3 примера относительности движения. Что такое относительность движения. Типы механического движения

Из всех многообразных форм движения материи этот вид движения является самым простым.

Например: перемещение стрелки часов по циферблату, идут люди, колышутся ветки деревьев, порхают бабочки, летит самолет и т.д.

Определение положения тела в любой момент времени является основной задачей механики.

Движение тела, при котором все точки движутся одинаково, называется поступательным.

 Материальная точка – это физическое тело, размерами которого в данных условиях движения можно пренебречь, считая, что вся его масса сосредоточенны в одной точке.

 Траектория – это линия которую описывает материальная точка при своем движении.

 Путь – это длина траектории движения материальной точки.

 Перемещение – это направленный отрезок прямой (вектор), соединяющий начальное положение тела с его последующим положением.

 Система отсчета – это: тело отсчета, связанная с ним система координат, а также прибор для отсчета времени.

Важная особенность мех. движения – его относительность.

Относительность движения – это перемещение и скорость тела относительно разных систем отсчета различны (например, человек и поезд). Скорость тела относительно неподвижной системы координат равна геометрической сумме скоростей тела относительно подвижной системы и скорости подвижной системы координат относительно неподвижной. (V 1 – скорость человека в поезде, V 0 - скорость поезда, то V=V 1 +V 0).

Классический закон сложения скоростей формулируется следующим образом: скорость движения материальной точки по отношению к системе отсчета, принимаемой за неподвижную, равна векторной сумме скоростей движения точки в подвижной системе и скорости движения подвижной системы относительно неподвижной.

Характеристики механического движения свя­заны между собой основными кинематическими уравнениями.

s = v 0 t + at 2 / 2;

v = v 0 + at .

Предположим, что тело движется без уско­рения (самолет на маршруте), его скорость в течение продолжительного времени не меняется, а = 0, тогда кинематические уравнения будут иметь вид: v = const , s = vt .

Движение, при котором скорость тела не ме­няется, т. е. тело за любые равные промежутки вре­мени перемещается на одну и ту же величину, назы­ваютравномерным прямолинейным движением.

Во время старта скорость ракеты быстро воз­растает, т. е. ускорение а > О , а == const.

В этом случае кинематические уравнения вы­глядят так: v = V 0 + at , s = V 0 t + at 2 / 2.

При таком движении скорость и ускорение имеют одинаковые направления, причем скорость изменяется одинаково за любые равные промежутки времени. Этот вид движения называютравноуско­ренным.

При торможении автомобиля скорость умень­шается одинаково за любые равные промежутки вре­мени, ускорение меньше нуля; так как скорость уменьшается, то уравнения принимают вид: v = v 0 + at , s = v 0 t - at 2 / 2 . Такое движение называют равнозамедленным.

2.Каждый может легко разделить тела на твер­дые и жидкие. Однако это деление будет только по внешним признакам. Для того чтобы выяснить, ка­кими же свойствами обладают твердые тела, будем их нагревать. Одни тела начнут гореть (дерево, уголь) - это органические вещества. Другие будут размягчаться (смола) даже при невысоких темпера­турах - это аморфные. Третьи будут изменять свое состояние при нагревании так, как показано на гра­фике (рис. 12). Это и есть кристаллические тела. Та­кое поведение кристаллических тел при нагревании объясняется их внутренним строением.Кристалли­ческие тела - это такие тела, атомы и молекулы которых расположены в определенном порядке, и этот порядок сохраняется на достаточно большом расстоянии. Пространственное периодическое распо­ложение атомов или ионов в кристалле называют кристаллической решеткой. Точки кристаллической решетки, в которых расположены атомы или ионы, называютузлами кристаллической решетки. Кристаллические тела бывают монокристал­лами и поликристаллами.Монокристалл обладает единой кристаллической решеткой во всем объеме. Анизотропия монокристаллов заключается в зависимости их физических свойств от направления. Поликристалл представляет собой соединение мел­ких, различным образом ориентированных монокри­сталлов (зерен) и не обладает анизотропией свойств.

Большинство твердых тел имеют поликристалличе­ское строение (минералы, сплавы, керамика).

Основными свойствами кристаллических тел являются: определенность температуры плавления, упругость, прочность, зависимость свойств от поряд­ка расположения атомов, т. е. от типа кристалли­ческой решетки.

Аморфными называют вещества, у которых отсутствует порядок расположения атомов и молекул по всему объему этого вещества. В отличие от кри­сталлических веществ аморфные веществаизотроп­ны. Это значит, что свойства одинаковы по всем на­правлениям. Переход из аморфного состояния в жидкое происходит постепенно, отсутствует опреде­ленная температура плавления. Аморфные тела не обладают упругостью, они пластичны. В аморфном состоянии находятся различные вещества: стекла, смолы, пластмассы и т. п.

Упругость - свойство тел восстанавливать свою форму и объем после прекращения действия внешних сил или других причин, вызвавших дефор­мацию тел. Для упругих деформаций справедлив за­кон Гука, согласно которому упругие деформации прямо пропорциональны вызывающим их внешним воздействиям, где - механическое на­пряжение,

- относительное удлинение, Е - мо­дуль Юнга (модуль упругости). Упругость обусловле­на взаимодействием и тепловым движением частиц, из которых состоит вещество.

Пластичность - свойство твердых тел под действием внешних сил изменять, не разрушаясь, свою форму и размеры и сохранять остаточные де­формации после того, как действие этих сил прекра­тится

Представьте себе электричку. Она едет тихонько по рельсам, развозя пассажиров по дачам. И вдруг сидящий в последнем вагоне хулиган и тунеядец Сидоров замечает, что на станции «Сады» в вагон входят контролеры. Билет, естественно, Сидоров не купил, а штраф платить ему хочется еще меньше.

Относительность движения безбилетника в поезде

И вот, чтобы его не поймали, он быстренько совершает в другой вагон. Контролеры, проверив билеты у всех пассажиров, движутся в том же направлении. Сидоров опять переходит в следующий вагон и так далее.

И вот, когда он достигает первого вагона и идти дальше уже некуда, оказывается, что поезд как раз доехал до нужной ему станции «Огороды», и счастливый Сидоров выходит, радуясь тому, что проехал зайцем и не попался.

Что мы можем извлечь из этой остросюжетной истории? Мы можем, без сомнения, порадоваться за Сидорова, а можем, кроме того, обнаружить еще один небезынтересный факт.

В то время, как поезд за пять минут проехал пять километров от станции «Сады» до станции «Огороды», заяц Сидоров за это же время преодолел такое же расстояние плюс расстояние, равное длине поезда, в котором он ехал, то есть около пяти тысяч двухсот метров за те же пять минут.

Получается, что Сидоров двигался быстрее электрички. Впрочем, такую же скорость развили и следующие за ним по пятам контролеры. Учитывая, что скорость поезда была около 60 км/ч впору выдать им всем несколько олимпийских медалей.

Однако, конечно же, никто такой глупостью заниматься не будет, потому что все понимают, что невероятная скорость Сидорова была развита им только лишь относительно неподвижных станций, рельсов и огородов, и обусловлена эта скорость была передвижением поезда, а вовсе не невероятными способностями Сидорова.

Относительно же поезда Сидоров двигался вовсе и не быстро и не дотягивает не то что до олимпийской медали, но даже до ленточки от нее. Вот тут-то мы и сталкиваемся с таким понятием как относительность движения.

Понятие относительности движения: примеры

Относительность движения не имеет определения, так как не является физической величиной. Относительность механического движения проявляется в том, что некоторые характеристики движения, такие как скорость, путь, траектория и так далее, относительны, то есть зависят от наблюдателя. В различных системах отсчета эти характеристики будут различны.

Кроме приведенного примера с гражданином Сидоровым в поезде, можно взять практически любое движение любого тела и показать, насколько оно относительно. Идя на работу, вы двигаетесь вперед относительно дома и в то же время передвигаетесь назад относительно автобуса, на который опоздали.

Вы стоите на месте относительно плеера в кармане и несетесь с огромной скоростью относительно звезды по имени Солнце. Каждый ваш шаг будет гигантским расстоянием для молекулы асфальта и ничтожным для планеты Земля. Любое движение, как и все его характеристики всегда имеют смысл только относительно чего-либо еще.

Изучая кинематику, мы учимся описывать механическое движение – изменение положения тела относительно других тел с течением времени. Для пояснения очень важных слов «относительно других тел» приведём пример, в котором вам потребуется применить воображение.

Допустим, мы сели в автомобиль и выехали на дорогу, ведущую на север. Оглядимся вокруг. Со встречными автомобилями всё просто: они всегда приближаются к нам с севера, проезжают мимо нас и удаляются на юг (взгляните на рисунок – голубой автомобиль слева).

С попутными машинами сложнее. Те автомобили, которые едут быстрее нас, приближаются к нам сзади, обгоняют и удаляются на север (например, серое авто в центре). Но автомобили, которые обгоняем мы, приближаются к нам спереди и удаляются от нас назад (красное авто справа). То есть попутные автомобили относительно нас могут удаляться на юг в то же самое время , когда относительно дороги едут на север!

Итак, с точки зрения водителя и пассажиров нашей машины (внизу на рисунке её синий капот) обгоняемый красный автомобиль удаляется на юг, хотя, с точки зрения мальчика на обочине дороги, этот же автомобиль едет на север. Кроме того, мимо мальчика красное авто «пролетит со свистом», а мимо нашей машины – «медленно уплывёт» назад.

Таким образом, движение тел может выглядеть по-разному с точек зрения различных наблюдателей. Это явление – относительность механического движения . Оно проявляется в том, что быстрота, направление и траектория одного и того же движения различны для разных наблюдателей. Первые два различия (в быстроте и направлении движения) мы только что проиллюстрировали на примере автомобилей. Далее мы покажем различия в виде траектории одного и того же тела для разных наблюдателей (см. рисунок с яхтами).

Напомним: кинематика создаёт математическое описание движения тел. Но как это сделать, если движение выглядит по-разному с точек зрения различных наблюдателей? Чтобы была определённость, в физике всегда выбирают систему отсчёта.

Системой отсчёта называют часы и систему координат, связанные с телом отсчёта (наблюдателем). Поясним это примерами.

Вообразим, что мы едем в поезде и роняем предмет. Он упадёт к нашим ногам, хотя даже при скорости 36 км/ч поезд ежесекундно передвигается на 10 метров. Вообразим теперь, что на мачту яхты взобрался матрос и роняет ядро (см. рисунок). Нас также не должно смутить, что оно упадёт к основанию мачты, несмотря на то что яхта плывёт вперёд. То есть в каждый момент времени ядро движется и вниз, и вперёд вместе с яхтой.

Итак, в системе отсчёта, связанной с яхтой (назовем её «палуба»), ядро движется только по вертикали и проходит путь, равный длине мачты; траектория ядра – отрезок прямой. Но в системе отсчёта, связанной с берегом (назовем её «пристань»), ядро движется и по вертикали, и вперёд; траектория ядра представляет собой ветвь параболы, и путь явно больше, чем длина мачты. Вывод: траектории и пути одного и того же ядра различны в различных системах отсчёта: «палуба» и «пристань».

А что со скоростью ядра? Поскольку это одно и то же тело, то время его падения в обеих системах отсчёта мы считаем одинаковым. Но так как пройденные ядром пути различны, то и скорости одного и того же движения в разных системах отсчёта различны.

Вопросы.

1. Что означают следующие утверждения: скорость относительна, траектория движения относительна, путь относителен?

Это означает, что эти величины (скорость, траектория и путь) для движения различаются в зависимости от того, из какой системы отсчета ведется наблюдение.

2. Покажите на примерах, что скорость, траектория движения и пройденный путь являются относительными величинами.

Например, человек стоит неподвижно на поверхности Земли (нет ни скорости, ни траектории, ни пути), однако в это время Земля вращается вокруг своей оси, и следовательно человек, относительно, например центра Земли, движется по определенной траектории (по окружности), перемещается и имеет определенную скорость.

3. Сформулируйте коротко, в чем заключается относительность движения.

Движение тела (скорость, путь, траектория) различны в разных системах отсчета.

4. В чем основное отличие гелиоцентрической системы от геоцентрической?

В гелиоцентрической системе тело отсчета- Солнце, а в геоцентрической- Земля.

5. Объясните смену дня и ночи на Земле в гелиоцентрической системе (см. рис. 18).

В гелиоцентрической системе смена дня и ночи объясняется вращением Земли.

Упражнения.

1. Вода в реке движется со скоростью 2 м/с относительно берега. По реке плывёт плот. Какова скорость плота относительно берега? относительно воды в реке?

Скорость плота относительно берега - 2 м/с, относительно воды в реке - 0 м/с.

2. В некоторых случаях скорость тела может быть одинаковой в разных системах отсчёта. Например, поезд движется с одной и той же скоростью в системе отсчета, связанной со зданием вокзала, и в системе отсчёта, связанной с растущим у дороги деревом. Не противоречит ли это утверждению о том, что скорость относительна? Ответ поясните.

Если оба тела, с которыми связаны системы отсчета этих тел, остаются неподвижными друг относительно друга, то они связаны с третьей системой отсчета - Землёй, относительно которой и происходят измерения.

3. При каком условии скорость движущегося тела будет одинакова относительно двух систем отсчета?

Если эти системы отсчета неподвижны относительно друг друга.

4. Благодаря суточному вращению Земли человек, сидящий на стуле в своём доме в Москве, движется относительно земной оси со скоростью примерно 900 км/ч. Сравните эту скорость с начальной скоростью пули относительно пистолета, которая равна 250 м/с.

5. Торпедный катер идет вдоль шестидесятой параллели южной широты со скоростью 90 км/ч по отношению к суше. Скорость суточного вращения Земли на этой широте равна 223 м/с. Чему равна в (СИ) и куда направлена скорость катера относительно земной оси, если она движется на восток? на запад?



В курсе физики 7 класса упоминалось об относительности механического движения. Рассмотрим этот вопрос более подробно на примерах и сформулируем, в чём конкретно заключается относительность движения.

Человек идёт по вагону против движения поезда (рис. 16). Скорость поезда относительно поверхности земли равна 20 м/с, а скорость человека относительно вагона равна 1 м/с. Определим, с какой скоростью и в каком направлении движется человек относительно поверхности земли.

Рис. 16. Скорость движения человека относительно вагона и относительно земли различна по модулю и направлению

Будем рассуждать так. Если бы человек не шёл по вагону, то за 1 с он переместился бы вместе с поездом на расстояние, равное 20 м. Но за это же время он прошёл расстояние, равное 1 м, против хода поезда. Поэтому за время, равное 1 с, он сместился относительно поверхности земли только на 19 м в направлении движения поезда. Значит, скорость человека относительно поверхности земли равна 19 м/с и направлена в ту же сторону, что и скорость поезда. Таким образом, в системе отсчёта, связанной с поездом, человек движется со скоростью 1 м/с, а в системе отсчёта, связанной с каким-либо телом на поверхности земли, - со скоростью 19 м/с, причём направлены эти скорости в противоположные стороны. Отсюда следует, что скорость относительна, т. е. скорость одного и того же тела в разных системах отсчёта может быть различной как по числовому значению, так и по направлению.

Теперь обратимся к другому примеру. Представьте вертолёт, вертикально опускающийся на землю. Относительно вертолёта любая точка винта, например точка А (рис. 17), будет всё время двигаться по окружности, которая на рисунке изображена сплошной линией. Для наблюдателя, находящегося на земле, та же самая точка будет двигаться по винтовой траектории (штриховая линия). Из этого примера ясно, что траектория движения тоже относительна, т. е. траектория движения одного и того же тела может быть различной в разных системах отсчёта.

Рис. 17. Относительность траектории и пути

Следовательно, путь является величиной относительной, так как он равен сумме длин всех участков траектории, пройденных телом за рассматриваемый промежуток времени. Это особенно наглядно проявляется в тех случаях, когда физическое тело движется в одной системе отсчёта и покоится в другой. Например, человек, сидящий в движущемся поезде, проходит определённый путь s в системе, связанной с землёй, а в системе отсчёта, связанной с поездом, его путь равен нулю.

Таким образом,

  • относительность движения проявляется в том, что скорость, траектория, путь и некоторые другие характеристики движения относительны, т. е. они могут быть различны в разных системах отсчёта

Понимание того, что движение одного и того же тела можно рассматривать в разных системах отсчёта, сыграло огромную роль в развитии взглядов на строение Вселенной.

С давних пор люди замечали, что звёзды в течение ночи, так же как и Солнце днём, перемещаются по небу с востока на запад, двигаясь по дугам и делая за сутки полный оборот вокруг Земли. Поэтому в течение многих столетий считалось, что в центре мира находится неподвижная Земля, а вокруг неё обращаются все небесные тела. Такая система мира была названа геоцентрической (греческое слово «гео» означает «земля»).

Во II в. александрийский учёный Клавдий Птолемей обобщил имеющиеся сведения о движении светил и планет в геоцентрической системе и сумел составить довольно точные таблицы, позволяющие определять положение небесных тел в прошлом и будущем, предсказывать наступление затмений и т. д.

Однако со временем, когда точность астрономических наблюдений возросла, стали обнаруживаться расхождения между вычисленными и наблюдаемыми положениями планет. Вносимые при этом исправления делали теорию Птолемея очень сложной и запутанной. Появилась необходимость замены геоцентрической системы мира.

Новые взгляды на строение Вселенной были подробно изложены в XVI в. польским учёным Николаем Коперником. Он считал, что Земля и другие планеты движутся вокруг Солнца, одновременно вращаясь вокруг своих осей. Такая система мира называется гелиоцентрической, поскольку в ней за центр Вселенной принимается Солнце (по-гречески «гелиос»).

Таким образом, в гелиоцентрической системе отсчёта движение небесных тел рассматривается относительно Солнца, а в геоцентрической - относительно Земли.

Как же с помощью системы мира Коперника можно объяснить видимое нами суточное обращение Солнца вокруг Земли? На рисунке 18 схематично изображён земной шар, освещаемый с одной стороны солнечными лучами, и человек (наблюдатель), который в течение суток находится в одном и том же месте Земли. Вращаясь вместе с Землёй, он наблюдает за перемещением светил.

Рис. 18. В гелиоцентрической системе мира видимое движение по небу Солнца днём и звёзд ночью объясняется вращением Земли вокруг своей оси

Воображаемая ось, вокруг которой вращается Земля, как бы пронзает земной шар, проходя через Северный (N) и Южный (S) географические полюсы. Стрелочка указывает направление вращения Земли - с запада на восток.

На рисунке 18, а земной шар изображён в тот момент времени, когда он как бы вывозит наблюдателя с тёмной ночной стороны на освещенную Солнцем, дневную. Но наблюдатель, вращаясь вместе с Землёй относительно её оси с запада на восток со скоростью, приблизительно равной 200 м/с 1 , тем не менее не ощущает этого движения, как не ощущаем его мы с вами. Поэтому ему кажется, что Солнце обращается вокруг Земли, поднимаясь из-за горизонта, перемещается в течение дня (рис. 18, б) с востока на запад, а вечером уходит за горизонт (рис. 18, в). Затем наблюдатель видит перемещение звёзд с востока на запад в течение ночи (рис. 18, г).

Итак, по системе мира Коперника видимое вращение Солнца и звёзд, т. е. смена дня и ночи, объясняется вращением Земли вокруг своей оси. Время, за которое земной шар делает полный оборот, называется сутками.

Гелиоцентрическая система мира оказалась гораздо более удачной, чем геоцентрическая, при решении многих научных и практических задач.

Таким образом, применение знаний об относительности движения позволило по-новому взглянуть на строение Вселенной. А это, в свою очередь, помогло впоследствии открыть физические законы, описывающие движение тел в Солнечной системе и объясняющие причины такого движения.

Вопросы

  1. В чём проявляется относительность движения? Ответ проиллюстрируйте примерами.
  2. В чём основное отличие гелиоцентрической системы мира от геоцентрической?
  3. Объясните смену дня и ночи на Земле в гелиоцентрической системе (см. рис. 18).

Упражнение 9

  1. Вода в реке движется со скоростью 2 м/с относительно берега. По реке плывёт плот. Какова скорость плота относительно берега; относительно воды в реке?
  2. В некоторых случаях скорость тела может быть одинаковой в разных системах отсчёта. Например, поезд движется с одной и той же скоростью в системе отсчёта, связанной со зданием вокзала, и в системе отсчёта, связанной с растущим у дороги деревом. Не противоречит ли это утверждению о том, что скорость относительна? Ответ поясните.
  3. При каком условии скорость движущегося тела будет одинакова относительно двух систем отсчёта?
  4. Благодаря суточному вращению Земли человек, сидящий на стуле в своём доме в Москве, движется относительно земной оси со скоростью примерно 900 км/ч. Сравните эту скорость с начальной скоростью пули относительно пистолета, которая равна 250 м/с.
  5. Торпедный катер идёт вдоль шестидесятой параллели южной широты со скоростью 90 км/ч по отношению к суше. Скорость суточного вращения Земли на этой широте равна 223 м/с. Чему равна (в СИ) и куда направлена скорость катера относительно земной оси, если он движется на восток; на запад?

1 Скорость вращения точек поверхности Земли относительно оси зависит от широты местности: она возрастает от нуля (на полюсах) до 465 м/с (на экваторе).