Примеры решения задач на тему «Случайные величины. Непрерывная случайная величина, функция распределения и плотность вероятности Дана плотность распределения случайной величины х

Случайной величиной Называется величина, которая в результате испытаний, проводимых в одних и тех же условиях, принимает различные, вообще говоря, значения, зависящие от не учитываемых случайных факторов. Примеры случайных величин: число выпавших очков на игральной кости, число дефектных изделий в партии, отклонение точки падения снаряда от цели, время безотказной работы устройства и т. п. Различают дискретные и непрерывные случайные величины. Дискретной Называется случайная величина, возможные значения которой образуют счетное множество, конечное или бесконечное (т. е. такое множество, элементы которого могут быть занумерованы).

Непрерывной Называется случайная величина, возможные значения которой непрерывным образом заполняют некоторый конечный или бесконечный интервал числовой оси. Число значений непрерывной случайной величины всегда бесконечно.

Случайные величины будем обозначать заглавными буквами конца латинского алфавита: X , Y , ...; значения случайной величины – строчными буквами: Х, у, ... . Таким образом, X Обозначает всю совокупность возможных значений случайной величины, а Х – Некоторое ее конкретное значение.

Законом распределения дискретной случайной величины называется задаваемое в любой форме соответствие между возможными значениями случайной величины и их вероятностями.

Пусть возможными значениями случайной величины X Являются . В результате испытания случайная величина примет одно из этих значений, т. е. Произойдет одно событие из полной группы попарно несовместных событий.

Пусть также известны вероятности этих событий:

Закон распределения случайной величины X Может быть записан в виде таблицы, которую называют Рядом распределения Дискретной случайной величины:

Для ряда распределения имеет место равенство (условие нормировки).

Пример 3.1. Найти закон распределения дискретной случайной величины X – числа появлений «орла» при двух бросаниях монеты.

Функция распределения является универсальной формой задания закона распределения как дискретных, так и непрерывных случайных величин.

Функцией распределения случайной величины X Называется функция F (X ), Определенная на всей числовой оси следующим образом:

F (X )= Р (Х < х ),

Т. е. F (X ) есть вероятность того, что случайная величина X Примет значение меньшее, чем X .

Функцию распределения можно представить графически. Для дискретной случайной величины график имеет ступенчатый вид. Построим, например, график функции распределения случайной величины, заданной следующим рядом (рис. 3.1):

Рис. 3.1. График функции распределения дискретной случайной величины

Скачки функции происходят в точках, соответствующих возможным значениям случайной величины, и равны вероятностям этих значений. В точках разрыва функция F (X ) непрерывна слева.

График функции распределения непрерывной случайной величины представляет собой непрерывную кривую.

X

Рис. 3.2. График функции распределения непрерывной случайной величины

Функция распределения обладает следующими очевидными свойствами:

1) , 2) , 3) ,

4) при .

Будем называть событие, состоящее в том, что случайная величина X Принимает значение Х, Принадлежащее некоторому полузамкнутому интервалу A £ х < B , Попаданием случайной величины на интервал [A , B ).

Теорема 3.1 . Вероятность попадания случайной величины на интервал [A , B ) равна приращению функции распределения на этом интервале:

Если уменьшать интервал [A , B ), Полагая, что , то в пределе формула (3.1) вместо вероятности попадания на интервал дает вероятность попадания в точку, т. е. вероятность того, что случайная величина примет значение A :

Если функция распределения имеет разрыв в точке A , То предел (3.2) равен значению скачка функции F (X ) в точке Х =A , Т. е. вероятности того, что случайная величина примет значение A (рис. 3.3, А ). Если же случайная величина непрерывна, т. е. непрерывна функция F (X ), то предел (3.2) равен нулю (рис. 3.3, Б )

Таким образом, вероятность любого конкретного значения непрерывной случайной величины равна нулю. Однако это не означает невозможности события Х= A , А лишь говорит о том, что относительная частота этого события будет стремиться к нулю при неограниченном увеличении числа испытаний.

А )
Б )

Рис. 3.3. Скачок функции распределения

Для непрерывных случайных величин наряду с функцией распределения используется еще одна форма задания закона распределения – плотность распределения.

Если – вероятность попадания на интервал , то отношение характеризует плотность, с которой вероятность распределена в окрестности точки X . Предел этого отношения при ,т. е. производная , называется Плотностью распределения (плотностью распределения вероятностей, плотностью вероятности) случайной величины X . Условимся плотность распределения обозначить

.

Таким образом, плотность распределения характеризует вероятность попадания случайной величины в окрестность точки Х.

График плотности распределения называют Кривой рас Пределения (Рис. 3.4).

Рис. 3.4. Вид плотности распределения

Исходя из определения и свойств функции распределения F (X ), нетрудно установить следующие свойства плотности распределения F (X ):

1) F (X )³0

2)

3)

4)

Для непрерывной случайной величины в силу того, что вероятность попадания в точку равна нулю, имеют место следующие равенства:

Пример 3.2. Случайная величина X Задана плотностью распределения

Требуется:

А) найти значение коэффициента А;

Б) найти функцию распределения;

В) найти вероятность попадания случайной величины на интервал (0, ).

Функция распределения или плотность распределения полностью описывают случайную величину. Часто, однако, при решении практических нет необходимости в полном знании закона распределения, достаточно знать лишь некоторые его характерные черты. Для этого в теории вероятностей используются числовые характеристики случайной величины, выражающие различные свойства закона распределения. Основными числовыми характеристиками являются Математическое Ожидание, дисперсия и среднее квадратическое отклонение .

Математическое ожидание Характеризует положение случайной величины на числовой оси. Это некоторое среднее значение случайной величины, около которого группируются все ее возможные значения.

Математическое ожидание случайной величины X Обозначают символами М (Х ) или Т . Математическим ожиданием дискретной случайной величины называется сумма парных произведений всех возможных значений случайной величины на вероятности этих значений:

Математическое ожидание непрерывной случайной величины определяется с помощью несобственного интеграла:

Исходя из определений, нетрудно убедиться в справедливости следующих свойств математического ожидания:

1. (математическое ожидание неслучайной величины С Равно самой неслучайной величине).

2. Если ³0, то ³0.

4. Если и Независимы , то .

Пример 3.3. Найти математическое ожидание дискретной случайной величины, заданной рядом распределения:

Решение .

=0×0.2 + 1×0.4 + 2×0.3 + 3×0.1=1.3.

Пример 3.4. Найти математическое ожидание случайной величины, заданной плотностью распределения:

.

Решение .

Дисперсия и среднее квадратическое отклонение Являются характеристиками рассеивания случайной величины, они характеризуют разброс ее возможных значений относительно математического ожидания.

Дисперсией D (X ) Случайной величины X Называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания Для дискретной случайной величины дисперсия выражается суммой:

(3.3)

А для непрерывной – интегралом

(3.4)

Дисперсия имеет размерность квадрата случайной величины. Характеристикой рассеивания, Совпадающей по размерно Сти со случайной величиной , служит среднее квадратическое отклонение.

Свойства дисперсии:

1) – постоянные. В частности,

3)

В частности,

Заметим, что вычисление дисперсии по формуле (3.5) часто оказывается более удобным, чем по формуле (3.3) или (3.4).

Величина называется Ковариацией случайных величин .

Если , то величина

Называется Коэффициентом корреляции случайных величин .

Можно показать, что если , то величины линейно зависимы: где

Отметим, что если независимы, то

Пример 3.5. Найти дисперсию случайной величины, заданной рядом распределения из примера 1.

Решение . Чтобы вычислить дисперсию, необходимо знать математическое ожидание. Для данной случайной величины выше было найдено: M =1.3. Вычисляем дисперсию по формуле (3.5):

Пример 3.6. Случайная величина задана плотностью распределения

Найти дисперсию и среднее квадратическое отклонение.

Решение . Находим сначала математическое ожидание:

(как интеграл от нечетной функции по симметричному промежутку).

Теперь вычисляем дисперсию и среднее квадратическое отклонение:

1. Биномиальное распределение . Случайная величина , равная числу «УСПЕХОВ» в схеме Бернулли, имеет биномиальное распределение: , .

Математическое ожидание случайной величины, распределённой по биноминальному закону, равно

.

Дисперсия этого распределения равна .

2. Распределение Пуассона ,

Математическое ожидание и дисперсия случайной величины с распределением Пуассона , .

Распределение Пуассона часто используется, когда мы имеем дело с числом событий, появляющихся в промежутке времени или пространства, например: число машин, прибывших на автомойку в течении часа, число остановок станков в неделю, число дорожных происшествий и т. д.

Случайная величина имеет Геометрическое распределение с параметром , если принимает значения с вероятностями . Случайная величина с таким распределением имеет смысл Номера первого успешного испытания в схеме Бернулли с вероятностью успеха . Таблица распределения имеет вид:

3. Нормальное распределение . Нормальный закон распределения вероятностей занимает особое место среди других законов распределения. В теории вероятности доказывается, что плотность вероятности суммы независимых или Слабо зависимых , равномерно малых (т. е. играющих примерно одинаковую роль) слагаемых при неограниченном увеличении их числа как угодно близко приближается к нормальному закону распределению независимо от того, какие законы распределения имеют эти слагаемые (центральная предельная теорема А. М. Ляпунова).

Понятия математического ожидания М (Х ) и дисперсии D (X ), введенные ранее для дискретной случайной величины, можно распространить на непрерывные случайные величины.

· Математическое ожидание М (Х ) непрерывной случайной величины Х определяется равенством:

при условии, что этот интеграл сходится.

· Дисперсия D (X ) непрерывной случайной величины Х определяется равенством:

· Среднее квадратическое отклонение σ(Х ) непрерывной случайной величины определяется равенством:

Все свойства математического ожидания и дисперсии, рассмотренные ранее для дискретных случайных величин, справедливы и для непрерывных.

Задача 5.3. Случайная величина Х задана дифференциальной функцией f (x ):

Найти M (X ), D (X ), σ(Х ), а также P (1 < х < 5).

Решение:

M (X )= =

+ = 8/9 0+9/6 4/6=31/18,

D (X )=

= = /

P 1 =

Задачи

5.1. Х

f (x ), а также

Р (‒1/2 < Х < 1/2).

5.2. Непрерывная случайная величина Х задана функцией распределения:

Найти дифференциальную функцию распределения f (x ), а также

Р (2π /9 < Х < π /2).

5.3. Непрерывная случайная величина Х

Найти: а) число с ; б) М (Х ), D (X ).

5.4. Непрерывная случайная величина Х задана плотностью распределения:

Найти: а) число с ; б) М (Х ), D (X ).

5.5. Х :

Найти: а) F (х ) и построить ее график; б) M (X ), D (X ), σ(Х ); в) вероятность того, что в четырех независимых испытаниях величина Х примет ровно 2 раза значение, принадлежащее интервалу (1;4).

5.6. Задана плотность распределения вероятностей непрерывной случайной величины Х :

Найти: а) F (х ) и построить ее график; б) M (X ), D (X ), σ(Х ); в) вероятность того, что в трех независимых испытаниях величина Х примет ровно 2 раза значение, принадлежащее отрезку .

5.7. Функция f (х ) задана в виде:

с Х ; б) функцию распределения F (x ).

5.8. Функция f (x ) задана в виде:

Найти: а) значение постоянной с , при которой функция будет плотностью вероятности некоторой случайной величины Х ; б) функцию распределения F (x ).

5.9. Случайная величина Х , сосредоточенная на интервале (3;7), задана функцией распределения F (х )= Х примет значение: а) меньше 5, б) не меньше 7.

5.10. Случайная величина Х , сосредоточенная на интервале (-1;4), задана функцией распределения F (х )= . Найти вероятность того, что случайная величина Х примет значение: а) меньше 2, б) меньше 4.


5.11.

Найти: а) число с ; б) М (Х ); в) вероятность Р (Х > М (Х )).

5.12. Случайная величина задана дифференциальной функцией распределения:

Найти: а) М (Х ); б) вероятность Р (Х ≤ М (Х )).

5.13. Распределение Ремя задается плотностью вероятности:

Доказать, что f (x ) действительно является плотностью распределения вероятностей.

5.14. Задана плотность распределения вероятностей непрерывной случайной величины Х :

Найти число с .

5.15. Случайная величина Х распределена по закону Симпсона (равнобедренного треугольника) на отрезке [-2;2] (рис. 5.4). Найти аналитическое выражение для плотности вероятности f (x ) на всей числовой оси.

Рис. 5.4 Рис. 5.5

5.16. Случайная величина Х распределена по закону "прямоугольного треугольника" в интервале (0;4) (рис. 5.5). Найти аналитическое выражение для плотности вероятности f (x ) на всей числовой оси.

Ответы

P (-1/2<X <1/2)=2/3.

P (2π /9<Х < π /2)=1/2.

5.3. а) с =1/6, б) М (Х )=3 , в) D (X )=26/81.

5.4. а) с =3/2, б) М (Х )=3/5, в) D (X )=12/175.

б) M (X )= 3 , D (X )= 2/9, σ(Х )= /3.

б) M (X )=2 , D (X )= 3 , σ(Х )= 1,893.

5.7. а) с = ; б)

5.8. а) с =1/2; б)

5.9. а)1/4; б) 0.

5.10. а)3/5; б) 1.

5.11. а) с = 2; б) М (Х )= 2; в) 1-ln 2 2 ≈ 0,5185.

5.12. а) М (Х )= π /2 ; б) 1/2

Математическим ожиданием дискретной случайной величины называется:

В случае бесконечного множества значений в правой части (4.4) находится ряд, и мы будем рассматривать только те значения Х, для которых этот ряд абсолютно сходится.

М(Х) представляет собой среднее ожидаемое значение случайной величины. Оно обладает следующими свойствами:

1) М(С)=С, где С=const

2) M (CX)=CM (X) (4.5)

3) M (X+Y)=M(X)+M(Y), для любых Х и Y.

4) M (XY)=M (X)M(Y), если Х и Y независимы.

Для оценки степени рассеяния значений случайной величины около ее среднего значения M(X)=а вводятся понятия дисперсии D(X) и среднего квадратического (стандартного) отклонения . Дисперсией называется математическое ожидание квадрата разности (X- ), т.е. :

D(X)=M(X- ) 2 = p i ,

Где =М(X); определяется как квадратный корень из дисперсии, т.е. .

Для вычисления дисперсии пользуются формулой:

(4.6)

Свойства дисперсии и среднего квадратического отклонения:

1) D(C)=0, где С=сonst

2) D(CX)=C 2 D(X), (CX)= çCç (X) (4.7)

3) D(X+Y) =D(X)+D(Y),

если Х и У независимы.

Размерность величин и совпадает с размерностью самой случайной величины Х, а размерность D(X) равна квадрату размерности случайной величины Х.

4.3. Математические операции над случайными величинами.

Пусть случайная величина Х принимает значения с вероятностями а случайная величина Y- значения с вероятностями Произведение КX случайной величины Х на постоянную величину К - это новая случайная величина, которая с теми же вероятностями, что и случайная величина Х, принимает значения, равные произведениям на К значений случайной величины Х. Следовательно, ее закон распределения имеет вид таблица 4.2:

Таблица 4.2

...
...

Квадрат случайной величины Х, т.е. , - это новая случайная величина,которая с теми же вероятностями, что и случайная величина Х, принимает значения, равные квадратам ее значений.

Сумма случайных величин Х и У - это новая случайная величина, которая принимает все значения вида с вероятностями , выражающими вероятность того, что случайная величина Х примет значение а У - значение , то есть

(4.8)

Если случайные величины Х и У независимы, то:

Аналогично определяются разность и произведение случайных величин Х и У.

Разность случайных величин Х и У - это новая случайная величина, которая принимает все значения вида , а произведение - все значения вида с вероятностями, определяемыми по формуле (4.8), а если случайные величины Х и У независимы, то по формуле (4.9).

4.4. Распределения Бернулли и Пуассона .

Рассмотрим последовательность n идентичных повторных испытаний, удовлетворяющих следующим условиям:

1. Каждое испытание имеет два исхода, называемые успех и неуспех.

Эти два исхода - взаимно несовместные и противоположные события.

2. Вероятность успеха, обозначаемая p, остается постоянной от испытания к испытанию. Вероятность неуспеха обозначается q.

3. Все n испытаний - независимы. Это значит, что вероятность наступления события в любом из n повторных испытаний не зависит от результатов других испытаний.

Вероятность того, что в n независимых повторных испытаниях, в каждом из которых вероятность появления события равна , событие наступит ровно m раз (в любой последовательности), равна

(4.10)

Выражение (4.10) называется формулой Бернулли.

Вероятности того, что событие наступит:

а) менее m раз,

б) более m раз,

в) не менее m раз,

г) не более m раз - находятся соответственно по формулам:

Биномиальным называют закон распределения дискретной случайной величины Х - числа появлений события в n независимых испытаниях, в каждом из которых вероятность наступления события равна р; вероятности возможных значений Х = 0,1,2,..., m,...,n вычисляются по формуле Бернулли (таблица 4.3).

Таблица 4.3

Число успехов Х=m ... m ... n
Вероятность Р ... ...

Так как правая часть формулы (4.10) представляет общий член биноминального разложения , то этот закон распределения называют биномиальным . Для случайной величины Х, распределенной по биноминальному закону, имеем.

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

Пример 2.1. Случайная величина X задана функцией распределения

Найти вероятность того, что в результате испытания X примет значения, заключенные в промежутке (2,5; 3,6).

Решение: Х в промежуток (2,5; 3,6) можно определить двумя способами:

Пример 2.2. При каких значениях параметров А и В функция F (x ) = A + Be - x может быть функцией распределения для неотрицательных значений случайной величины Х .

Решение: Так как все возможные значения случайной величины Х принадлежат интервалу , то для того, чтобы функция была функцией распределения для Х , должно выполняться свойство:

.

Ответ: .

Пример 2.3. Случайная величина X задана функцией распределения

Найти вероятность того, что в результате четырех независимых испытаний величина X ровно 3 раза примет значение, принадлежащее интервалу (0,25;0,75).

Решение: Вероятность попадания величины Х в промежуток (0,25;0,75) найдем по формуле:

Пример 2.4. Вероятность попадания мячом в корзину при одном броске равна 0,3. Составить закон распределения числа попаданий при трех бросках.

Решение: Случайная величина Х – число попаданий в корзину при трех бросках – может принимать значения: 0, 1, 2, 3. Вероятности того, что Х

Х :

Пример 2.5. Два стрелка делают по одному выстрелу в мишень. Вероятность попадания в нее первым стрелком равна 0,5, вторым – 0,4. Составить закон распределения числа попаданий в мишень.

Решение: Найдем закон распределения дискретной случайной величины Х – числа попаданий в мишень. Пусть событие – попадание в мишень первым стрелком, а – попадание вторым стрелком, и - соответственно их промахи.



Составим закон распределения вероятностей СВ Х :

Пример 2.6. Испытываются 3 элемента, работающих независимо друг от друга. Длительности времени (в часах) безотказной работы элементов имеют функции плотности распределения: для первого: F 1 (t ) =1-e - 0,1 t , для второго: F 2 (t ) = 1-e - 0,2 t , для третьего: F 3 (t ) =1-e - 0,3 t . Найти вероятность того, что в интервале времени от 0 до 5 часов: откажет только один элемент; откажут только два элемента; откажут все три элемента.

Решение: Воспользуемся определением производящей функции вероятностей :

Вероятность того, что в независимых испытаниях, в первом из которых вероятность появления события А равна , во втором и т. д., событие А появится ровно раз, равна коэффициенту при в разложении производящей функции по степеням . Найдем вероятности отказа и неотказа соответственно первого, второго и третьего элемента в интервале времени от 0 до 5 часов:

Составим производящую функцию:

Коэффициент при равен вероятности того, что событие А появится ровно три раза, то есть вероятности отказа всех трех элементов; коэффициент при равен вероятности того, что откажут ровно два элемента; коэффициент при равен вероятности того, что откажет только один элемент.

Пример 2.7. Дана плотность вероятности f (x )случайной величины X :

Найти функцию распределения F(x).

Решение: Используем формулу:

.

Таким образом, функция распределения имеет вид:

Пример 2.8. Устройство состоит из трех независимо работающих элементов. Вероятность отказа каждого элемента в одном опыте равна 0,1. Составить закон распределения числа отказавших элементов в одном опыте.

Решение: Случайная величина Х – число элементов, отказавших в одном опыте – может принимать значения: 0, 1, 2, 3. Вероятности того, что Х примет эти значения, найдем по формуле Бернулли:

Таким образом, получаем следующий закон распределения вероятностей случайной величины Х :

Пример 2.9. В партии из 6 деталей имеется 4 стандартных. Наудачу отобраны 3 детали. Составить закон распределения числа стандартных деталей среди отобранных.

Решение: Случайная величина Х – число стандартных деталей среди отобранных – может принимать значения: 1, 2, 3 и имеет гипергеометрическое распределение. Вероятности того, что Х

где -- число деталей в партии;

-- число стандартных деталей в партии;

число отобранных деталей;

-- число стандартных деталей среди отобранных.

.

.

.

Пример 2.10. Случайная величина имеет плотность распределения

причем и не известны, но , а и . Найдите и .

Решение: В данном случае случайная величина X имеет треугольное распределение (распределение Симпсона) на отрезке [a, b ]. Числовые характеристики X :

Следовательно, . Решая данную систему, получим две пары значений: . Так как по условию задачи , то окончательно имеем: .

Ответ: .

Пример 2.11. В среднем по 10% договоров страховая компания выплачивает страховые суммы в связи с наступлением страхового случая. Вычислить математическое ожидание и дисперсию числа таких договоров среди наудачу выбранных четырех.

Решение: Математическое ожидание и дисперсию можно найти по формулам:

.

Возможные значения СВ (число договоров (из четырех) с наступлением страхового случая): 0, 1, 2, 3, 4.

Используем формулу Бернулли, чтобы вычислить вероятности различного числа договоров (из четырех), по которым были выплачены страховые суммы:

.

Ряд распределения СВ (число договоров с наступлением страхового случая) имеет вид:

0,6561 0,2916 0,0486 0,0036 0,0001

Ответ: , .

Пример 2.12. Из пяти роз две белые. Составить закон распределения случайной величины, выражающей число белых роз среди двух одновременно взятых.

Решение: В выборке из двух роз может либо не оказаться белой розы, либо может быть одна или две белые розы. Следовательно, случайная величина Х может принимать значения: 0, 1, 2. Вероятности того, что Х примет эти значения, найдем по формуле:

где -- число роз;

-- число белых роз;

число одновременно взятых роз;

-- число белых роз среди взятых.

.

.

.

Тогда закон распределения случайной величины будет такой:

Пример 2.13. Среди 15 собранных агрегатов 6 нуждаются в дополнительной смазке. Составить закон распределения числа агрегатов, нуждающихся в дополнительной смазке, среди пяти наудачу выбранных из общего числа.

Решение: Случайная величина Х – число агрегатов, нуждающихся в дополнительной смазке среди пяти выбранных – может принимать значения: 0, 1, 2, 3, 4, 5 и имеет гипергеометрическое распределение. Вероятности того, что Х примет эти значения, найдем по формуле:

где -- число собранных агрегатов;

-- число агрегатов, нуждающихся в дополнительной смазке;

число выбранных агрегатов;

-- число агрегатов, нуждающихся в дополнительной смазке среди выбранных.

.

.

.

.

.

.

Тогда закон распределения случайной величины будет такой:

Пример 2.14. Из поступивших в ремонт 10 часов 7 нуждаются в общей чистке механизма. Часы не рассортированы по виду ремонта. Мастер, желая найти часы, нуждающиеся в чистке, рассматривает их поочередно и, найдя такие часы, прекращает дальнейший просмотр. Найти математическое ожидание и дисперсию числа просмотренных часов.

Решение: Случайная величина Х – число агрегатов, нуждающихся в дополнительной смазке среди пяти выбранных – может принимать значения: 1, 2, 3, 4. Вероятности того, что Х примет эти значения, найдем по формуле:

.

.

.

.

Тогда закон распределения случайной величины будет такой:

Теперь вычислим числовые характеристики величины :

Ответ: , .

Пример 2.15. Абонент забыл последнюю цифру нужного ему номера телефона, однако помнит, что она нечетная. Найти математическое ожидание и дисперсию числа сделанных им наборов номера телефона до попадания на нужный номер, если последнюю цифру он набирает наудачу, а набранную цифру в дальнейшем не набирает.

Решение: Случайная величина может принимать значения: . Так как набранную цифру абонент в дальнейшем не набирает, то вероятности этих значений равны .

Составим ряд распределения случайной величины:

0,2

Вычислим математическое ожидание и дисперсию числа попыток набора номера:

Ответ: , .

Пример 2.16. Вероятность отказа за время испытаний на надежность для каждого прибора серии равна p . Определить математическое ожидание числа приборов, давших отказ, если испытанию подверглись N приборов.

Решение: Дискретная случайная величина X - число отказавших приборов в N независимых испытаниях, в каждом из которых вероятность появления отказа равна p, распределена по биномиальному закону. Математическое ожидание биномиального распределения равно произведению числа испытаний на вероятность появления события в одном испытании:

Пример 2.17. Дискретная случайная величина X принимает 3 возможных значения: с вероятностью ; с вероятностью и с вероятностью . Найти и , зная, что M(X ) = 8.

Решение: Используем определения математического ожидания и закона распределения дискретной случайной величины:

Находим: .

Пример 2.18. Отдел технического контроля проверяет изделия на стандартность. Вероятность того, что изделие стандартно, равна 0,9. В каждой партии содержится 5 изделий. Найти математическое ожидание случайной величины X – числа партий, в каждой из которых содержится ровно 4 стандартных изделия, если проверке подлежат 50 партий.

Решение: В данном случае все проводимые опыты независимы, а вероятности того, что в каждой партии содержится ровно 4 стандартных изделия, одинаковы, следовательно, математическое ожидание можно определить по формуле:

,

где - число партий;

Вероятность того, что в партии содержится ровно 4 стандартных изделия.

Вероятность найдем по формуле Бернулли:

Ответ: .

Пример 2.19. Найти дисперсию случайной величины X – числа появлений события A в двух независимых испытаниях, если вероятности появления события в этих испытаниях одинаковы и известно, что M (X ) = 0,9.

Решение: Задачу можно решить двумя способами.

1) Возможные значения СВ X : 0, 1, 2. По формуле Бернулли определим вероятности этих событий:

, , .

Тогда закон распределения X имеет вид:

Из определения математического ожидания определим вероятность :

Найдем дисперсию СВ X :

.

2) Можно использовать формулу:

.

Ответ: .

Пример 2.20. Математическое ожидание и среднее квадратическое отклонение нормально распределенной случайной величины X соответственно равны 20 и 5. Найти вероятность того, что в результате испытания X примет значение, заключенное в интервале (15; 25).

Решение: Вероятность попадания нормальной случайной величины Х на участок от до выражается через функцию Лапласа:

Пример 2.21. Дана функция:

При каком значении параметра C эта функция является плотностью распределения некоторой непрерывной случайной величины X ? Найти математическое ожиданий и дисперсию случайной величины X .

Решение: Для того, чтобы функция была плотностью распределения некоторой случайной величины , она должна быть неотрицательна, и она должна удовлетворять свойству:

.

Следовательно:

Вычислим математическое ожидание по формуле:

.

Вычислим дисперсию по формуле:

T равна p . Необходимо найти математическое ожидание и дисперсию этой случайной величины.

Решение: Закон распределения дискретной случайной величины X - числа появлений события в независимых испытаниях, в каждом из которых вероятность появления события равна , называют биномиальным. Математическое ожидание биномиального распределения равно произведению числа испытаний на вероятность появления события А одном испытании:

.

Пример 2.25. Производится три независимых выстрела по мишени. Вероятность попадания при каждом выстреле равна 0.25. Определить среднее квадратическое отклонение числа попаданий при трех выстрелах.

Решение: Так как производится три независимых испытания, и вероятность появления события А (попадания) в каждом испытании одинакова, то будем считать, что дискретная случайная величина X - число попаданий в мишень – распределена по биномиальному закону.

Дисперсия биномиального распределения равна произведению числа испытаний на вероятности появления и непоявления события в одном испытании:

Пример 2.26. Среднее число клиентов, посещающих страховую компанию за 10 мин., равно трем. Найти вероятность того, что в ближайшие 5 минут придет хотя бы один клиент.

Среднее число клиентов, пришедших за 5 минут: . .

Пример 2.29. Время ожидания заявки в очереди на процессор подчиняется показательному закону распределения со средним значением 20 секунд. Найти вероятность того, что очередная (произвольная) заявка будет ожидать процессор более 35 секунд.

Решение: В этом примере математическое ожидание , а интенсивность отказов равна .

Тогда искомая вероятность:

Пример 2.30. Группа студентов в количестве 15 человек проводит собрание в зале, в котором 20 рядов по 10 мест в каждом. Каждый студент занимает место в зале случайным образом. Какова вероятность того, что не более трех человек будут находиться на седьмом месте ряда?

Решение:

Пример 2.31.

Тогда согласно классическому определению вероятности:

где -- число деталей в партии;

-- число нестандартных деталей в партии;

число отобранных деталей;

-- число нестандартных деталей среди отобранных.

Тогда закон распределения случайной величины будет такой.


Плотностью распределения вероятностей Х называют функцию f(x) – первую производную от функции распределения F(x) :

Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима.

Плотность распределения вероятностей f(x) – называют дифференциальной функцией распределения:

Свойство 1. Плотность распределения - величина неотрицательная:

Свойство 2. Несобственный интеграл от плотности распределения в пределах от до равен единице:

Пример 1.25. Дана функция распределения непрерывной случайной величины Х:

f(x) .

Решение: Плотность распределения равна первой производной от функции распределения:

1. Дана функция распределения непрерывной случайной величины Х:

Найти плотность распределения.

2. Задана функция распределения непрерывной случайной величины Х:

Найти плотность распределения f(x).

1.3. Числовые характеристики непрерывной случайной

величины

Математическое ожидание непрерывной случайной величины Х , возможные значения которой принадлежат всей оси Ох , определяется равенством:

Предполагается, что интеграл сходится абсолютно.

a,b ), то:

f(x) – плотность распределения случайной величины.

Дисперсия непрерывной случайной величины Х , возможные значения которой принадлежат всей оси, определяется равенством:

Частный случай. Если значения случайной величины принадлежат интервалу (a,b ), то:

Вероятность того, что Х примет значения, принадлежащие интервалу (a,b ), определяется равенством:

.

Пример 1.26. Непрерывная случайная величина Х

Найти математическое ожидание, дисперсию и вероятность попадание случайной величины Х в интервале (0;0,7).

Решение: Случайная величина распределена на интервале (0,1). Определим плотность распределения непрерывной случайной величины Х :

а) Математическое ожидание :

б) Дисперсия

в)

Задания для самостоятельной работы:

1. Случайная величина Х задана функцией распределения:

M(x) ;

б) дисперсию D(x) ;

Х в интервал (2,3).

2. Случайная величина Х

Найти: а) математическое ожидание M(x) ;

б) дисперсию D(x) ;

в) определить вероятность попадания случайной величины Х в интервал (1;1,5).

3. Случайная величина Х задана интегральной функцией распределения:

Найти: а) математическое ожидание M(x) ;

б) дисперсию D(x) ;

в) определить вероятность попадания случайной величины Х в интервал .

1.4. Законы распределения непрерывной случайной величины

1.4.1. Равномерное распределение

Непрерывная случайная величина Х имеет равномерное распределение на отрезке [a,b ], если на этом отрезке плотность распределения вероятности случайной величины постоянна, а вне его равна нулю, т.е.:

Рис. 4.

; ; .

Пример 1.27. Автобус некоторого маршрута движется равномерно с интервалом 5 минут. Найти вероятность того, что равномерно распределенная случайная величина Х – время ожидания автобуса составит менее 3 минут.

Решение: Случайная величина Х – равномерно распределена на интервале .

Плотность вероятности: .

Для того чтобы время ожидания не превысило 3 минут, пассажир должен появиться на остановке в интервале от 2 до 5 минут после ухода предыдущего автобуса, т.е. случайная величина Х должна попасть в интервал (2;5). Т.о. искомая вероятность:

Задания для самостоятельной работы:

1. а) найти математическое ожидание случайной величины Х распределенной равномерно в интервале (2;8);

б) найти дисперсию и среднее квадратическое отклонение случайной величины Х, распределенной равномерно в интервале (2;8).

2. Минутная стрелка электрических часов перемещается скачком в конце каждом минуты. Найти вероятность того, что в данное мгновение часы покажут время, которое отличается от истинного не более чем на 20 секунд.

1.4.2. Показательное (экспоненциальное) распределение

Непрерывная случайная величина Х распределена по показательному закону, если ее плотность вероятности имеет вид:

где – параметр показательного распределения.

Таким образом

Рис. 5.

Числовые характеристики:

Пример 1.28. Случайная величина Х – время работы электролампочки - имеет показательное распределение. Определить вероятность того, что время работы лампочки будет не меньше 600 часов, если среднее время работы - 400 часов.

Решение: По условию задачи математическое ожидание случайной величины Х равно 400 часам, следовательно:

;

Искомая вероятность , где

Окончательно:


Задания для самостоятельной работы:

1. Написать плотность и функцию распределения показательного закона, если параметр .

2. Случайная величина Х

Найти математическое ожидание и дисперсию величины Х .

3. Случайная величина Х задана функцией распределения вероятностей:

Найти математическое ожидание и среднее квадратическое отклонение случайной величины.

1.4.3. Нормальное распределение

Нормальным называют распределение вероятностей непрерывной случайной величины Х , плотность которого имеет вид:

где а – математическое ожидание, – среднее квадратическое отклонение Х .

Вероятность того, что Х примет значение, принадлежащее интервалу :

, где

– функция Лапласа.

Распределение, у которого ; , т.е. с плотностью вероятности называется стандартным.

Рис. 6.

Вероятность того, что абсолютная величина отклонена меньше положительного числа :

.

В частности, при а= 0 справедливо равенство:

Пример 1.29. Случайная величина Х распределена нормально. Среднее квадратическое отклонение . Найти вероятность того, что отклонение случайной величины от ее математического ожидания по абсолютной величине будет меньше 0,3.

Решение: .


Задания для самостоятельной работы:

1. Написать плотность вероятности нормального распределения случайной величины Х , зная, что M(x)= 3, D(x)= 16.

2. Математическое ожидание и среднее квадратическое отклонение нормально распределенной случайной величины Х соответственно равны 20 и 5. Найти вероятность того, что в результате испытания Х примет значение, заключенное в интервале (15;20).

3. Случайные ошибки измерения подчинены нормальному закону со средним квадратическим отклонением мм и математическим ожиданием а= 0. Найти вероятность того, что из 3 независимых измерений ошибка хотя бы одного не превзойдет по абсолютной величине 4 мм.

4. Производится взвешивание некоторого вещества без систематических ошибок. Случайные ошибки взвешивания подчинены нормальному закону со средним квадратическим отклонением г. Найти вероятность того, что взвешивание будет произведено с ошибкой, не превосходящей по абсолютной величине 10 г.