Ментальная карта щелочноземельных металлов. Щелочноземельные металлы: краткая характеристика. Лабораторная работа по виртуальной лаборатории

Главная подгруппа второй группы периодической системы охватывает элементы: бериллий, магний, кальций, стронций, барий и радий. По главным представителям этой подгруппы - кальцию, стронцию ж барию, - известных под общим названием щелочноземельных металлов, вся главная подгруппа второй группы называется также подгруппой щелочноземельных металлов .

Название «щелочноземельные» эти металлы (иногда к ним присоединяют и магний) получили потому, что их окислы по своим химическим свойствам являются промежуточными, с одной стороны, между щелочами, т. е. окислами или гидроокисями щелочных металлов и, с другой стороны, «землями», т. е. окислами таких элементов, типичным представителем которых является алюминий - главная составная часть глин. Вследствие такого промежуточного положения окислам кальция, стронция и бария и дали название «щелочные земли».

Первый элемент этой подгруппы, бериллий (если не принимать во внимание его валентность), по своим свойствам гораздо ближе к алюминию, чем к высшим аналогам топ группы, в которую он входит. Второй элемент этой группы, магний, также в некоторых отношениях значительно отличается от щелочноземельных металлов в узком значении этого термина. Некоторые реакции сближаюг его с элементами побочной подгруппы второй группы, особенно с цинком; так, сульфаты магния и цинка в противоположность сульфатам щелочноземельных металлов легко растворимы, изоморфны друг другу и образуют аналогичные по составу двойные соли. Раньше было указано правило, согласно которому первый элемент обнаруживает свойства, переходные к следующей главной подгруппе, второй - к побочной подгруппе той же группы; и обычно характерными для группы свойствами обладает только третий элемент; это правило особенно наглядно проявляется в группе щелочноземельных металлов.

Самый тяжелый из элементов второй группы - радий - по своим химическим свойствам, безусловно, соответствует типичным представителям щелочноземельных металлов, Тем не менее, обычно его не принято включать в группу щелочноземельных металлов в более узком смысли. В связи с особенностями его распространения в природе, а также вследствие наиболее характерного его свойства - радиоактивности целесообразнее отвести ему особое место. В обсуждении общих свойств элементов этой подгруппы радий не будет расмотрен, поскольку соответствующие физико-химические свойства до сих пор исследовали недостаточно.

За исключением радия, все элементы щелочноземельной подгрупы относятся к легким металлам. Легкими называют металлы, удельный вес которых не перевышает 5. По своей твердости металлы главной подгруппы II группы значительно превосходят щелочные. Самый мягкий из них, барий (свойства которого наиболее близки к щелочным металлам) обладает приблизительно твердостью свинца. Точки плавления металлов этой группы лежат значительно выше, чем у щелочных металлов.

Общим для всех элементов главной подгруппы II группы является их свойство проявлять в своих соединениях положительную валентность 2 и только в совершенно исключительных случаях они бывают положительно одновалентны. Типичная для них валентность 2+, а также порядковые номера элементов заставляют, бесспорно, отнести эти металлы к главной подгруппе второй группы. Кроме того, все они обнаруживают сильно электроположительный характер, который определяется их положением в левой части электрохимического ряда напряжений, а также сильным, сродством к электроотрицательным элементам.

В соответствии с величиной нормальных потенциалов элементов главной подгруппы второй группы все перечисленный металлы разлагают воду; однако действие бериллия и магния на воду Протекает очень медленно вследствие малой растворимости гидроокисей, получающихся в результате этой реакции, например для магния:

Мg + 2НОН = Mg(OН) 2 + Н 2

Образовавшись на поверхности металла, гидроокиси Ве и Мg затрудняют дальнейшее течение реакции. Поэтому даже мелкие ошибки магния приходится выдерживать при обычной температуре в соприкосновении с водой в течение нескольких суток, прежде чем они полностью превратятся в гидроокись магния. Остальные щелочноземельные металлы реагируют с водой значительно энергичнее, что объясняется лучшей растворимостью их гидроокисей. Гидроокись бария растворяется легче всего; нормальный потенциал Ва имеет наиболее низкое значение по сравнению с другими элементами группы, поэтому он реагирует с водой, а также со спиртом очень энергично. Устойчииость щелочноземельных металлов к действию воздуха убывает по направлению от магния к барию. В соответствии с положением в ряду напряжений названные металлы вытесняют все тяжелые металлы из растворов их солей.

В качестве продуктов горения щелочноземельных металлов всегда получаются нормальные окислы М ІІ О. Перекиси щелочноземельных металлов гораздо менее устойчивы, чем в ряду щелочных металлов.

С водой окисли щелочноземельных металлов соединяются, образуя гидроокиси, причем энергия этой реакции очень заметно возрастает по направлению от ВеО к ВаО. Растворимость гидроокисей также сильно увеличивается от гидроокиси бериллия п гидроокиси бария; по даже растворимость последней при нормальной температуре очень невелика. В том же порядке возрастает и основной характер этих соединений - от амфоторной гидроокиси бериллия до сильно основного едкого бария.

Интересно отметить сильное сродство элементов главной подгруппы второй группы к азоту. Склопность к образованию соединений с азотом возрастает у этих элементов с увеличением атомного веса (несмотря на то, что теплоты образования нитридов в этом напраилении убывают); у собственно щелочноземельных металлов тепденция к образованию нитридов настолько велика, что последние медленно соединяются с азотом уже при обычной тедгасратуре.

Щелочноземельные металлы подобно щелочным металлам соединяются с водородом, образуя гидриды, например:

Са+Н 2 = СаН 2 .

Этн гидриды также имеют солеобразный характер, и поэтому следует считать, что в них, как и в гидридах щелочных металлов, водород является электроотрицательной составной частью.

Труднее получить непосредственно из элементов МgН 2 , а ВеН 2 синтезировать таким путем вообще но удалось. МgН 2 и ВеН 2 твердые и нелетучие соединения, как и гидриды щелочноземельных металлов, но в отличие от последних они не обладают ярко выраженным солеобразным характером.

Все элементы главной подгруппы второй группы образуют бесцветные ионы, имеющие положительный заряд 2: Bе 2+ , Мg 2+ , Са 2+ , Sr 2+ , Ва 2+ , Rа 2+ . Бериллий образует, кроме того, бесцветные анионы [ВеО 2 ] 2+ и [Ве(ОН) 4 ] 2+ . Бесцветны и все соли М II Х 2 указанных элементов, если они не являются производными окрашенных анионов.

Соли радия сами по себе тоже бесцветны. Однако некоторые из них, например, хлорид и бромид радия, постепенно окрашиваются под действием излучения содержащегося в них радия и, наконец, приобретают окраску от коричневой до черной. При перекристаллизации они вновь становятся белыми.

Многие соли щелочноземельных металлов трудно растворимы в воде. В изменении растворимости этих солей часто обнаруживается определенная закономерность: так, у сульфатов растворимость быстро уменьшается с возрастанием атомного веса щелочноземельного металла. Приблизительно так же изменяется и растворимость хромитов. Большинство солей, образуемых щелочноземельными металлами со слабыми кислотами и с кислотами средней силы, растворяется с трудом, например фосфаты, оксалаты и карбонаты; некоторые из них, однако, легко растворимы; к последним относятся сульфиды, цианиды, роданиды и ацетаты. Вследствие ослабления основного характера гидроокисей при переходе от Ва к Ве, в этой же последовательности возрастает степень гидролиза их карбонатов. В том же направлении изменяется и их термическая устойчивость: в то время как карбонат бария даже при температуре белого каления разлагается далеко не полностью, карбонат кальция можно полностью разложить на СаО и СО 2 уже при сравнительно слабом прокаливании, а карбонат магния разлагается еще легче.

С точки зрения теории Косселя причиной двухвалентности элементов щелочноземельной группы является то обстоятельство, что в периодической системе они все удалены от соответствующих инертных газов с: 2 элемента, поэтому каждый из них имеет на 2 электрона больше, чем предшествующий инертный газ. Вследствие стремления атомов принять конфигурацию инертных газов у элементов щелочноземельной группы и происходит легкое отщепление двух электронов, но не больше, так как дальнейшей отщепление вызвало бы уже разрушение конфигурации инертных газов.

На уроке будет раскрыта тема «Металлы и их свойства. Щелочные металлы. Щелочноземельные металлы. Алюминий». Вы узнаете общие свойства и закономерности щелочных и щелочноземельных элементов, изучите по отдельности химические свойства щелочных и щелочноземельных металлов и их соединения. С помощью химических уравнений будет рассмотрено такое понятие, как жесткость воды. Познакомитесь с алюминием, его свойствами и сплавами. Вы узнаете, что такое смеси, регенерирующие кислород, озониды, пероксид бария и получение кислорода.

Тема: Основные металлы и неметаллы

Урок: Металлы и их свойства. Щелочные металлы. Щелочноземельные металлы. Алюминий

Главную подгруппу I группы Периодической системы Д.И. Менделеева составляют литий Li, натрий Na, калий K, рубидий Rb, цезий Cs и франций Fr. Элементы этой подгруппы относят к . Их общее название - щелочные металлы.

Щелочноземельные металлы находятся в главной подгруппе II группы Периодической системы Д.И. Менделеева. Это магний Mg, кальций Ca, стронций Sr, барий Ba и радий Ra.

Щелочные и щелочноземельные металлы как типичные металлы проявляют ярко выраженные восстановительные свойства. У элементов главных подгрупп металлические свойства с увеличением радиуса возрастают. Особенно сильно восстановительные свойства проявляются у щелочных металлов. Настолько сильно, что практически невозможно проводить их реакции с разбавленными водными растворами, так как в первую очередь будет идти реакция взаимодействия их с водой. У щелочноземельных металлов ситуация аналогичная. Они тоже взаимодействуют с водой, но гораздо менее интенсивно, чем щелочные металлы.

Электронные конфигурации валентного слоя щелочных металлов - ns 1 , где n - номер электронного слоя. Их относят к s-элементам. У щелочноземельных металлов - ns 2 (s-элементы). У алюминия валентные электроны …3 s 2 3р 1 (p-элемент). Эти элементы образуют соединения с ионным типом связи. При образовании соединений для них степень окисления соответствует номеру группы.

Обнаружение ионов металла в солях

Ионы металлов легко определить по изменению окраски пламени. Рис. 1.

Соли лития - карминово-красная окраска пламени. Соли натрия - желтый. Соли калия - фиолетовый через кобальтовое стекло. Рубидия - красный, цезия - фиолетово-синий.

Рис. 1

Соли щелочноземельных металлов: кальция - кирпично-красный, стронция - карминово-красный и бария - желтовато-зеленый. Соли алюминия окраску пламени не меняют. Соли щелочных и щелочноземельных металлов используются для создания фейерверков. И можно легко определить по окраске, соли какого металла применялись.

Свойства металлов

Щелочные металлы - это серебристо-белые вещества с характерным металлическим блеском. Они быстро тускнеют на воздухе из-за окисления. Это мягкие металлы, по мягкости Na, K, Rb, Cs подобны воску. Они легко режутся ножом. Они легкие. Литий - самый легкий металл с плотностью 0,5 г/см 3 .

Химические свойства щелочных металлов

1. Взаимодействие с неметаллами

Из-за высоких восстановительных свойств щелочные металлы бурно реагируют с галогенами с образованием соответствующего галогенида. При нагревании реагируют с серой, фосфором и водородом с образованием сульфидов, гидридов, фосфидов.

2Na + Cl 2 → 2NaCl

Литий - это единственный металл, который реагирует с азотом уже при комнатной температуре.

6Li + N 2 = 2Li 3 N, образующийся нитрид лития подвергается необратимому гидролизу.

Li 3 N + 3H 2 O → 3LiOH + NH 3

2. Взаимодействие с кислородом

Только с литием сразу образуется оксид лития.

4Li + О 2 = 2Li 2 О, а при взаимодействии кислорода с натрием образуется пероксид натрия.

2Na + О 2 = Na 2 О 2 . При горении всех остальных металлов образуются надпероксиды.

К + О 2 = КО 2

3. Взаимодействие с водой

По реакции с водой можно наглядно увидеть, как изменяется активность этих металлов в группе сверху вниз. Литий и натрий спокойно взаимодействуют с водой, калий - со вспышкой, а цезий - уже с взрывом.

2Li + 2H 2 O → 2LiOH + H 2

4.

8K + 10HNO 3 (конц) → 8KNO 3 + N 2 O +5 H 2 O

8Na + 5H 2 SO 4 (конц) → 4Na 2 SO 4 + H 2 S + 4H 2 O

Получение щелочных металлов

Из-за высокой активности металлов, получать их можно при помощи электролиза солей, чаще всего хлоридов.

Соединения щелочных металлов находят большое применение в разных отраслях промышленности. См. Табл. 1.

РАСПРОСТРАНЕННЫЕ СОЕДИНЕНИЯ ЩЕЛОЧНЫХ МЕТАЛЛОВ

Едкий натр (каустическая сода)

Поваренная соль

Чилийская селитра

Na 2 SO 4 ∙10H 2 O

Глауберова соль

Na 2 CO 3 ∙10H 2 O

Сода кристаллическая

Едкое кали

Хлорид калия (сильвин)

Индийская селитра

Их название связано с тем, что гидроксиды этих металлов являются щелочами, а оксиды раньше называли «земли». Например, оксид бария BaO - бариевая земля. Бериллий и магний чаще всего к щелочноземельным металлам не относят. Мы не будем рассматривать и радий, так как он радиоактивный.

Химические свойства щелочноземельных металлов.

1. Взаимодействие с неметаллами

Сa + Cl 2 → 2СaCl 2

Сa + H 2 СaH 2

3Сa + 2P Сa 3 P 2-

2. Взаимодействие с кислородом

2Сa + O 2 → 2CaO

3. Взаимодействие с водой

Sr + 2H 2 O → Sr(OH) 2 + H 2 , но взаимодействие более спокойное, чем с щелочными металлами.

4. Взаимодействие с кислотами - сильными окислителями

4Sr + 5HNO 3 (конц) → 4Sr(NO 3) 2 + N 2 O +4H 2 O

4Ca + 10H 2 SO 4 (конц) → 4CaSO 4 + H 2 S + 5H 2 O

Получение щелочноземельных металлов

Металлический кальций и стронций получают электролизом расплава солей, чаще всего хлоридов.

CaCl 2 Сa + Cl 2

Барий высокой чистоты можно получить алюмотермическим способом из оксида бария

3BaO +2Al 3Ba + Al 2 O 3

РАСПРОСТРАНЕННЫЕ СОЕДИНЕНИЯ ЩЕЛОЧНОЗЕМЕЛЬНЫХ МЕТАЛЛОВ

Самыми известными соединениями щелочноземельным металлов являются: CaО - негашеная известь. Ca(OH) 2 - гашеная известь, или известковая вода. При пропускании углекислого газа через известковую воду происходит помутнение, так как образуется нерастворимый карбонат кальция СаСО 3. Но надо помнить, что при дальнейшем пропускании углекислого газа образуется уже растворимый гидрокарбонат и осадок исчезает.

Рис. 2

СaO + H 2 O → Ca(OH) 2

Ca(OH) 2 + CO 2 → CaCO 3 ↓+ H 2 O

CaCO 3 ↓+ H 2 O + CO 2 → Ca(HCO 3) 2

Гипс - это CaSO 4 ∙2H 2 O, алебастр - CaSO 4 ∙0,5H 2 O. Гипс и алебастр используются в строительстве, в медицине и для изготовления декоративных изделий. Рис. 2.

Карбонат кальция CaCO 3 образует множество различных минералов. Рис. 3.

Рис. 3

Фосфат кальция Ca 3 (PO 4) 2 - фосфорит, фосфорная мука используется как минеральное удобрение.

Чистый безводный хлорид кальция CaCl 2 - это гигроскопичное вещество, поэтому широко применяется в лабораториях как осушитель.

Карбид кальция - CaC 2 . Его можно получить так:

СaO + 2C →CaC 2 +CO. Одно из его применений - это получение ацетилена.

CaC 2 + 2H 2 O →Ca(OH) 2 + C 2 H 2

Сульфат бария BaSO 4 - барит. Рис. 4. Используется как эталон белого в некоторых исследованиях.

Рис. 4

Жесткость воды

В природной воде содержатся соли кальция и магния. Если они содержатся в заметных концентрациях, то в такой воде не мылится мыло из-за образования нерастворимых стеаратов. При её кипячении образуется накипь.

Временная жесткость обусловлена присутствием гидрокарбонатов кальция и магния Ca(HCO 3) 2 и Mg(HCO 3) 2 . Такую жесткость воды можно устранить кипячением.

Ca(HCO 3) 2 CaCO 3 ↓ + СО 2 + Н 2 О

Постоянная жесткость воды обусловлена наличием катионов Ca 2+ ., Mg 2+ и анионов H 2 PO 4 - ,Cl - , NO 3 - и др. Постоянная жесткость воды устраняется только благодаря реакциям ионного обмена, в результате которых ионы магния и кальция будут переведены в осадок.

Домашнее задание

1. №№3, 4, 5-а (с. 173) Габриелян О.С. Химия. 11 класс. Базовый уровень. 2-е изд., стер. - М.: Дрофа, 2007. - 220 с.

2. Какую реакцию среды имеет водный раствор сульфида калия? Ответ подтвердите уравнением реакции гидролиза.

3. Определите массовую долю натрия в морской воде, которая содержит 1,5% хлорида натрия.

Из всей периодической системы большая часть элементов представляет группу металлов. амфотерные, переходные, радиоактивные - их очень много. Все металлы играют огромную роль не только в природе и биологической жизни человека, но и в различных отраслях промышленности. Не зря ведь XX век был назван "железным".

Металлы: общая характеристика

Все металлы объединяются общими химическими и физическими свойствами, по которым их легко отличить от неметаллических веществ. Так, например, строение кристаллической решетки позволяет им быть:

  • проводниками электрического тока;
  • хорошими теплопроводниками;
  • ковкими и пластичными;
  • прочными и блестящими.

Конечно, среди них есть и различия. Одни металлы блестят серебристым цветом, другие - более матовым белым, третьи - вообще красным и желтым. Также отличия есть и в показателях тепло- и электропроводности. Однако все равно эти параметры - общие для всех металлов, в то время как у неметаллов больше различий, нежели схожести.

По химической природе все металлы - восстановители. В зависимости от условий реакции и конкретных веществ могут выступать и в роли окислителей, однако редко. Способны образовывать многочисленные вещества. Химические соединения металлов встречаются в природе в огромном количестве в составе руды или полезных ископаемых, минералов и прочих пород. Степень всегда положительная, может быть постоянной (алюминий, натрий, кальций) или переменной (хром, железо, медь, марганец).

Многие из них получили широкое распространение в качестве строительных материалов, используются в самых разных отраслях науки и техники.

Химические соединения металлов

Среди таковых следует назвать несколько основных классов веществ, которые являются продуктами взаимодействия металлов с другими элементами и веществами.

  1. Оксиды, гидриды, нитриды, силициды, фосфиды, озониды, карбиды, сульфиды и прочие - бинарные соединения с неметаллами, чаще всего относятся к классу солей (кроме оксидов).
  2. Гидроксиды - общая формула Ме +х (ОН) х.
  3. Соли. Соединения металлов с кислотными остатками. Могут быть разными:
  • средние;
  • кислые;
  • двойные;
  • основные;
  • комплексные.

4. Соединения металлов с органическими веществами - металлорганические структуры.

5. Соединения металлов друг с другом - сплавы, которые получаются разными способами.

Варианты соединения металлов

Вещества, в которых одновременно могут находиться два разных металла и более, подразделяются на:

  • сплавы;
  • двойные соли;
  • комплексные соединения;
  • интерметаллиды.

Способы соединения металлов между собой также варьируются. Например, для получения сплавов используют метод расплавления, смешения и затвердевания полученного продукта.

Интерметаллиды образуются в результате прямых химических реакций между металлами, нередко происходящих со взрывом (например, цинк и никель). Для таких процессов нужны особые условия: температура очень высокая, давление, вакуумность, отсутствие кислорода и прочие.

Сода, соль, каустик - все это соединения щелочных металлов в природе. Они существуют в чистом виде, формируя залежи, либо входят в состав продуктов сгорания тех или иных веществ. Иногда их получают лабораторным способом. Но всегда эти вещества важны и ценны, так как окружают человека и формируют его быт.

Соединения щелочных металлов и их применение не ограничиваются только натрием. Также распространены и популярны в отраслях хозяйства такие соли, как:

  • хлорид калия;
  • (нитрат калия);
  • карбонат калия;
  • сульфат.

Все они являются ценными минеральными удобрениями, используемыми в сельском хозяйстве.

Щелочноземельные металлы - соединения и их применение

К данной категории относятся элементы второй группы главной подгруппы системы химических элементов. Их постоянная степень окисления +2. Это активные восстановители, легко вступающие в химические реакции с большинством соединений и простых веществ. Проявляют все типичные свойства металлов: блеск, ковкость, тепло и электропроводность.

Самыми важными и распространенными из них являются магний и кальций. Бериллий проявляет амфотерность, барий и радий относятся к редким элементам. Все они способны формировать следующие типы соединений:

  • интерметаллические;
  • оксиды;
  • гидриды;
  • бинарные соли (соединения с неметаллами);
  • гидроксиды;
  • соли (двойные, комплексные, кислые, основные, средние).

Рассмотрим самые важные соединения с практической точки зрения и их области применения.

Соли магния и кальция

Такие соединения щелочноземельных металлов, как соли, имеют важное значение для живых организмов. Ведь именно соли кальция являются источником этого элемента в организме. А без него невозможно нормальное формирование скелета, зубов, рогов у животных, копыт, волос и шерстного покрова и так далее.

Так, самой распространенной солью щелочноземельного металла кальция является карбонат. Его другие названия:

  • мрамор;
  • известняк;
  • доломит.

Используется не только как поставщик ионов кальция в живой организм, но и как стройматериал, сырье для химических производств, в косметической промышленности, стекольной и так далее.

Такие соединения щелочноземельных металлов, как сульфаты, тоже имеют важное значение. Например, сульфат бария (медицинское название "баритовая каша") используется в рентгенодиагностике. Сульфат кальция в виде кристаллогидрата - это гипс, который содержится в природе. Он используется в медицине, строительстве, штамповке слепков.

Фосфоры из щелочноземельных металлов

Эти вещества известны еще со Средних веков. Раньше их называли люминофорами. Это название встречается и сейчас. По своей природе данные соединения - это сульфиды магния, стронция, бария, кальция.

При определенной обработке они способны проявлять фосфоресцирующие свойства, причем свечение очень красивое, от красного до ярко-фиолетового. Это применяется при изготовлении дорожных знаков, спецодежды и прочих вещей.

Комплексные соединения

Вещества, которые включают в себя два и более разных элементов металлической природы, - комплексные соединения металлов. Чаще всего они представляют собой жидкости, обладающие красивыми и разноцветными окрасками. Используются в аналитической химии для качественного определения ионов.

Такие вещества способны образовывать не только щелочные и щелочноземельные металлы, но и все остальные. Бывают гидроксокомплексы, аквакомплексы и другие.

Все элементы главных подгрупп I и II групп Периодической системы, а также водород и гелий относятся к s-элементам. Кроме водорода и гелия, все эти элементы - металлы. Металлы I группы Периодической системы называют щелочными, так как они реагируют с водой, образуя щелочи. Металлы II группы Периодической системы, за исключением бериллия и магния, называют щелочноземельными. Франций, завершающий I группу, и радий, завершающий II группу, - радиоактивные элементы.

Некоторые свойства s-металлов 3

Таблица 15.1

Металлический радиус, нм

Ионный радиус, нм

ЭО по Полингу

I группа

11 группа

а ПИ - потенциал (энергия) ионизации; ЭО - электроотрицательность.

Все s-металлы имеют на внешней оболочке по одному или по два электрона и могут легко их отдавать, образуя ионы с устойчивой электронной конфигурацией благородных газов. Высокая восстановительная активность этих металлов проявляется в очень низких потенциалах ионизации (ПИ) и небольшой электроотрицательности (ЭО) (табл. 15.1). Сравните потенциалы ионизации щелочных металлов и благородных газов (среди всех элементов у благородных газов самая низкая ЭО и самый высокий ПИ; см. табл. 18.1).

Физические свойства. При обычных условиях s-металлы находятся в твердом состоянии, образуя кристаллы с металлической связью. Все металлы I группы имеют объемноцентрированную кубическую решетку (ОЦК, см. § 4.4). Для бериллия и магния характерна гексагональная плотнейшая упаковка (ГПУ), у кальция и стронция гранецентрированная кубическая решетка (ГЦК), у бария объемно- центрированная кубическая (ОЦК).

Металлы I группы мягкие и имеют небольшую плотность по сравнению с другими. Литий, натрий и калий легче воды и плавают на ее поверхности, реагируя с ней. Металлы II группы тверже и плотнее щелочных. Низкие температуры плавления и кипения s-металлов (см. табл. 15.1) объясняются сравнительно слабой металлической связью в кристаллических решетках; энергия связи (в эВ): литий 1,65, натрий 1,11, калий 0,92, рубидий 0,84, цезий 0,79, бериллий 3,36, магний 1,53, кальций 1,85, стронций 1,70, барий 1,87.

Для сравнения энергии связи (в эВ): алюминий 3,38, цинк 1,35, железо 4,31, медь 3,51, серебро 2,94, титан 4,87, молибден 6,82, вольфрам 8,80.

Металлическая связь образуется делокализованными валентными электронами, удерживающими положительные ионы атомов металла вместе (см. § 3.6). Чем больше металлический радиус, тем больше делокализованных электронов, которые распределяются «тонким слоем» между положительными ионами, и тем меньше прочность кристаллической решетки. Этим и объясняются низкие температуры плавления и кипения металлов I и II групп. Температуры плавления и кипения элементов II группы в отличие от щелочных металлов изменяются несистематически, что объясняется различиями кристаллических структур (см. выше).

Распространенность в природе. Все s-металлы встречаются в природе только в виде соединений: ископаемые минеральные соли и их залежи (КС1, NaCl, СаС0 3 и другие) и ионов в морской воде. Кальций, натрий, калий и магний по распространенности на Земле занимают пятое, шестое, седьмое и восьмое места соответственно. Стронций распространен в умеренных количествах. Содержание остальных s-металлов в земной коре и океанических водах незначительно. Например, содержание натрия в земной коре 2,3% ив морской воде 1,1%, цезия в земной коре 3 10~ 4 % и в морской воде 3 10 -8 %.

Натрий, цезий и бериллий имеют только по одному стабильному изотопу, литий, калий и рубидий по два: |Li 7,5% и |Li 92,5%; 93,26% и ЦК 6,74%; f^Rb 72,17% и fpRb 27,83%. У магния три устойчивых изотопа (| 2 Mg 79,0%, j|Mg 10,0% и j|Mg 11,0%). У других щелочноземельных металлов число стабильных изотопов больше; главные из них: 4 °Са 96,94% и ЦСа 2,09%; ||Sr 82,58%, 8 |Sr 9,86% и ||Sr 7,0%; 1 ||Ва 71,7%, 18 |Ва 11,23%, 18 ®Ва 7,85% и 18 |Ва 6,59%.

К щелочноземельным металлам относятся металлы IIa группы: бериллий, магний, кальций, стронций, барий и радий. Отличаются легкостью, мягкостью и сильной реакционной способностью.

Общая характеристика

От Be к Ra (сверху вниз в периодической таблице) происходит увеличение: атомного радиуса, металлических, основных, восстановительных свойств, реакционная способность. Уменьшается электроотрицательность, энергия ионизация, сродство к электрону.

Электронные конфигурации у данных элементов схожи, так как они находятся в одной группе (главной подгруппе!), общая формула ns 2:

  • Be - 2s 2
  • Mg - 3s 2
  • Ca - 4s 2
  • Sr - 5s 2
  • Ba - 6s 2
  • Ra - 7s 2
Природные соединения

В природе щелочноземельные металлы встречаются в виде следующих соединений:

  • Be - BeO*Al 2 O 3 *6SiO 2 - берилл
  • Mg - MgCO 3 - магнезит, MgO*Al 2 O 3 - шпинель, 2MgO*SiO 2 - оливин
  • Ca - CaCO 3 - мел, мрамор, известняк, кальцит, CaSO 4 *2H 2 O - гипс, CaF 2 - флюорит


Получение

Это активные металлы, которые нельзя получить электролизом раствора. С целью их получения применяют электролиз расплавов, алюминотермию и вытеснением их из солей другими более активными металлами.

MgCl 2 → (t) Mg + Cl 2 (электролиз расплава)

CaO + Al → Al 2 O 3 + Ca (алюминотермия - способ получения металлов путем восстановления их оксидов алюминием)

MgBr 2 + Ca → CaBr 2 + Mg


Химические свойства

Оксиды щелочноземельных металлов

Имеют общую формулу RO, например: MgO, CaO, BaO.

Получение

Оксиды щелочноземельных металлов можно получить путем разложения карбонатов и нитратов:

MgCO 3 → (t) MgO + CO 2

Ca(NO 3) 2 → (t) CaO + O 2 + NO 2


Химические свойства

Проявляют преимущественно основные свойства, все кроме BeO - амфотерного оксида.

Гидроксиды щелочноземельных металлов

Проявляют основные свойства, за исключением гидроксида бериллия - амфотерного гидроксида.

Получение

Получают гидроксиды в реакции соответствующего оксида металла и воды (все кроме Be(OH) 2)

CaO + H 2 O → Ca(OH) 2

Химические свойства

Основные свойства большинства гидроксидов располагают к реакциям с кислотами и кислотными оксидами.

Ba(OH) 2 + H 2 SO 4 → BaSO 4 ↓ + H 2 O

Ca(OH) 2 + H 2 O + CO 2 → Ca(HCO 3) 2 + H 2 O

Ca(HCO 3) 2 + Ca(OH) 2 → CaCO 3 + H 2 O + CO 2

Ca(OH) 2 + CO 2 → CaCO 3 ↓ + H 2 O


Реакция с солями (и не только) идут в том случае, если соль растворимы и по итогам реакции выделяется газ, выпадает осадок или образуется слабый электролит (вода).

Ba(OH) 2 + Na 2 SO 4 → BaSO 4 ↓ + NaOH

Гидроксид бериллия относится к амфотерным: проявляет двойственные свойства, реагируя и с кислотами, и с основаниями.

Be(OH) 2 + HCl → BeCl 2 + H 2 O

Be(OH) 2 + NaOH → Na 2

Жесткостью воды называют совокупность свойств воды, зависящая от присутствия в ней преимущественно солей кальция и магния: гидрокарбонатов, сульфатов и хлоридов.

Различают временную (карбонатную) и постоянную (некарбонатную) жесткость.


Вероятно, вы часто устраняете жесткость воды у себя дома, осмелюсь предположить - каждый день. Временная жесткость воды устраняется обычным кипячением воды в чайнике, и известь на его стенках - CaCO 3 - бесспорное доказательство устранения жесткости:

Ca(HCO 3) 2 → CaCO 3 ↓ + CO 2 + H 2 O

Также временную жесткость можно устранить, добавив Na 2 CO 3 в воду:

Ca(HCO 3) 2 + Na 2 CO 3 → CaCO 3 ↓ + NaHCO 3

С постоянной жесткостью бороться кипячением бесполезно: сульфаты и хлориды не выпадут в осадок при кипячении. Постоянную жесткость воды устраняют добавлением в воду Na 2 CO 3:

CaCl 2 + Na 2 CO 3 → CaCO 3 ↓ + NaCl

MgSO 4 + Na 2 CO 3 + H 2 O → 2 CO 3 ↓ + CO 2 + Na 2 SO 4

Жесткость воды можно определить с помощью различных тестов. Чрезмерно высокая жесткость воды приводит к быстрому образованию накипи на стенках котлов, труб, чайника.


©Беллевич Юрий Сергеевич

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к