Свойства открытых и замкнутых множеств. Свойства открытых множеств Положение точки относительно множества A

Одна из основных задач теории точечных множеств - изучение свойств различных типов точечных множеств. Мы познакомим читателя с этой теорией на двух примерах. Именно, мы изучим здесь свойства так называемых замкнутых и открытых множеств.

Множество называется замкнутым, если оно содержит все свои предельные точки. Если множество не имеет ни одной предельпой точки, то его тоже принято считать замкнутым. Кроме своих предельных точек, замкнутое множество может также содержать изолированные точки. Множество называется открытым, если каждая его точка является для него внутренней.

Приведем примеры замкнутых и открытых множеств. Всякий отрезок есть замкнутое множество, а всякий интервал - открытое множество. Несобственные полуинтервалы

замкнуты, а несобственные интервалы открыты. Вся прямая является одновременно и замкнутым и открытым множеством. Удобно считать пустое множество тоже одновременно замкнутым и открытым. Любое конечное множество точек на прямой замкнуто, так как оно не имеет предельных точек. Множество, состоящее из точек

замкнуто; это множество имеет единственную предельную точку которая принадлежит множеству.

Наша задача состоит в том, чтобы выяснить, как устроено произвольное замкнутое или открытое множество. Для этого нам понадобится ряд вспомогательных фактов, которые мы примем без доказательства.

1. Пересечение любого числа замкнутых множеств замкнуто.

2. Сумма любого числа открытых множеств есть открытое множество.

3. Если замкнутое множество ограничено сверху, то оно содержит свою верхнюю грань. Аналогично, если замкнутое множество ограничено снизу, то оно содержит свою нижнюю грань.

Пусть Е - произвольное множество точек на прямой. Назовем дополнением множества Е и обозначим через множество всех точек на прямой, не принадлежащих множеству Е. Ясно, что если х есть внешняя точка для Е, то она является внутренней точкой для множества и обратно.

4. Если множество F замкнуто, то его дополнение открыто и обратно.

Предложение 4 показывает, что между замкнутыми и открытыми множествами имеется весьма тесная связь: одни являются дополнениями других. В силу этого достаточно изучить одни замкнутые или одни открытые множества. Знание свойств множеств одного типа позволяет сразу выяснить свойства множеств другого типа. Например, всякое открытое множество получается путем удаления из прямой некоторого замкнутого множества.

Приступаем к изучению свойств замкнутых множеств. Введем одно определение. Пусть F - замкнутое множество. Интервал обладающий тем свойством, что ни одна из его точек не принадлежит множеству а точки а и принадлежат называется смежным интервалом множества . К числу смежных интервалов мы будем также относить несобственные интервалы или если точка а или точка принадлежит множеству а сами интервалы с F не пересекаются. Покажем, что если точка х не принадлежит замкнутому множеству то она принадлежит одному из его смежных интервалов.

Обозначим через часть множества расположенную правее точки х. Так как сама точка х не принадлежит множеству то можно представить в форме пересечения

Каждое из множеств F замкнуто. Поэтому, в силу предложения 1, множество замкнуто. Если множество пусто, то весь полуинтервал принадлежит множеству Допустим теперь, что множество не пусто. Так как это множество целиком расположено на полуинтервале то оно ограничено снизу. Обозначим через его нижнюю грань. Согласно предложению а значит . Далее, так как есть нижняя грань множества , то полуинтервал лежащий левее точки не содержит точек множества и, следовательно, не содержит точек множества Итак, мы построили полуинтервал не содержащий точек множества причем либо либо точка принадлежит множеству Аналогично строится полуинтервал не содержащий точек множества причем либо либо а Теперь ясно, что интервал содержит точку х и является смежным интервалом множества Легко видеть, что если - два смежных интервала множества то эти интервалы либо совпадают, либо не пересекаются.

Из предыдущего следует, что всякое замкнутое множество на прямой получается путем удаления из прямой некоторого числа интервалов, а именно смежных интервалов множества Так как каждый интервал содержит по крайней мере одну рациональную точку, а всех рациональных точек на прямой - счетное множество, то легко убедиться, что число всех смежных интервалов более чем счетно. Отсюда получаем окончательный вывод. Всякое замкнутое множество на прямой получается путем удаления из прямой не более чем счетного множества непересекающихся интервалов.

В силу предложения 4, отсюда сразу вытекает, что всякое открытое множество на прямой представляет собой не более чем счетную сумму непересекающихся интервалов. В силу предложений 1 и 2, ясно также, что всякое множество, устроенное, как указано выше, действительно является замкнутым (открытым).

Как видно из нижеследующего примера, замкнутые множества могут иметь весьма сложное строение.

Канторово совершенное множество. Построим одно специальное замкнутое множество, обладающее рядом замечательных свойств. Прежде всего удалим из прямой несобственные интервалы и . После этой операции у нас останется отрезок . Далее, удалим из этого отрезка интервал составляющий его среднюю треть.

Из каждого из оставшихся двух отрезков удалим его среднюю треть. Этот процесс удаления средних третей у остающихся отрезков продолжим неограниченно. Множество точек на прямой, остающееся после удаления всех этих интервалов, называется канторовым совершенным множеством; мы будем обозначать его буквой Р.

Рассмотрим некоторые свойства этого множества. Множество Р замкнуто, так как оно образуется путем удаления из прямой некоторого множества непересекающихся интервалов. Множество Р не пустот во всяком случае в нем содержатся концы всех выброшенных интервалов.

Замкнутое множество F называется совершенным, если оно не содержит изолированных точек, т. е. если каждая его точка является предельной точкой. Покажем, что множество Р совершенно. Действительно, если бы некоторая точка х была изолированной точкой множества Р, то она служила бы общим концом двух смежных интервалов этого множества. Но, согласно построению, смежные интервалы множества Р не имеют общих концов.

Множество Р не содержит ни одного интервала. В самом деле, допустим, что некоторый интервал целиком принадлежит множеству Р. Тогда он целиком принадлежит одному из отрезков, получающихся на шаге построения множества Р. Но это невозможно, так как при длины этих отрезков стремятся к пулю.

Можно показать, что множество Р имеет мощность континуума. В частности, отсюда следует, что канторово совершенное множество содержит, кроме концов смежных интервалов, еще и другие точки. Действительно, концы смежных интервалов образуют лишь счетное множество.

Разнообразные типы точечных множеств постоянно встречаются в самых различных разделах математики, и знание их свойств совершенно необходимо при исследовании многих математических проблем. Особенно большое значение имеет теория точечных множеств для математического анализа и топологии.

Приведем несколько примеров появления точечных мпожеств в классических разделах анализа. Пусть - непрерывная функция, заданная на отрезке Зафиксируем число а и рассмотрим множество тех точек х, для которых Нетрудно показать, что это множество может быть произвольным замкнутым множеством, расположенным на отрезке Точно так же множество точек х, для которых может быть каким угодно открытым множеством Если есть последовательность непрерывных функций, заданных на отрезке то множество тех точек х, где эта последовательность сходится, не может быть произвольным, а принадлежит к вполне определенному типу.

Математическая дисциплина, занимающаяся изучением строения точечных множеств, называется дескриптивной теорией множеств. Весьма большие заслуги в деле развития дескриптивной теории множеств принадлежат советским математикам - Н. Н. Лузину и его ученикам П. С. Александрову, М. Я. Суслину, А. Н. Колмогорову, М. А. Лаврентьеву, П. С. Новикову, Л. В. Келдыш, А. А. Ляпунову и др.

Исследования Н. Н. Лузина и его учеников показали, что имеется глубокая связь между дескриптивной теорией множеств и математической логикой. Трудности, возникающие при рассмотрении ряда задач дескриптивной теории множеств (в частности, задач об определении мощности тех или иных множеств), являются трудностями логической природы. Напротив, методы математической логики позволяют более глубоко проникнуть в некоторые вопросы дескриптивной теории множеств.


Доказательства теорем:

1) Теорема Кантора

Формулировка: Множество действительных чисел несчетно

Доказательство : Если бы множество всех действительных чисел было счетным, то т.к. любое бесконечное подмножество счетного множества счётно, то и любое его подмножество, в частности, любой отрезок, что противоречит тому, что любой отрезок множества действительных чисел состоит из несчетного множества точек.

2) Теорема о предельной точке

Формулировка: Если (.) p – это предельная точка X , то любая окрестность (.) p содержит бесконечно много точек множества X

Доказательство: предположим, что существует такая окрестность (.)p, которая содержит конечное число точек множества X.

q 1, q 2, …,q n – это точки множества NÇX

q i ¹p, i=1,2,…,n

Рассмотрим расстояние от (.)p до всех точек q i и выберем минимальное.

r=min r(p,q i)>0

Построим окрестность радиуса r с центром в точке p. Nr(p)=B(p,r). Построим окрестность (.)p радиуса q. Эта окрестность не содержит ни одной точки из X.

По определению, (.)p не может быть предельной точкой X. Противоречие.

3) Теорема об открытом множестве

Формулировка: Множество X открыто тогда и только тогда, когда его дополнение замкнуто

Доказательство:

Необходимость: - замкнуто

Выберем (.)xÎX. Тогда, по определению, xÏ и x не является предельной точкой множества X. Значит, существует такая окрестность N (.)x, что NÇ=, NX, а значит, x-внутренняя точка множества X. Значит, множество X – открыто.

Достаточность: Пусть множество X – открыто и x – предельная точка , тогда каждая окрестность (.)x содержит некоторую точку из , которая не совпадает с самой точкой x. Это означает, что x не является внутренней точкой множества X и следовательно множество замкнуто.

4) Теорема об объединении и пересечении открытых и замкнутых множеств

Формулировка:

4-1. Для любого семейства { G a } открытых множеств G множество, которое является объединением всех G a будет открытым

4-2. Для любого семейства { F a } замкнутых множеств R , множество Ç всех F a будет замкнутым

4-3. Для любого конечного семейства { G 1, G 2 ,…, G n } Ç всех этих открытых множеств будет открытым

4-4. Для любого конечного семейства множеств { F 1, F 2,…, F n } объединение всех этих множеств будет замкнутым

Доказательство:

4-1. Обозначим G= и пусть (.) xÎ G. Это означает, что xÎG a для какого-то индекса a. Поскольку множество G a - открытое, значит (.)x –внутренняя точка множества G a . (.)x будет внутренней точкой множества G и значит, G – открыто.

По предыдущему доказательству, множества - открытые

Значит, - открыто

4-3. Пусть H=. Для любой (.)x из множества H существует окрестность N i радиуса r i такая, что эта окрестность Î некоторому множеству G i xÎH N i G i

Выберем из всех этих r i минимальный min r i =r и пусть окрестность N – окрестность (.)x радиуса r. Тогда NÎG i . А раз NG i , то NH

4.4. ()=

5) Принцип Архимеда

Формулировка: Каково бы ни было действительное число a , существует такое натуральное число n , что n > a

Доказательство: если бы утверждение теоремы не имело места, то нашлось бы такое число a, что для всех натуральных чисел n выполнялось бы неравенство n<=a, т.е. множество натуральных чисел N было бы ограничено сверху. Тогда, согласно тому, что всякое ограниченное сверху непустое числовое множество имеет верхнюю грань, у множества N существовала бы конечная верхняя грань:

b=sup N <+ (1)

Поскольку b-1b-1, т.е.

n+1>b, но n+1 – также натуральное число: n+1ÎN, поэтому неравенство (n+1>b) противоречит условию (1)

6) Теорема Коши-Кантора

Формулировка: Для всякой системы вложенных отрезков существует хотя бы одно число, которое принадлежит всем отрезкам системы, причем x = sup { a n }= inf { b n }

Доказательство: если точки xÎ, Î, n=1,2,…,

то ясно, что для всех номеров n выполняются неравенства

|-x|<=b n -a n , а следовательно, в силу условия (1) для любого e>0 справедливо неравенство

Поскольку e>0 – произвольное число, то возможно только тогда, когда e=. Это означает, что существует единственное число x, принадлежащее всем отрезкам

a n <=x<=b n , n=1,2,….

Из этих неравенств видно, что число x ограничивает сверху числа a n и снизу числа b n , поэтому, если a=sup{a n }, b=inf{b n }, то в силу определения верхней и нижней граней будут выполняться неравенства

a n <=a<=x<=b<=b n , n=1,2,…

Таким образом, числа a,b и x принадлежат всем отрезкам , а следовательно, они равны, и будет выполняться условие x=sup{a n }=inf{b n }

7) Теорема о сходящихся последовательностях

Формулировка: Пусть { p n } – последовательность в метрическом пространстве X

7.1. { p n } p , когда каждая окрестность (.) p содержит все члены последовательности p n за исключением конечного числа членов последовательности

7.2. Если p Î X , p ` Î X ` и последовательность p n p , p n p `, то p = p `

7.3. Если последовательность p n сходится, то она ограничена

Теорема 3.1. Объединение любого числа открытых множеств – множество открытое.

Пусть G k , где k Î N - открытые множества.

3Выберем любую точку х о ÎG . По определению объединения множеств точка х о принадлежит одному из множеств G k . Поскольку G k – открытое множество, то существует e - окрестность точки х о , которая целиком лежит в множестве G k: U ( x o , e ) Ì G k Þ U ( x o ,e ) Ì G.

Получили, что любаю точка х о ÎG – внутренняя, а это значит, что G – открытое множество. 4

Теорема 3.2. Пересечение конечного числа открытых непустых множеств– множества открытое.

Пусть G k ( k = 1,2, …,n ) – открытые множества.

Докажем, что - открытое множество.

3Выберем любую точку х о ÎG . По определению пересечения множеств х о принадлежит каждому из множеств G k . Поскольку каждое множество G k открытое, то в любом множестве G k существует e k - окрестность точки х о : U ( x o , e k ) Ì G k . Множество чисел{e 1 , e 2 ,…, e n } конечное, поэтому существует число e = min {e 1 ,e 2 ,…,e n }. Тогда e - окрестность точки х о находится в каждой e k - окрестности точки х о :U ( x o , e ) Ì U e ( x o , e k ) Þ U ( x o , e ) Ì G.

Получили, что х о – внутренняя точка множества G , а это значит, что G – открытое множество. 4

Замечание 3.1. Пересечение бесконечного множества открытых множеств может и не быть открытым множеством.

Пример 3.1 . Пусть в пространстве R G k = (21/k; 4+ 1/k) , где k= 1,2,…,n, …. G 1 = (1;5), G 2 (1,5;4,5), Отрезок Ì G k и не является открытым множеством, точки 2 и 4 не являются внутренними.

Теорема 3.3. Пересечение любой совокупности замкнутых непустых множеств – замкнутое множество.

Пусть F k - замкнутые множества.

Докажем, что множество замкнутое, т.е. оно содержит все свои предельные точки.

3Пусть х F. Из определения пересечения множеств следует, что в любой e - окрестности точки х о находится бесконечно много точек каждого из множеств F k , а это значит, что х о – предельная точка каждого множества F k . В силу замкнутости множеств F k точка

х о Î F k "k Þ х о Î F. Поскольку точка х F , а это значит множесто F замкнутое. 4

Теорема 3.4. Объединение конечного числа замкнутых множеств – множество замкнутое.

Пусть каждое множество F k замкнутое.

Докажем, что множество замкнутое, т.е., если х о – предельная точка множества F , то х о Î F .

3Пусть х о – любая предельная точка множества F , тогда в любой e - окрестности точки х о существует бесконечно много точек множества . Поскольку количество множеств F k конечное, то х о принадлежит хотя бы одному из множеств F k , т.е. х о – предельная точка для этого множества.



В силу замкнутости F k точка х о принадлежит F k , а поэтому и множеству . Поскольку точка х о выбрана произвольно, то все предельные точки принадлежат множеству F , а это значит множество F замкнутое. 4

Замечание 3.2. Объединение бесконечного числа замкнутых множеств может быть множеством открытым.

Пример 3.2. В пространстве R : F k =

F 1 = ; F 2 = ; …. Интервал (2;5) – открытое множество.

Примем без доказательства теоремы 3.5 и 3.6, связанные с дополнением множества Е до множества Х: С х Е=СЕ .

Теорема 3.5. Если множество Е замкнутое, то его дополнение СЕ открытое множество.

Пример 3.3. Е= , C R E = (- ¥, 2)È (5,+¥ ).

Теорема 3.6. Если множество Е открытое, то его дополнение СЕ замкнутое множество.

Пример 3.4. Е= (2,5), C R E = (-¥, 2]È[ 5, +¥ ).

Определение 19. МножествоЕ называетсяоткрытым , если все его точки являются внутренними, то есть если оно не содержит своих граничных точек.

Определение 20. МножествоЕ называетсязамкнутым , если оно содержит все свои предельные точки, то есть. (Иначе,
).

Пример 1. Любоеn -мерный интеграл – открытое множество. Любой отрезок – замкнутое множество.

Следует обратить особое внимание на то что, классы замкнутых и открытых множеств не охватывают вместе всех множеств, кроме того, эти классы пересекаются. Существуют множества, которые не являются ни замкнутыми, ни открытыми, а так же множества, которые одновременно являются и замкнутыми, и открытыми.

Пример 2. Пустое множество следует считать замкнутым, хотя оно в то же время является и открытым. МножествоR действительных чисел одновременно является и замкнутым, и открытым.

Множество Q рациональных чисел ни замкнуто, ни открыто. Линейный полуинтервал - ни замкнутое, ни открытое множество.

Теорема 3. Любой шарS (a , r ) - открытое множество.

Доказательство:

Пусть . Возьмём
. Докажем, что шар
(это будет означать, что любая точка шара
- внутренняя, то есть
- открытое множество). Возьмём. Докажем, что
, для этого оценим расстояние
:

Следовательно,
, то есть
, то естьS (a , r ) - открытое множество.

Теорема 4. Производное множество
любого множестваE замкнуто.

Доказательство:

Пусть
. Тогдав любой окрестности
точкисуществует хотя бы одна точкамножества
, отличная от. Так как- предельная точка множестваE , то в любой её окрестности (в том числе сколь угодно малой, содержащейся в
) существует хотя бы одна точкамножестваE , отличная от точки. Таким образом, по определению точкаявляется предельной точкой для множестваE . Итак,
, что по определению означает замкнутость множестваE .

Следует заметить, что в частном случае производное множество
может оказаться пустым.

Свойства открытых и замкнутых множеств

Теорема 5. Объединение любого конечного числа замкнутых множеств является замкнутым множеством.

Доказательство:

Пусть
- замкнутые множества. Докажем, что
- замкнутое множество.

Пусть - предельная точка множества

. Тогда- предельная точка хотя бы одного из множеств
(доказывается от противного). Так как- замкнутое множество, то
. Но тогда
. Итак, любая предельная точка множества
ему принадлежит, то есть
замкнуто.

Теорема 6. Пересечение любого числа замкнутых множеств является замкнутым множеством.

Доказательство:

Пусть
- любая совокупность замкнутых множеств. Докажем, что
- замкнутое множество.

Пусть - предельная точка множества

. Тогда по теореме 1 в любой окрестности

. Но все точки множества
являются и точками множеств
. Следовательно, в
содержится бесконечно много точек из
. Но все множествазамкнуты, поэтому

и
, то есть
замкнуто.

Теорема 7. Если множествоF замкнуто, то его дополнениеCF открыто.

Доказательство:

Пусть . Так как
замкнуто, тоне является его предельной точкой (
). Но это означает, что существует окрестность
точки, не содержащая точек множестваF , то есть
. Тогда
и поэтому- внутренняя точка множества
. Так как- произвольная точка множестваCF , то все точки этого множества являются внутренними, то естьCF открыто.

Теорема 8. Если множествоG открыто, то его дополнениеCG замкнуто.

Доказательство:

Пусть вместе с некоторой окрестностью. Следовательно,не является предельной точкой множестваCG . Итак,
не является предельной точкой для
, то есть
содержит все свои предельные точки. По определению,
замкнуто.

Теорема 9. Объединение любого числа открытых множеств является открытым множеством.

Доказательство:

Пусть
- произвольная совокупность открытых множестви
. Докажем, что- открытое множество. Имеем:

.

Так как множества открыты
, то по теореме 8 множества
замкнуты
. Тогда по теореме 6 их пересечение

открыто.

Теорема 10. Пересечение любого конечного числа открытых множеств является открытым множеством.

Доказательство:

Пусть
- пересечение любого конечного числа открытых множеств
. Докажем, что- открытое множество. Имеем:

.

Так как множества открыты
, то по теореме 8 множества
замкнуты
. Тогда по теореме 5 их объединение

замкнуто. По теореме 7 множество
открыто.