Функциональные производные карбоновых кислот. Функциональные производные уксусной кислоты — ацетамид и ацетонитрил Производные карбоновых кислот

Функциональные производные карбоновых кислот. Двухосновные карбоновые кислоты. a , b -Ненасыщенные кислоты

Производные карбоновых кислот

1. Галогенангидриды .

При действии галогенидов фосфора или хлористого тионила происходит образование галогенагидридов:

CH 3 COOH + PCl 5 ® CH 3 COCl + POCl 3 + HCl

Галоген в галогенангидридах обладает большой реакционной способностью. Сильный индукционный эффект определяет легкость замещения галогена другими нуклеофилами: - OH , - OR , - NH 2, - N 3, - CN и др.:

CH 3 COCl + CH 3 COOAg ® (CH 3 CO) 2 O уксусный ангидрид + AgCl

1. Ангидриды.

Ангидриды образуются при взаимодействии солей кислот с их галогенангидридами:

CH 3 COONa + CH 3 COCl ® NaCl + (CH 3 CO ) 2 O

Ангидриды кислот обладают большой химической активностью и являются, как и галогенангидриды, хорошими ацилирующими агентами.

2. Амиды .

Амиды получают через галогенангидриды

CH 3 COCl +2 NH 3 ® CH 3 CONH 2 ацетамид + NH 4 Cl

или из аммонийных солей кислот, при сухой перегонке которых отщепляется вода и образуется амид кислоты. Также амиды кислот образуются как побочный продукт при гидролизе нитрилов. Процессы амидирования имеют важное значение в промышленности для производства ряда ценных соединений (N , N -диметилформамид, диметилацетамид, этаноламиды высших кислот).

4. Нитрилы . Важнейшими представителями нитрилов являются ацетонитрил CH 3 CN (применяется как полярный растворитель) и акрилонитрил CH 2 = CHCN (мономер для получения синтетического волокна нейрона и для производства дивинилнитрильного синтетического каучука, обладающего масло- и бензостойкостью). Основным способом получения нитрилов является дегидратация амидов на кислотных катализаторах:

CH 3 CONH 2 ® CH 3 C - CN + H 2 O

5. Сложные эфиры . Сложные эфиры карбоновых кислот имеют важное практическое значение в качестве растворителей, гидравлических жидкостей, смазочных масел, пластификаторов и мономеров. Их получают этерификацией спиртов кислотами, ангидридами и галогенангидридами или взаимодействием кислот и алкенов:

CH 3 -CH=CH 2 + CH 3 COOH ® CH 3 COOCH(CH 3) 2

Многие эфиры используются в качестве душистых веществ:

CH 3 COOCH 2 CH 3 грушевая эссенция
CH 3 CH 2 CH 2 COOCH 2 CH 2 CH 2 CH 2 CH 3 ананасовая эссенция
HCOOCH 2 CH 3 ромовая эссенция

Двухосновные насыщенные кислоты

Двухосновные предельные (насыщенные) кислоты имеют общую формулу C n H 2 n (COOH ) 2 . Из них важнейшими являются:

НООС-СООН - щавелевая, этандикарбоновая кислота;

НООС-СН 2 -СООН - малоновая, пропандикарбоновая кислота;

НООС-СН 2 -СН 2 -СООН - янтарная, бутандикарбоновая кислота;

НООС-СН 2 -СН 2 -СН 2 -СООН - глутаровая, пентандикарбоновая кислота.

Способы получения

Общие методы получения двухосновных кислот аналогичны способам получения одноосновных кислот (окисление гликолей, гидролиз динитрилов, синтез Кольбе - см. Лекцию№27).

1. Окисление оксикислот :

OH-CH 2 CH 2 COOH ® HOCCH 2 COOH ® HOOC-CH 2 -COOH

2. Окисление циклоалканов .

Это промышленный способ получения адипиновой кислоты HOOC - CH 2 CH 2 CH 2 CH 2 - COOH из циклогексана.

Побочно образуются также янтарная и щавелевая кислоты. Адипиновая кислота применяется для синтеза волокна найлон 6,6 и пластификаторов.

Химические свойства

Двухосновные кислоты более сильные, чем одноосновные. Это объясняется взаимным влиянием карбоксильных групп, облегчающих диссоциацию:

В целом реакции дикарбоновых кислот и их монокарбоновых аналогов почти не различаются между собой. Механизм реакций образования диамидов, диэфиров и др. из карбоновых кислот тот же, что и для монокарбоновых кислот. Исключение составляют дикарбоновые кислоты, содержащие меньше четырех атомов углерода между карбоксильными группами. Такие кислоты, две карбоксильные группы которых способны реагировать с одной функциональной группой или друг с другом, обнаруживают необычное поведение в реакциях, протекающих с образованием пяти- или шестичленных замкнутых активированных комплексов или продуктов.

Примером необычного поведения карбоновых кислот могут служить реакции, протекающие при нагревании.

При 150 о С щавелевая кислота разлагается на муравьиную кислоту и СО 2 :

HOOC-COOH ® HCOOH + CO 2

2. Циклодегидратация .

При нагревании g -дикарбоновых кислот, у которых карбоксильные группы разделены атомами углерода, происходит циклодегидратация, в результате чего образуются циклические ангидриды:

3. Синтезы на основе малонового эфира .

Двухосновные кислоты с двумя карбоксильными группами при одном углеродном атоме, т.е. малоновая кислота и ее моно- и дизамещенные гомологи, при нагревании несколько выше их температур плавления разлагаются (подвергаются декарбоксилированию ) с отщеплением одной карбоксильной группы и образованием уксусной кислоты или ее моно- и дизамещенных гомологов:

HOOCCH 2 COOH ® CH 3 COOH + CO 2

HOOCCH(CH 3)COOH ® CH3CH2COOH + CO 2

HOOCC(CH 3) 2 COOH ® (CH3) 2 CHCOOH + CO 2

Атомы водорода метиленовой группы, находящейся между ацильными группами диэтилового эфира малоновой кислоты (малоновый эфир ), обладают кислотными свойствами и дают натриевую соль с этилатом натрия. Эту соль – натрий-малоновый эфир – алкилируют по механизму нуклеофильного замещения S N 2 . На основе натрий-малонового эфира получают одно- и двухосновные кислоты:

- Na + + RBr ® RCH(COOCH 2 CH 3) 2 + 2 H 2 O ®

R-CH(COOH) 2 алкилмалоновая кислота ® R-CH 2 COOH алкилуксусная кислота + CO 2

4. Пиролиз кальциевых и бариевых солей .

При пиролизе кальциевых или бариевых солей адипиновой (С 6 ), пимелиновой (С 7 ) и пробковой (С 8 ) кислот происходит отщепление СО 2 и образуются циклические кетоны:

Непредельные одноосновные карбоновые кислоты

Непредельные одноосновные кислоты этиленового ряда имеют общую формулу C n H 2 n -1 COOH , ацетиленового и диэтиленового рядов - C n H 2 n -3 COOH . Примеры непредельных одноосновных кислот:

Непредельные одноосновные кислоты отличаются от предельных большими константами диссоциации. Ненасыщенные кислоты образуют все обычные производные кислот - соли, ангидриды, галогенангидриды, амиды, сложные эфиры и др. Но за счет кратных связей они вступают в реакции присоединения, окисления и полимеризации.

Благодаря взаимному влиянию карбоксильной группы и кратной связи присоединение галогенводородов к a,b-непредельным кислотам происходит таким образом, что водород направляется к наименее гидрогенизированному атому углерода:

CH 2 = CHCOOH + HBr ® BrCH 2 CH 2 COOH b -бромпропионовая кислота

Этиленовые кислоты типа акриловой кислоты и их эфиры значительно легче подвергаются полимеризации, чем соответствующие углеводороды.

отдельные представители

Акриловую кислоту получают из этилена (через хлоргидрин или оксид этилена), гидролизом акрилонитрила или окислением пропилена, что более эффективно. В технике используются производные акриловой кислоты - ее эфиры, особенно метиловый (метилакрилат ). Метилакрилат легко полимеризуется с образованием прозрачных стекловидных веществ, поэтому его применяют в производстве органического стекла и других ценных полимеров.

Метакриловая кислота и ее эфиры получают в больших масштабах методами, сходными с методами синтеза акриловой кислоты и ее эфиров. Исходным продуктом является ацетон, из которого получают ацетонциангидрин, подвергают дегидратации и омылению с образованием метакриловой кислоты. Этерификацией метиловым спиртом получают метилметакрилат, который при полимеризации или сополимеризации образует стекловидные полимеры (органические стекла) с весьма ценными техническими свойствами.

Функциональными производными называют производные карбоновых кислот, у которых ОН-группа замещена нуклеофильной частицей Z.

Таблица №3Функциональные производные карбоновых кислот R─ C(O)Z

6.1. Номенклатура.

Номенклатура производных карбоновых кислот очень проста и исходит из названий самих карбоновых кислот. Ангидриды кислот, например, называют добавляя слово «ангидрид » к названию соответствующей кислоты.

Для названия смешанных ангидридов требуется перечислить обе кислоты, образующие ангидрид.

Для обозначения ацилгалогенидов окончание кислоты «-овая » заменяется на «-оил » с добавлением названия галогена.

Для обозначения амидов окончание «-овая », характерное для кислот, заменяется на «-амид », или окончание «карбоновая кислота » заменяется на «карбоксамид ».

Замещенные при азоте амиды имеют префикс, где обозначаются эти заместители.

Название сложных эфиров строится таким образом, чтобы первую часть названия занимало обозначение алкильной группы, присоединенной к атому кислорода. Вторую часть названия составляет обозначение карбоновой кислоты, в котором окончание «-овая » заменено на окончание «-ат ».

Для нитрилов существует несколько систем названий. Согласно номенклатуре ИЮПАК они называются алканнитрилами, т.е. к названию алкана добавляется окончание «-нитрил ». Атом углерода нитрильной группы всегда имеет первый номер.

В другой системе названий окончание «-овая » заменяется на «-онитрил » или словосочетание «карбоновая кислота » заменяется на «-карбонитрил ».

В заключении этого раздела приведем названия некоторых типичных функциональных групп производных карбоксильной группы: COOR – группа называется «алкоксикарбоксил » , CONH 2 – «карбамоил » , COCl – «хлорформил » , CN – «циано » . Так называются эти группы в полифункциональнозамещенных циклоалканах и алканах.

6.2. Химические свойства производных карбоновых кислот.

Функциональные производные, подобно карбоновым кислотам, способны вступать в реакции ацилирования, и поэтому их можно рассматривать как ацильные производные различных нуклеофилов. Реакции ацилирования приводят к образованию других функциональных производных карбоновых кислот.

Для реакции нуклеофильного замещения у sp 2 -гибридного ацильного атома углерода реализуется двухстадийный механизм присоединения-отщепления. В первой стадии нуклеофильный агент присоединяется к производному карбоновой кислоты с образованием заряженного (для анионного нуклеофильного агента) или бетаина (для нейтрального нуклеофильного агента) тетраэдрического интермедиата. Во второй стадии от этого интермедиата отщепляется в виде аниона или нейтральной молекулы уходящая группа Z и образуется конечный продукт замещения.

В общем случае реакция обратима, однако если Z и Nu сильно различаются по своей основности и нуклеофильности, она становится необратимой. Движущей силой отщепления уходящей группы Z является образование π-связи между кислородом и карбонильным атомом углерода из анионного тетраэдрического интермедиата. В принципе на скорость реакции могут влиять обе стадии, однако, как правило, первая стадия присоединения нуклеофильного агента является медленной и определяет скорость всего процесса. И стерические, и электронные факторы важны при количественной оценке реакционной способности производных карбоновых кислот. Стерические затруднения для атаки нуклеофильного реагента по карбонильному атому углерода вызывают понижение реакционной способности в ряду:

Реакционная способность функциональных производных в реакциях ацилирования (ацилирующая способность) зависит от природы частицы Z и коррелируется со стабильностью уходящего аниона Z - :

чем стабильнее анион, тем выше реакционная способность ацильного производного.

Наибольшей ацилирующей активностью обладают галогенангидриды и ангидриды, так как их ацильные остатки соединены с хорошо уходящими группами – галогенид-ионами и анионами карбоновых кислот. Сложные эфиры и амиды проявляют более низкую ацилирующую способность, потому что соответственно алкоксид- и амид-ионы не относятся к стабильным анионам и не являются хорошо уходящими группами. Такой подход к оценке ацилирующей способности показан ниже на примере сопоставления наиболее важных функциональных производных карбоновых кислот:

6.3. Галогенангидриды.

Галогенангидридами называются функциональные производные карбоновых кислот общей формулы RC(O)Hal.

Галогенангидриды представляют собой жидкости или твердые вещества с резким навязчивым запахом, сильно раздражают кожу и слизистые оболочки. Практическое значение имеют ацилхлориды и ацилбромиды.

кислот - мезовинная не относится к числу оптически активных веществ. Гомологом щавелевой кислоты является адипиновая кислота НООС(СН 2) 4 СООН, которая получа­ется окислением некоторых цикличе­ских соединений. Она входит в со­став чистящих средств для удаления ржавчины, а также служит исходным веществом для производства поли­амидных волокон (см. статью «Гиган­ты органического мира. Полимеры»).

КАРБОНОВЫЕ КИСЛОТЫ И ИХ ПРОИЗВОДНЫЕ

Хотя карбоксильная группа состоит из карбонильной и гидроксильной групп, карбоновые кислоты по свойствам сильно отличаются и от спиртов, и от карбонильных соединений. Взаимное влияние ОН- и -групп приводит

к перераспределению электронной плотности. В результате атом водоро­да гидроксильной группы приобрета­ет кислотные свойства, т. е. легко от­щепляется при растворении кислоты в воде. Карбоновые кислоты изменя­ют окраску индикаторов и проявляют все свойства, характерные для раство­ров неорганических кислот.

Все одноосновные кислоты, не со­держащие заместителей (например, муравьиная и уксусная), являются сла­быми - лишь в незначительной сте­пени диссоциированными на ионы. Силу кислоты можно изменить, введя в a-положение к функциональной группе атом галогена. Так, трихлоруксусная кислота, образующаяся при хлорировании уксусной кислоты СН 3 СООН+3Сl 2 ®ССl 3 СООН+3НСl, в водном растворе в значительной сте­пени диссоциирует на ионы.

Карбоновые кислоты могут обра­зовывать функциональные производ­ные, при гидролизе которых вновь получаются исходные кислоты. Так, при действии на карбоновые кисло­ты хлорида и оксида фосфора(V) образуются, соответственно, хлорангидриды и ангидриды; при действии аммиака и аминов - амиды; спир­тов - сложные эфиры.

Кристаллы монохлоруксусной кислоты СН 2 ClСООН.

График зависимости температуры кипения алканов, спиртов, альдегидов и карбоновых кислот с неразветвлённой цепью от числа атомов углерода в молекуле.

Реакция образования сложных эфиров носит название этерификации (от греч. «этер» - «эфир»). Обыч­но её проводят в присутствии мине­ральной кислоты, играющей роль катализатора. При нагревании слож­ный эфир (или вода, если эфир кипит при температуре выше 100 °С) отгоня­ется из реакционной смеси, и равно­весие смещается вправо. Так, из уксус­ной кислоты и этилового спирта получают этилацетат - растворитель, входящий в состав многих видов клея:

Многие сложные эфиры предста­вляют собой бесцветные жидкости с приятным запахом. Так, изоамилацетат пахнет грушей, этилбутират - ананасом, изоамилбутират - абрико­сом, бензилацетат - жасмином, а этилформиат - ромом. Многие слож­ные эфиры используются в качестве

вкусовых добавок при изготовлении различных напитков, а также в пар­фюмерии. Особенно нежный запах у производных 2-фенилэтилового спирта: эфир этого спирта и фенилуксусной кислоты пахнет мёдом и ги­ацинтами. А аромат эфира муравьи­ной кислоты заставляет вспомнить благоухание букета роз и хризантем. В присутствии щёлочи сложные эфиры могут быть гидролизованы - разложены на исходный спирт и соль карбоновой кислоты. При гидро­лизе жиров (сложных эфиров глице­рина и высших карбоновых кислот) образуются основные компоненты мыла - пальмитат и стеарат натрия,

НАЗВАНИЯ НЕКОТОРЫХ КАРБОНОВЫХ КИСЛОТ И ИХ СОЛЕЙ

*Этилацетат- бесцвет­ная нерастворимая в воде жидкость с приятным эфир­ным запахом (t кип =77,1 °C), смешивается с этиловым спиртом и другими органи­ческими растворителями.

**Названия сложных эфиров образованы из названий соответствующих спиртов и кислот: этилацетат - эфир этилового спирта и уксусной кислоты (уксусноэтиловый эфир), изоамилформиат - эфир изоамилового спирта и му­равьиной кислоты (муравьиноизоамиловый эфир).

ЛЕДЯНАЯ КИСЛОТА

В уксусе, который образуется при про­кисании вина, содержится около 5% ук­сусной кислоты (столовым уксусом на­зывают 3-15-процентный раствор). Перегонкой такого уксуса получают уксусную эссенцию - раствор с кон­центрацией уже 70-80%. А чистая (100-процентная) уксусная кислота вы­деляется в результате воздействия кон­центрированной серной кислоты на ацетаты: CH 3 COOHNa+H 2 SO 4 (конц.)= CH 3 COOH­+NaHSO 4 .

Такая чистая уксусная кислота, не содержащая воды, при охлаждении до 16,8 °С превращается в прозрачные кристаллы, напоминающие лёд. Вот почему её иногда называют ледяной.

Сходство не только внешнее: в кри­сталлах молекулы уксусной кислоты,

Жидкая при комнатной температуре ледяная уксусная кислота при охлаждении ниже 1 7 °С превращается в бесцветные кристаллы, действительно похожие на лёд.

подобно молекулам воды, образуют систему водородных связей. Межмоле­кулярное взаимодействие оказывается настолько прочным, что даже в парах уксусной кислоты содержатся не от­дельные молекулы, а их агломераты.

Многие соли уксусной кислоты не­устойчивы к нагреванию. Так, при раз­ложении ацетата кальция образуется ацетон:

А при нагревании смеси ацетата натрия со щёлочью выделяется метан:

В течение многих столетии главным методом синтеза уксусной кислоты было брожение. Таким способом и сейчас производят пищевой уксус. А для производства сложных эфиров и искусственных волокон в качестве сы­рья используют кислоту, которая полу­чается при каталитическом окислении углеводородов, например бутана:

СН 3 -СН 2 -СН 2 -СН 3 +2,5О 2 ®2СН 3 -СООН+Н 2 О.

Ароматические диазосоединения.

Реакции солей арилдиазония с выделением азота.

Реакции, в результате которых диазогруппа замещается другими группи­ровками , имеют большое синтетическое применение, поскольку позволяют в довольно мягких условиях ввести в ароматическое кольцо те функциональные группы, введение которых иными способами было бы сопряжено со значи­тельными трудностями или просто неосуществимо. Кроме того, с помощью этих реакций можно получать производные ароматических углеводородов с таким взаимным расположением функций, которого нельзя достичь, исполь­зуя непосредственно реакции электрофильного замещения. Реакции с выделе­нием азота могут протекать по ионному или радикальному механизмам .

Замена диазогруппы на гидроксильную группу. При нагревании водных растворов арилдиазониевых солей, даже до комнатной температуры, происхо­дит выделение азота и образуются соответствующие фенолы . Во многих случа­ях выходы в этой реакции высокие, поэтому она может служить препаратив­ным способом получения фенолов. Во избежание замены диазогруппы други­ми нуклеофилами реакцию обычно проводят с использованием серной кисло­ты , анионы которой обладают низкой нуклеофильностью:

Реакция протекает по механизму мономолекулярного арильного нуклео­фильного замещения S N 1 Ar который в основном характерен именно для солей диазония. На первой, медленной, стадии катион диазония обратимо диссоци­ирует с образованием арил-катиона (в частности, фенил-катиона) и молекулы азота. На второй стадии крайне неустойчивый арил-катион быстро соединяет­ся с нуклеофилом. Неустойчивость арил-катиона обусловлена невозможно­стью участия π-электронов ароматического кольца в делокализации положи­тельного заряда, так как p-орбитали кольца не могут взаимодействовать с рас­положенной в плоскости σ-скелета вакантной sp 2 -гибридной орбиталью:

Замена диазогруппы на фтор . При нагревании сухих борофторидов арил­диазония образуются арилфториды ( реакциея Шимана ) :

Эта реакция - один из лучших способов введения фтора в ароматическое кольцо. Полагают, что она протекает по ионному механизму с образованием промежуточного арил-кати­она:

Замена диазогруппы на иод . При добавлении к растворам солей арилди­азония растворимой соли иодоводородной кислоты образуются соответствую­щие арилиодиды . Например, из п-фенилендиамина практически с количественным вы­ходом получают п-дииодобензол, который другими методами получить до­вольно трудно:

Замена диазогруппы на хлор или бром. Для получения хлоро- или бро­мопроизводных соли диазония нагревают в присутствии солей меди(I) - CuCl или СиВr соответственно:

Обе реакции протекают по радикальному механизму . Ион Сu + легко окис­ляется в ион Сu 2+ , отдавая один электрон катиону диазония. Последний пре­вращается при этом в свободный радикал (I), который отщепляет молекулу азота, образуя арил-радикал (II). При последующем взаимодействии арил-ра­дикала (II) с галогенид-ионом образуется конечный арилгалогенид . Отщепив­шийся на последней стадии электрон затрачивается на восстановление иона Сu 2+ , за счет чего происходит регенерация катализатора.

Замена диазогруппы на цианогруппу. При обработке растворов аромати­ческих солей диазония цианидом меди образуются арилнитрилы (арилцианиды ):

Замена диазогруппы на нитрогруппу. Реакцию проводят, добавляя твер­дый борофторид арилдиазония к раствору нитрита натрия, в котором суспен­дирован медный порошок. Этот способ позволяет ввести нитрогруппу в такие положения ароматического кольца, которые недоступны для прямого нитро­вания, например:

Замена диазогруппы на водород. При действии на соли арилдиазония та­кого восстановителя, как фосфорноватистая кислота Н 3 РO 2 , происходит заме­щение диазогруппы на атом водорода. В качестве примера приведена схема получения 2,4,6-трибромобензойной кислоты, которую невозможно получить прямым бромированием бензойной кислоты:

Замена диазогруппы на металл. Из солей диазония можно получить орга­нические соединения некоторых металлов. Например, при восстановлении медью двойных ртутных солей получаются ртутьорганические соединения (реакция Несмеянова ):

К важнейшим функциональным производным карбоновых кислот относлтсл: галогенангидриды, ангидриды, сложные эфиры, амиды, гидразиды, гидроксамовые кислоты, нитрилы и др.

ГАЛОГЕНАНГИДРИДЫ КАРБОНОВЫХ КИСЛОТ (АЦИЛГАЛОГЕНИДЫ)

Ацилгалогениды - это производные карбоновых кислот, в молекулах которых гидроксильнал группа, входлщал в состав карбоксильной, замещена на атом галогена:

пимсшишт^ра. названил ацилгалогенидов образуют из названий соответствующих кислот или ацильных групп и названий галогенов:

хлоранптдрид уксусной хчоранп-щрид бензойной

Ю1СЛОТЫ, ацеташхлортщ кислоты, бензоилхлорид

Способы получения. Хлор- и бромангидриды могут быть полу чены при действии галогенирующего реагента на карбоновые кис лоты:

Карбоновые кислоты

*ходопроизводные карбоновых к^тслот получают действием йода

в присутствии фосфора:

^нлпі^ко^і^ соин^іоа. низшле гаюгенангидридыы карбоновых

жидкости с резким запахом, раздражающие слизистые

оболочки.

Химические свойства. Галогенангидриды - сильные электрофильные реагенты, сильнее карбоновых кислот. Галоген в этих соединениях обладает исключительно большой подвижностью.

Электрофильные свойства подобных соединений зависят от величины дробного положительного заряда 5+ на углероде карбонильной группы. Со стороны атома галогена проявляется ярко выраженный -/-эффект, поэтому на атоме углерода карбонильной группы возникает довольно большой заряд 5+, что и обусловливает сильные электрофильные свойства галогенангидридов. Они легко вступают в реакции нуклеофильного замещения:

высокая реакционная способность галогенангидридов позво

ляет использовать их в качестве ацилирующих реагентов для вве

денил в молекулу ацильной группы

поэтому такие ре

акции называют реакциями ацилированим, а галогенангидриды

карбоновых кислот - ацилирующими агентами.

Галогенангидриды в силу своей высокой активности нашли чрезвычайно большое применение в органическом синтезе.

АНГИДРИДЫ КАРБОНОВЫХ КИСЛОТ

Ангидридами называют производные карбоновых кислот, в молекулах которых атом водорода карбоксильной группы замещен на ацильную группу. Они могут иметь линейное и циклическое строение. Циклические ангидриды в основном образуют дикар-боновые кислоты.

нимспд^іаі^ра. названил ангидридов образуют из тривиальных

названий соответствующих кислот:

способы получения. ±. /дегидратация карионоиыл кислот. При

пропускании паров кислоты над соответствующим водоотнимаю-щим средством (фосфора пентаоксидом, трифторуксусным ангидридом) происходит выделение воды - реакция дегидратации:

Карбоновые кислоты

2. в промышленном масштабе ангидриды получают взаимодействием галогенангидридов с безводными солями карбоновых кислот:

з. взаимодействие карбоновых кислот с кетенами (промышленный метод получения уксусного ангидрида):

^иоические свойства. пн!идриды - кристаллические вещества

или жидкости, малорастворимые в воде, обладают резким запахом.

Химические свойства. Ангидриды карбоновых кислот имеют менее выраженный электрофильный характер, чем галогенангид-риды, но больше, чем соответствующие карбоновые кислоты, поскольку неподеленная пара электронов атома кислорода сопряжена с двумя карбонильными группами одновременно, что приводит к уменьшению заряда 5+ на углероде карбонильной группы по сравнению с галогенангидридами, но он, естественно, больше по сравнению с кислотами:

Ангидриды карбоновых кислот легко вступают в реакции

нуклеофильного замещения и используются как ацилирующие реагенты:

24. Функциональные производные карбоновых кислот

уксусный ангидрид используетсл в синтезе синтетических волокон, фармацевтическихпрепаратов (ацетилсалициловалкислота).

СЛОЖНЫЕ ЭФИРЫ

\^лоные эцлгры - производные карбоновых кислот, в молекулах которых гидроксильнал группа, входлщал в состав карбоксильной группы, замещена на остаток спирта или фенола -СЖ":

питспклаї^ра. сложные эфиры называют по исходным кислоте и спирту или фенолу:

Карбоновые кислоты

пособы получения.

заимодействие галогенангидридов

и ангидридов карбоновых кислим со спирт та*/ми и греноксидоами щще-

лочных металлов:

2. изаимюдейсшвие карбоновых кислот со спиртами (реакция

этерификации):

реакция этерификации обратима. д^тя смещения равновесия

в сторону образования конечных продуктов отгоняют полученный эфир или берут какое-либо из исходных веществ в избытке.

Физические свойства. Сложные эфиры - жидкости с приятным запахом, чаще нерастворимы в воде. По сравнению с соответствующими кислотами и спиртами у них более низкие температуры кипения, так как их молекулы не ассоциированы.

Химические свойства. Сложные эфиры относятся к электро-фильным реагентам, но их электрофильные свойства менее выражены по сравнению с галогенангидридами и ангидридами карбо-новых кислот:

ч^лектрофильность эфиров увеличивается, если углеводородный радикал сложноэфирной группы образует с атомом кислорода сопряженную систему.

24. Функциональные производные карбоновых кислот

хакие эфиры называю! игьтивировинныши эфирими.

Сложные эфиры вступают в реакции нуклеофильного замещения.

1. Гидролиз сложных эфиров проходит как в кислой, так и в щелочной среде.

Кислотный гидролиз сложных эфиров - это реакция, обратная реакции этерификации:

сложный эфир

я-СГ + кон о-н

карбоновая кислота

шедан^1зм этой реакции вкл.ючает протонирование атома кислорода карбонильной группы с образованием карбокатиона, ко-

торый реагирует с молекулой воды:

лак видно из механизма, кислотный гидролиз обратим.

Щелочной гидролиз. Гидролиз в присутствии водных растворов щелочей проходит легче, чем кислотный, потому что гидроксид-анион более активный и менее объемный нуклеофил, чем вода. в отличие от кислотного, щелочной гидролиз необратим:

Карбоновые кислоты

щелочь выступает не в роли катализатора, а в роли реагента.

Гидролиз начинаетсл с нуклеофильной атаки гидроксид-ионом атома углерода карбонильной группы. Образуетсл промежуточный анион, который отщепллет алкоксид-ион и превращаетсл в молекулу карбоновой кислоты. Алкоксид-ион, как более сильное основание, отрывает протон от молекулы кислоты и превра-щаетсл в молекулу спирта:

1_|_1,елочной гидролиз необратим потому, что карбоксилат анион имеет высокую делокализацию отрицательного заряда и не восприимчив к атаке спиртового гидроксила.

Часто щелочной гидролиз сложных эфиров называют омылением. Термин произошел от названия продуктов щелочного гидролиза жиров - мыла.

2. Взаимодействие с аммиаком (аммонолиз) и его производными:

3. і ±аіиип пкрклпкрицгикач^ии (алкоголиз сложных эфиров) ка-

тализируетсл как минеральными кислотами, так и щелочами:

24. Функциональные производные карбоновых кислот

для сммещщения равновесия вправо отгоняют более летучий

4. Сложноэфирная конденсация Кляйзена характерна для эфиров карбоновых кислот, содержащих атомы водорода в а-положе-нии. Реакция протекает в присутствии сильных оснований:

Алкоксид-ион отщеііллет протон от а-углеродного атома молекулы эфира. Образуетсл мезомерно стабилизированный карбани-он (I), который, выступал в роли нуклеофила, атакует атом углерода карбонильной группы второй молекулы эфира. Образуетсл продукт присоединенил (II). Он отщепллет алкоксид-ион и пре-вращаетсл в конечный продукт (III). Таким образом, всю схему механизма реакции можно разделить на три стадии:

исли в реакцию вступают два сложных эфира, содержащие

а-атомы водорода, то образуется смесь четырех возможных продуктов. Реакция используется для промышленного получения ацетоуксусного эфира.

Карбоновые кислоты

5. /действие магнийорганических соединений с последующим гидролизом приводит к образованию третичных спиртов:

сложнпме эфиры иммеюют большое значение как ацилиру.ю.щие

реагенты, растворители, используютсл длл синтеза альдегидов, кетонов, полимеров («органическое стекло» - плексиглас), лекарственных веществ: этилформиат - длл производства витамина Вг Бензилбензоат используют длл леченил чесотки. Сложные эфиры известны как отдушки в парфюмерии (этилформиат, этил-ацетат) и компоненты пищевых эссенций: грушевой - изоамил-ацетат, лблочной - изоамилвалериат, ромовой - этилформиат, этилбутират.

ананасовой -

АМИДЫ КАРБОНОВЫХ КИСЛОТ

.ґипииами называют производные карбоновых кислот, в молекулах которых гидроксильнал группа карбоксила замещена на аминогруппу:

ччти соединения мможно рассматривать как ацильныые производные аммиака, первичных и вторичных аминов.

Номенклатура. Названия амидов образуют от названий соответствующих кислот и аминов. в большинстве случаев используют тривиальные названия ацилов, заменяя суффикс -ил на -амид. Согласно заместительной номенклатуре ИЮПАК в названиях соответствующих кислот часть -овая кислота заменяется на суффикс -амид. Символом N обозначают положение заместителей у атома азота амидной группы:

24. Функциональные производные карбоновых кислот

^иосоиы получения. Амиды получают в результате взаимодействия галогенангидридов, ангидридов или сложных эфиров кар-боновых кислот с аммиаком, первичными или вторичными аминами; при нагревании аммонийных солей карбоновых кислот; при гидролизе нитрилов:

Физические свойства. Амиды - кристаллические вещества или

жидкости, растворимые в воде и органических растворителях. Это ассоциированные соединения, способность к ассоциации которых связана с тем, что л-электроны карбонильной группы смещаются к наиболее электроотрицательному атому кислорода, а неподелен-ная пара электронов азота сопряжена с карбонильной группой. За счет этого водород, находящийся при атоме азота, обладает способностью к образованию водородной связи с другой молекулой амида:

Поскольку амиды являются ассоциированными, то они имеют

более высокие, по сравнению с соответствующими карбоновыми кислотами, температуры плавления и кипения.

Карбоновые кислоты

лимичссаис сьиисіьа. Амиды

очень слабые электрофилы.

оа счет сопрлженил неподеленной пары электронов атома азота

(+Л/-эффект) с карбонильной группой частичный положительный зарлд на атоме углерода С=О-группы в амидах меньше, чем у галогенангидридов, ангидридов и сложных эфиров:

вследствие такого электронного строения амиды практически

не вступают в реакции с нуклеофильными реагентами.

проявляют амфотерный характер.

Основные свойства. Амиды можно рассматривать как производные аммиака, у которого атом водорода замещен на ацильный остаток. Но ацильный остаток содержит карбонильную группу, находящуюся в сопряжении с неподеленной парой электронов атома азота, поэтому основные свойства NH2-группы значительно понижены:

Амиды образуют соли лишь с сильными минеральными кис

солеобразование наступает в отсутствие влаги, эти соли легко

гидролизуются, так как образованы слабым основанием и сильной кислотой.

Кислотные свойства. По сравнению с аммиаком амиды обладают большей кислотностью. В молекулах незамещенных и ^замещенных амидов атомы водорода связи N-Н приобретают по

1. /ипцзитсрпистъ шпиииь. Амиды

нейтральные вещества. Они

24. Функциональные производные карбоновых кислот

движность за счет сопрлженил неподеленной пары электронов атома азота с п-электронами карбонильной группы.

Незамещенные и монозамещенные амиды пролвллют свойства ІЧН-кислот:

2. Гидролиз амидов. В нейтральной среде амиды гидролизуются

значительно труднее, чем другие функциональные производные карбоновых кислот. латализируют этот процесс кислоты или щелочи:

з. і±есиииатаиил. при нагревании незамещенных амидов

разуютсл нитрилы:

с сильныымми водоотниімаюм і циіми средсівами (і или і) об

Карбоновые кислоты

4. ласщепление незамещенных амидов до первичных аминов. реакция открыта в 1881 году немецким химиком А. В. Гофманом, получила название «перегруппировка Гофмана»:

5. восстановление амидов под действием лития алюммогидрида

ПАШ. идет до образования аминов:

±>-за№1ещенны±е амиды дают вторичные или третичные амины.

6. Замещение атома водорода в группе 1ЧН2 на галоген. Реакция обычно проходит в присутствии оснований:

Полученные хч-гаюгенаммиды- нестабильные соединения со

свойствами окислителя. Они используются в качестве галогени-рующих реагентов.

Амиды карбоновых кислот находят широкое применение как растворители (формамид, диметилформамид и др.) в производстве синтетических волокон, лакокрасочных материалов, биологически активных веществ. Они довольно часто используются для идентификации кислот. Идентифицировать получение различными способами той или иной кислоты можно по ее производным, в том числе амидам. Например, точно выраженная температура плавления амида масляной кислоты часто служит для однозначного решения вопроса о получении соответствующей кислоты, которая при нормальных условиях представляет собой жидкость.

ГИДРАЗИДЫ КАРБ0Н0ВЫХ КИСЛОТ

Гидразиды - производные карбоновых кислот, в молекулах которых гидроксильная группа карбоксила замещена на остаток гидразина, алкил- или арилгидразина:

24. Функциональные производные карбоновых кислот

номенклатура. названия гидразидов образуют от названий

соответствующих карбоновых кислот и гидразинов.

^люсоиы получения. гидразиды получают при действии гидразина, алкил- или арилгидразинов на хлорангидриды, ангидриды, эфиры карбоновых кислот:

чуизические свойства. гидразиды - кристалшические вещества с точно выраженной температурой плавления, что позволяет использовать их для идентификации карбоновых кислот.

Химические свойства. По химическим свойствам гидразиды во многом напоминают амиды. В молекуле гидразида имеется

два атома азота:

неподеленная пара электронов

Карбоновые кислоты

а-атома азота сопряжена с карбонильной группой, а неподелен-ная пара электронов р-атома азота не участвует в сопряжении, поэтому гидразиды обладают более выраженными основными и нуклеофильными свойствами, чем амиды. Они образуют соли с разбавленными минеральными кислотами, алкилируются, аци-лируются, взаимодействуют с карбонильными соединениями и азотистой кислотой:

Гидразиды находят широкое применение в синтезе лекарственных веществ.

НИТРИЛЫ (ЦИАНИДЫ)

Нитрилы - органические соединения, содержащие одну или несколько цианогрупп -связанных с углеводородным радикалом:

24. Функциональные производные карбоновых кислот

пимспАлаї^ра. названил нитрилов образуют из тривиальных

названий ацильных остатков соответствующих кислот или систематических названий карбоновых кислот, имеющих то же количество атомов углерода, с последующим добавлением суффикса -нитрил:

Н3С-СзЧС6Н-СН-С3Ч

^ліи\^иит иил^пснил. і. ^есииратащил іигіииио сильными водо-

отнимающими средствами:

^ ! Р,05; г І і " КіН2,

н3с-с= + Н20

2. иоаимииеистпие салисепаліхапио с силллпи і^иапиоииириипии, іхис-

литы (цианидами):

"Физические свойства. нитрилы - жидкие или твердые вещества, не растворяющиеся в воде, но растворимые в органических растворителях нейтрального характера.

Химические свойства. Цианогруппа, проявляя отрицательный индуктивный эффект, увеличивает подвижность атомов водорода при а-углеродном атоме; и за счет этого возможны реакции конденсации; по месту разрыва тройной связи нитрилы вступают в реакции нуклеофильного присоединения.

±. присоединение нужхлеохрилонтх реагентов, гидролиз нитрилов проходит при нагревании с водными растворами кислот или щелочей с образованием амидов, которые дальше могут гидроли-зоваться до кислот:

Карбоновые кислоты

2. реакция с участием а-углеродных атомов, конденсация нит рилов (реакция Торпа) проходит в присутствии оснований: калия или натрия амидов, алкоксидов металлов. Реакция аналогична аль-дольной конденсации:

з. восстановление лития нитрилов алшимюгидридомш, или водородом протекает до соответствующих аминов:

нитрилы широко используются в органическом синтезе, шно-

гие реакции органических соединений с нитрилами применяются для наращивания углеродной цепи. Ацетонитрил - хороший растворитель для жирных кислот, используется в производстве витамина В1. Кристаллическое вещество малонодинитрил легко вступает в реакции конденсации, широко используется для получения гетероциклических соединений - витаминов В1? В6, пестицидов, красителей.

^1иры (триацилглицерины, триацилглицериды) - сложные

эфиры трехатомного спирта глицерина и высших алифатических кислот. Общая формула жиров:

В состав жиров преимущественно входят одноосновные кислоты с неразветвленной цепью, которые содержат четное число углеродных атомов от 4 до 26.

24. Функциональные производные карбоновых кислот

По к и с л о т н о м у с о с т а в у триацилглицериды подразделяют на простые, содержащие остатки одинаковых кислот (R=R"=R"), и смешанные, в составе которых - разные кислотные остатки.

Природные жиры - чаще смешанные триацилглицерины. Кислотный состав жиров человеческого организма главным образом представлен стеариновой, пальмитиновой кислотами, которые поступают как с пищей, так и образуются путем биосинтеза в организме. Ненасыщенные жирные кислоты: олеиновая, линолевая, арахидоновая - не образуются в организме человека, а лишь поступают с пищей. Они получили название незаменимые.

Номенклатура. По систематической номенклатуре ИЮПАКдля жиров вначале перечисляют в алфавитном порядке названия жирных кислот, а затем указывают родоначальную структуру - глицерин. Согласно тривиальной номенклатуре в жирах часть названия жирных кислот -иновая заменяют суффиксом -ин:

получение. А*,ля синтеза триацилглицеринов мможно использовать реакции О-ацилирования глицерина (этерификация, взаимодействие натрия глицератов с хлорангидридами кислот):

Карбоновые кислоты

Синтетические способы получения жиров из глицерина

не имеют промышленного значения. чаще триацилглицерины

выделяют из измельченных растительных и животных тканей экстракцией, прессованием, вытапливанием.

зообразные вещества. Консистенция жиров зависит от их кислотного состава. Твердые триацилглицерины, как правило, содержат остатки насыщенных жирных кислот, это чаще жиры животного происхождения. В состав жидких жиров, которые называют маслами, входят в основном остатки ненасыщенных кислот. Растительные жиры, как правило,- жидкие. Исключение составляют масло какао, которое при нормальных условиях - твердое вещество, и рыбий жир - жидкость.

Природные жиры являются смесями триацилглицеринов, поэтому не имеют четких температур плавления. Жиры нерастворимы в воде, но хорошо растворяются в органических растворителях: углеводородах, эфире, хлороформе.

Химические свойства. Как сложные эфиры жиры способны к гидролизу, а при наличии в их структуре ненасыщенных кислот триацилглицериды проявляют свойства алкенов.

1. Гидролиз жиров катализируют разбавленные растворы кислот или щелочей:

"изические свойства.

твердые или жидкие, но не га-

24. Функциональные производные карбоновых кислот

В промышленности гидролиз ведут при нагревании с водой

в присутствии сульфокислот или нагреванием паром. нередко для гидролиза используют фермент липазу.

При взаимодействии жиров с водными растворами щелочей образуется смесь глицерина и натриевых (калиевых) солей жирных кислот, которые называют мылами. Сам процесс щелочного гидролиза триацилглицеридов, ведущий к получению мыла, имеет название омыление. Этим же термином часто обозначают реакции щелочного гидролиза других соединений.

Полученную в результате гидролиза смесь пальмитиновой и стеариновой кислот используют для изготовления свечей.

Остановимся на качестве жиров. В аналитической практике реакция омыления жиров используется для установления их качества. Определяют так называемое число омыления - количество мг КОН, расходуемых на гидролиз 1 г жира.

Избыток калия гидроксида нагревают с триацилглицеридом и методом обратного титрования определяют количество щелочи, которая ушла на нейтрализацию кислот. Таким образом определяют общее содержание как свободных, так и связанных в три-глицериды кислот.

разрыва двойных свлзей в остатках ненасыщенных кислот. процесс проходит в присутствии никелевого или платинового катализатора при повышенной температуре и давлении:

гидрогенизации подвергаются в основном растительные жиры

и жиры морских животных. Этот процесс лежит в основе произ

присоединение водорода по месту

Карбоновые кислоты

водства маргарина, мыла. Жидкие жиры омыляют, получают глицерин и непредельные кислоты, которые восстанавливают, а из них получают мыло.

шаргарин - пищевой жир с добавлением вкусовых веществ и отдушек, например диацетила со вкусом и цветом сливочного масла. Промышленные жиры, полученные в результате гидрогенизации, называют саломасами.

3. Присоединение галогенов к жирам имеет большое аналитическое значение. Остатки ненасыщенных кислот в структуре жира обнаруживают по обесцвечиванию бромной воды.

Н2С-О-СО-(СН2)7-НС=СН-(СН2)7-СН3

не-о-со-(сн2)7-нс=сн-(сн2)7-сн3 ЗВ1""

н2с-о-СО-(СН2)7-НС=СН-(СН2)7-сн3

триолеин

Н2С-О-СО-(СН2)7-СНВг-СНВг-(СН2)7-сн

НС-О-СО-(СН2)7-СНВг-СНВг-(СН2)7-СН

Н2С-О-СО-(СН2)7-СНВг-СНВг-(СН2)7-СН

гри(9,10-ди6ромстеароил)гли11ерин

4. окисление жиров. наличие двойных связей в молекулах

жиров способствует легкой окисляемости, что ведет к «прогорка-нию».

Различают два типа «прогоркания»: гидролитическое - расщепление до свободных кислот с короткой цепью, которое происходит под действием ферментов либо микроорганизмов, и окислительное.

Окисление жиров ведет к образованию альдегидов и кетонов с короткой цепью, имеющих неприятный запах и вкус:

Н2С-О-СО-(СН2)7

нс-о-со-я н2с- о-со-я

НС=СН-(СН2)7-сн3

24. Фyнкциoнaльныe пpoизвoдныe кapбoнoвыx киcлoт

Жиры, образованные насыщенными жирными кислотами, при

окислении образуют кетоны.