8!; 81: 81; 81; 81;

78; 78; 78; 78; 78; 78;

После проведения ранжирования становится очевидной нерациональная форма записи данной группы чисел-одни и те же числа повторяются многократно. Поэтому возникает естественная мысль преобразовать запись таким образом, чтобы указать, какое число сколько раз повторяется. Например, учитывая ранжирование в порядке возрастания:

Здесь слева записано число, указывающее время восстановления пульса спортсмена, справа-число повторений этого показания в данной группе из 34 спортсменов.

В соответствии с приведенными выше понятиями о математических символах рассмотренную группу измерений обозначим какой-либо буквой, например х. Учитывая возрастающий порядок чисел в данной группе: х 1 -74 с; х 2 - 78 с; х 3 - 81 с; х 4 - 84 с; х 5 - 85 с; х 6 -х n - 90 с, каждое рассмотренное число можно обозначить символом X i .

Обозначим число повторений рассмотренных измерений буквой n. Тогда:

n 1 =4; n 2 =6; n 3 =9; n 4 =11; n 5 =3;n 6 =n n =1, а каждое число повторений можно обозначить как n i .

Общее число проведенных измерений, как следует из условия примера, есть 34. Это означает, что сумма всех n равна 34. Или в символическом выражении:

Обозначим эту сумму одной буквой - n. Тогда исходные данные рассматриваемого примера можно записать в таком виде (табл. 1).

Полученная группа чисел есть преобразованный ряд хаотически рассеянных показаний, полученных тренером в начале работы.

Таблица 1

х i n i
n=34

Такая группа представляет собой определенную систему, параметры которой характеризуют проведенные измерения. Числа, представляющие собой результаты измерений (х i), называют вариантами; n i - числа их повторений - называются частотами; n - сумма всех частот - есть объем совокупности.

Вся полученная система называется вариационным рядом. Иногда эти ряды называются эмпирическими или статистическими.

Нетрудно заметить, что возможен частный случай вариационного ряда, когда все частоты равны единице n i ==1, то есть каждое измерение в данной группе чисел встретилось только один раз.

Полученный вариационный ряд, как и всякий другой, можно представить графически. Для построения графика полученного ряда, необходимо прежде всего условиться о масштабе на горизонтальной и вертикальной оси.

В данной задаче на горизонтальной оси будем откладывать значения времени восстановления пульса (х 1) таким образом, что единице длины, избранной произвольно, соответствует значение одной секунды. Откладывать эти значения начнем с 70 секунд, условно отступая от места пересечения двух осей 0.

На вертикальной оси отложим значения частот нашего ряда (n i), принимая масштаб: единица длины равна единице частоты.

Подготовив таким образом условия для построения графика, приступаем к работе с полученным вариационным рядом.

Первую пару чисел х 1 =74, n 1 =4 наносим на график так: на оси х; находим х 1 =74 и восстанавливаем перпендикуляр из этой точки, на оси n находим n 1 =4 и проводим из нее горизонтальную линию до пересечения с восстановленным прежде перпендикуляром. Обе линии-вертикаль и горизонталь-являются линиями вспомогательными и потому наносятся на рисунок пунктиром. Точка их пересечения представляет собой в масштабе данного графика соотношение Х 1 =74 и n 1 =4.

Таким же образом наносятся все остальные точки графика. Затем они соединяются отрезками прямых. Для того чтобы график имел замкнутый вид, крайние точки соединяем отрезками с соседними точками горизонтальной оси.

Полученная фигура есть график нашего вариационного ряда (рис. 1).

Совершенно понятно, что каждый вариационный ряд представляется своим собственным графиком.

Рис. 1. Графическое представление вариационного ряда.

На рис. 1 видно:

1) из всех обследованных наибольшую группу составили спортсмены, время восстановления пульса у которых 84 с;

2) у многих это время 81 с;

3) наименьшую группу составили спортсмены с малым временем восстановления пульса - 74 с и большим - 90 с.

Таким образом, выполнив серию испытаний, следует ранжировать полученные числа и составить вариационный ряд, представляющий собой определенную математическую систему. Для наглядности вариационный ряд можно иллюстрировать графиком.

Приведенный выше вариационный ряд называется еще дискретным рядом - таким, у которого каждый вариант выражен одним числом.

Приведем еще несколько примеров на составление вариационных рядов.

Пример 3. 12 стрелков, выполняя упражнение лежа из 10 выстрелов, показали такие результаты (в очках):

94; 91; 96; 94; 94; 92; 91; 92; 91; 95; 94; 94.

Для образования вариационного ряда произведем ранжирование данных чисел;

94; 94; 94; 94; 94;

После ранжирования составляем вариационный ряд (табл. 3).

Совокупность значений изученного в данном эксперименте или наблюдении параметра, проранжированных по величине (возрастания или убывания) называется вариационным рядом.

Предположим, что мы измерили артериальное давление у десяти пациентов с целью получить верхний порог АД: систолическое давление, т.е. только одно число.

Представим, что серия наблюдений (статистическая совокупность) артериального систолического давления в 10-ти наблюдениях имеет следующий вид (табл. 1):

Таблица 1

Составляющие вариационного ряда называются вариантами. Варианты представляют собой числовое значение изучаемого признака.

Построение из статистической совокупности наблюдений вариационного ряда - только первый шаг к осмыслению особенностей всей совокупности. Далее необходимо определить средний уровень изучаемого количественного признака (средний уровень белка крови, средний вес пациентов, среднее время наступления наркоза и т.д.)

Средний уровень измеряют с помощью критериев, которые носят название средних величин. Средняя величина - обобщающая числовая характеристика качественно однородных величин, характеризующая одним числом всю статистическую совокупность по одному признаку. Средняя величина выражает то общее, что характерно для признака в данной совокупности наблюдений.

Общеупотребительными являются три вида средних величин: мода (), медиана () и среднеарифметическая величина ().

Для определения любой средней величины необходимо использовать результаты индивидуальных наблюдений, записав их в виде вариационного ряда (табл. 2).

Мода - значение, наиболее часто встречающееся в серии наблюдений. В нашем примере мода = 120. Если в вариационном ряду нет повторяющихся значений, то говорят, что мода отсутствует. Если несколько значений повторяются одинаковое количество раз, то в качестве моды берут наименьшее из них.

Медиана - значение, делящее распределение на две равные части, центральное или срединное значение серии наблюдений, упорядоченных по возрастанию или убыванию. Так, если в вариационном ряду 5 значений, то его медиана равна третьему члену вариационного ряда, если в ряду четное количество членов, то медиана представляет собой среднее арифметическое двух его центральных наблюдений, т.е. если в ряду 10 наблюдений, то медиана равна среднему арифметическому 5 и 6 наблюдения. В нашем примере.

Заметим важную особенность моды и медианы: на их величины не оказывают влияние числовые значения крайних вариант.

Средняя арифметическая величина рассчитывается по формуле:

где - наблюденная величина в -том наблюдении, а - число наблюдений. Для нашего случая.

Средняя арифметическая величина обладает тремя свойствами:

Средняя занимает серединное положение в вариационном ряду. В строго симметричном ряду.

Средняя является обобщающей величиной и за средней не видны случайные колебания, различия в индивидуальных данных. Она отражает то типичное, что характерно для всей совокупности.

Сумма отклонений всех вариант от средней равна нулю: . Отклонение вариант от средней обозначается.

Вариационный ряд состоит из вариант и соответствующих им частот. Из десяти полученных значений цифра 120 встретилась 6 раз, 115 - 3 раза, 125 - 1 раз. Частота () - абсолютная численность отдельных вариант в совокупности, указывающая, сколько раз встречается данная варианта в вариационном ряду.

Вариационный ряд может быть простым (частоты = 1) или сгруппированным укороченным, по 3-5 вариант. Простой ряд используется при малом числе наблюдений (), сгруппированный - при большом числе наблюдений ().

При обработке больших массивов информации, что особенно актуально при проведении современных научных разработок, перед исследователем стоит серьезная задача правильной группировки исходных данных. Если данные имеют дискретный характер, то проблем, как мы видели, не возникает – необходимо просто подсчитать частотукаждого признака. Если же исследуемый признак имеет непрерывный характер (что имеет большее распространение на практике), то выбор оптимального числа интервалов группировки признака является отнюдь не тривиальной задачей.

Для группировки непрерывных случайных величин весь вариационный размах признакаразбивают на некоторое количество интервалов к.

Сгруппированным интервальным (непрерывным ) вариационным рядом называют ранжированные по значению признака интервалы (), гдеуказанные вместе с соответствующими частотами () числа наблюдений, попавших в г"-й интервал, или относительными частотами ():

Интервалы значений признака

Частота mi

Гистограмма и кумулята {огива), уже подробно рассмотренные нами, являются прекрасным средством визуализации данных, позволяющим получить первичное представление о структуре данных. Такие графики (рис. 1.15) строятся для непрерывных данных так же, как и для дискретных, только с учетом того, что непрерывные данные сплошь заполняют область своих возможных значений, принимая любые значения.

Рис. 1.15.

Поэтому столбцы на гистограмме и кумуляте должны соприкасаться, не иметь участков, куда не попадают значения признака в пределах всех возможных (т.е. гистограмма и кумулята не должны иметь "дырок" по оси абсцисс, в которые не попадают значения изучаемой переменной, как на рис. 1.16). Высота столбика соответствует частоте– числу наблюдений, попавших в данный интервал, или относительной частоте– доле наблюдений. Интервалы не должны пересекаться и имеют, как правило, одинаковую ширину.

Рис. 1.16.

Гистограмма и полигон являются аппроксимациями кривой плотности вероятности (дифференциальной функции) f(x) теоретического распределения, рассматриваемой в курсе теории вероятностей . Поэтому их построение имеет такое важное значение при первичной статистической обработке количественных непрерывных данных – по их виду можно судить о гипотетическом законе распределения.

Кумулята – кривая накопленных частот (частостей) интервального вариационного ряда. С кумулятой сопоставляется график интегральной функции распределения F(x) , также рассматриваемой в курсе теории вероятностей.

В основном понятия гистограммы и кумуляты связывают именно с непрерывными данными и их интервальными вариационными рядами, так как их графики являются эмпирическими оценками функции плотности вероятности и функции распределения соответственно.

Построение интервального вариационного ряда начинают с определения числа интервалов k. И эта задача, пожалуй, является самой сложной, важной и неоднозначной в изучаемом вопросе.

Число интервалов не должно быть слишком малым, так как при этом гистограмма получается слишком сглаженной (oversmoothed), теряет все особенности изменчивости исходных данных – на рис. 1.17 можно увидеть, как те же данные, по которым построены графики рис. 1.15, использованы для построения гистограммы с меньшим числом интервалов (левый график).

В то же время число интервалов не должно быть слишком велико – иначе мы не сможем оценить плотность распределения изучаемых данных по числовой оси: гистограмма получится недосглажепная (undersmoothed), с незаполненными интервалами, неравномерная (см. рис. 1.17, правый график).

Рис. 1.17.

Как же определить наиболее предпочтительное число интервалов?

Еще в 1926 г. Герберт Стерджес (Herbert Sturges) предложил формулу для вычисления количества интервалов, на которые необходимо разбить исходное множество значений изучаемого признака . Эта формула поистине стала сверхпопулярной – большинство статистических учебников предлагают именно ее, по умолчанию ее используют и множество статистических пакетов. Насколько это оправдано и во всех ли случаях – является весьма серьезным вопросом.

Итак, на чем основана формула Стерджеса?

Рассмотрим биномиальное распределение }