Содержание воды в клетке зависит от. Водный режим. Задания группам учащихся

Вода – самое распространенное соединение на Земле и в живых организмах. Содержание воды в клетках зависит от характера обменных процессов: чем они интенсивнее, тем выше содержание воды.

В среднем в клетках взрослого человека содержится 60-70% воды. При потере 20% воды организмы гибнут. Без воды человек может прожить не более 7 дней, тогда как без пищи не более 40 дней.

Рис. 4.1. Пространственная структура молекулы воды (Н 2 О) и образование водородной связи

Молекула воды (Н 2 О) состоит из двух атомов водорода, которые ковалентно связаны с атомам кислорода. Молекула полярная, потому что она изогнута под углом и ядро атома кислорода оттягивает обобществленные электроны к этому углу, так что кислород приобретает частичный отрицательный заряд, а находящиеся на открытых концах атомы водорода – частично положительные заряды. Молекулы воды способны притягиваться одна к другой положительным и отрицательным зарядом, образуя водородную связь (рис.4.1.).

Благодаря уникальной структуре молекул воды и их способности связываться друг с другом при помощи водородных связей вода обладает рядом свойств определяющих ее важную роль в клетке и организме.

Водородные связи обуславливают относительно высокие температуры кипения и испарения, высокую теплоемкость и теплопроводность воды, свойство универсального растворителя.

Водородные связи слабее ковалентных в 15-20 раз. В жидком состоянии водородные связи то образуются то разрываются, что обуславливает движение молекул воды, ее текучесть.

Биологическая роль Н 2 О

Вода определяет физические свойства клетки – ее объем, упругость (тургор). В клетке содержится 95-96 % свободной воды и 4-5% связанной. Связанная вода образует водные (сольватные) оболочки вокруг определенных соединений (например, белков), препятствуя их взаимодействию между собой.

Свободная вода является хорошим растворителем для многих неорганических и органических полярных веществ. Вещества хорошо растворимые в воде называются гидрофильными . Например, спирты, кислоты, газы, большинство солей Натрия, Калия и др. Для гидрофильных веществ энергия связи между их атомами меньше, чем энергия притяжения этих атомов к молекулам воды. Поэтому их молекулы или ионы легко встраиваются в общую систему водородных связей воды.

Вода как универсальный растворитель играет чрезвычайно важную роль, поскольку большинство химических реакций происходит в водных растворах. Проникновение веществ в клетку и выведение из нее продуктов жизнедеятельности в большинстве случаев возможно только в растворенном виде.

Неполярные (не несущие заряда) вещества вода не растворяет, поскольку не может образовать с ними водородные связи. Нерастворимые в воде вещества называются гидрофобными . К ним относятся жиры, жироподобные вещества, полисахариды, каучук.

Некоторые органические молекулы имеют двойные свойства: на одних участках их расположены полярные группы, а на других – неполярные. Такие вещества называют амфипатическими, или амфифильними . К ним относятся белки, жирные кислоты, фосфолипиды, нуклеиновые кислоты. Амфифильные соединения играют важную роль в организации биологических мембран, комплексных надмолекулярных структур.

Вода принимает непосредственное участие в реакциях гидролиза – расщепления органических соединений. При этом под действием специальных ферментов к свободным валентностям органических молекул присоединяются ионы ОН - и Н + воды. В результате образуют новые вещества с новыми свойствами.

Вода обладает большой теплоемкостью (т.е. способностью поглощать тепло при незначительных изменениях собственной температуры) и хорошей теплопроводностью. Благодаря этим свойствам температура внутри клетки (и организма) поддерживается на определенном уровне при значительных перепадах температуры окружающей среды.

Важное биологическое значение для функционирования растений, холоднокровных животных имеет то, что под влиянием растворенных веществ (углеводов, глицерина) вода может изменять свои свойства, в частности температуру замерзания и кипения.

Свойства воды настолько важны для живых организмов, что нельзя представить существование жизни, в том виде как мы ее знаем, не только на Земле, но и на любой другой планете без достаточного запаса воды.

МИНЕРАЛЬНЫЕ СОЛИ

Могут пребывать в растворенном или нерастворенном состоянии. Молекулы минеральных солей в водном растворе распадаются на катионы и анионы.

1. Какое строение имеет вода?

Ответ. Молекула воды имеет угловое строение: входящие в её состав ядра образуют равнобедренный треугольник, в основании которого находятся два водорода, а в вершине – атом кислорода. Межъядерные расстояния О-Н близки к 0,1 нм, расстояние между ядрами атомов водорода равно 0,15 нм. Из шести электронов, составляющих внешний электронный слой атома кислорода в молекуле воды, две электронные пары образуют ковалентные связи О-Н, а остальные четыре электрона представляют собой две неподелёные электронные пары.

Молекула воды представляет собой маленький диполь, содержащий положительный и отрицательный заряды на полюсах. Около ядер водорода имеется недостаток электронной плотности, а на противоположной стороне молекулы, около ядра кислорода, наблюдается избыток электронной плотности. Именно такая структура и определяет полярность молекулы воды.

2. Какое количество воды (в %) содержится в различных клетках?

Количество воды неодинаково в разных тканях и органах. Так, у человека в сером веществе головного мозга ее содержание составляет 85 %, а в костной ткани - 22 %. Наибольшее содержание воды в организме наблюдается в эмбриональный период (95 %) и с возрастом постепенно уменьшается.

Содержание воды в различных органах растений колеблется в довольно широких пределах. Оно изменяется в зависимости от условий внешней среды, возраста и вида растений. Так, содержание воды в листьях салата составляет 93-95%, кукурузы - 75-77%. Количество воды неодинаково в разных органах растений: в листьях подсолнечника воды содержится 80-83%, в стеблях - 87-89%, в корнях - 73-75%. Содержание воды, равное 6-11%, характерно главным образом для воздушно-сухих семян, в которых процессы жизнедеятельности заторможены. Вода содержится в живых клетках, в мертвых элементах ксилемы и в межклетниках. В межклетниках вода находится в парообразном состоянии. Основными испаряющими органами растения являются листья. В связи с этим естественно, что наибольшее количество воды заполняет межклетники листьев. В жидком состоянии вода находится в различных частях клетки: клеточной оболочке, вакуоли, цитоплазме. Вакуоли - наиболее богатая водой часть клетки, где содержание ее достигает 98%. При наибольшей оводненности содержание воды в цитоплазме составляет 95%. Наименьшее содержание воды характерно для клеточных оболочек. Количественное определение содержания воды в клеточных оболочках затруднено; по-видимому, оно колеблется от 30 до 50%. Формы воды в разных частях растительной клетки также различны.

3. Какова роль воды в живых организмах?

Ответ. Вода - преобладающий компонент всех живых организмов. Она обладает уникальными свойствами благодаря особенностям строения: молекулы воды имеют форму диполя и между ними образуются водородные связи. Среднее содержание воды в клетках большинства живых организмов составляет около 70%. Вода в клетке присутствует в двух формах: свободной (95% всей воды клетки) и связанной (4-5% связаны с белками) .

Функции воды:

1.Вода как растворитель. Многие химические реакции в клетке являются ионными, поэтому протекают только в водной среде. Вещества, растворяющиеся в воде, называются гидрофильными (спирты, сахара, альдегиды, аминокислоты), не растворяющиеся - гидрофобными (жирные кислоты, целлюлоза).

2.Вода как реагент. Вода участвует во многих химических реакциях: реакциях полимеризации, гидролиза, в процессе фотосинтеза.

3.Транспортная функция. Передвижение по организму вместе с водой растворенных в ней веществ к различным его частям и выведение ненужных продуктов из организма.

4.Вода как термостабилизатор и терморегулятор. Эта функция обусловлена такими свойствами воды, как высокая теплоемкость - смягчает влияние на организм значительных перепадов температуры в окружающей среде; высокая теплопроводность - позволяет организму поддерживать одинаковую температуру во всем его объеме; высокая теплота испарения - используется для охлаждения организма при потоотделении у млекопитающих и транспирации у растений.

5.Структурная функция. Цитоплазма клеток содержит от 60 до 95 % воды, и именно она придает клеткам их нормальную форму. У растений вода поддерживает тургор (упругость эндоплазматической мембраны) , у некоторых животных служит гидростатическим скелетом (медузы)

Вопросы после § 7

1. В чём особенность строения молекулы воды?

Ответ. Уникальные свойства воды определяются структурой её молекулы. Молекула воды состоит из атома О, связанного с двумя атомами Н полярными ковалентными связями. Характерное расположение электронов в молекуле воды придаёт ей электрическую асимметрию. Более электроотрицательный атом кислорода притягивает электроны атомов водорода сильнее, в результате общие пары электронов смещены в молекуле воды в его сторону. Поэтому, хотя молекула воды в целом не заряжена, каждый из двух атомов водорода обладает частично положительным зарядом (обозначаемым 8+), а атом кислорода несёт частично отрицательный заряд (8-). Молекула воды поляризована и является диполем (имеет два полюса).

Частично отрицательный заряд атома кислорода одной молекулы воды притягивается частично положительными атомами водорода других молекул. Таким образом, каждая молекула воды стремится связаться водородной связью с четырьмя соседними молекулами воды.

2. Каково значение воды как растворителя?

Ответ. Благодаря полярности молекул и способности образовывать водородные связи вода легко растворяет ионные соединения (соли, кислоты, основания). Хорошо растворяются в воде и некоторые неионные, но полярные соединения, т. е. в молекуле которых присутствуют заряженные (полярные) группы, например сахара, простые спирты, аминокислоты. Вещества, хорошо растворимые в воде, называются гидрофильными (от греч. hygros – влажный и philia – дружба, склонность). Когда вещество переходит в раствор, его молекулы или ионы могут двигаться более свободно и, следовательно, реакционная способность вещества возрастает. Это объясняет, почему вода является основной средой, в которой протекает большинство химических реакций, а все реакции гидролиза и многочисленные окислительно-восстановительные реакции идут при непосредственном участии воды.

Вещества, плохо или вовсе нерастворимые в воде, называются гидрофобными (от греч. phobos – страх). К ним относятся жиры, нуклеиновые кислоты, некоторые белки и полисахариды. Такие вещества могут образовывать с водой поверхности раздела, на которых протекают многие химические реакции. Следовательно, тот факт, что вода не растворяет неполярные вещества, для живых организмов также очень важен. К числу важных в физиологическом отношении свойств воды относится её способность растворять газы (О2, СО2 и др.).

3. Что такое теплопроводность и теплоёмкость воды?

Ответ. Вода обладает высокой теплоёмкостью, т. е. способностью поглощать тепловую энергию при минимальном повышении собственной температуры. Большая теплоёмкость воды защищает ткани организма от быстрого и сильного повышения температуры. Многие организмы охлаждаются, испаряя воду (транспирация у растений, потоотделение у животных).

4. Почему считают, что вода является идеальной жидкостью для клетки?

Ответ. Высокое содержание воды в клетке - важнейшее условие ее деятельности. При потере большей части воды многие организмы гибнут, а ряд одноклеточных и даже многоклеточных организмов временно утрачивает все признаки жизни. Такое состояние называется анабиозом. После увлажнения клетки пробуждаются и становятся вновь активными.

Молекула воды электронейтральна. Но электрический заряд внутри молекулы распределен неравномерно: в области атомов водорода (точнее, протонов) преобладает положительный заряд, в области, где расположен кислород, выше плотность отрицательного заряда. Следовательно, частица воды - это диполь. Дипольным свойством молекулы воды объясняется способность ее ориентироваться в электрическом поле, присоединяться к различным молекулам и участкам молекул, несущим заряд. В результате этого образуются гидраты. Способностью воды образовывать гидраты обусловлены ее универсальные растворяющие свойства. Если энергия притяжения молекул воды к молекулам какого-либо вещества больше, чем энергия притяжения между молекулами воды, то вещество растворяется. В зависимости от этого различают гидрофильные (греч. hydros - вода и phileo - люблю) вещества, хорошо растворимые в воде (например, соли, щелочи, кислоты др.), и гидрофобные (греч. hydros - вода и phobos - боязнь) вещества, трудно или вовсе не растворимые в воде (жиры, жироподобные вещества, каучук и др.). В состав клеточных мембран входят жироподобные вещества, ограничивающие переход из наружной среды в клетки и обратно, а также из одних частей клетки в другие.

Большинство реакций, протекающих в клетке, могут идти только в водном растворе. Вода - непосредственный участник многих реакций. Например, расщепление белков, углеводов и других веществ происходит в результате катализируемого ферментами взаимодействия их с водой. Такие реакции называются реакциями гидролиза (греч. hydros - вода и lysis - расщепление).

Вода имеет высокую теплоемкость и одновременно относительно высокую для жидкостей теплопроводность. Эти свойства делают воду идеальной жидкостью для поддержания теплового равновесия клетки и организма.

Вода - основная среда для протекания биохимических реакций клетки. Она источник кислорода, выделяемого при фотосинтезе, и водорода, который используется для восстановления продуктов ассимиляции углекислого газа. И наконец, вода - основное средство передвижения веществ в организме (ток крови и лимфы, восходящие и нисходящие токи растворов по сосудам у растений) и в клетке.

5. Какова роль воды в клетке

Обеспечение упругости клетки. Последствия потери клеткой воды увядание листьев, высыхание плодов;

Ускорение химических реакций за счет растворения веществ в воде;

Обеспечение перемещения веществ: поступление большинства веществ в клетку и удаление их из клетки в виде растворов;

Обеспечение растворения многих химических веществ (ряда солей, сахаров);

Участие в ряде химических реакций;

Участие в процессе теплорегуляции благодаря способности к медленному нагреванию и медленному остыванию.

6. Какие структурные и физико-химические свойства воды определяют её биологическую роль в клетке?

Ответ. Структурные физико-химические свойства воды определяют ее биологические функции.

Вода является хорошим растворителем. Благодаря полярности молекул и способности образовывать водородные связи вода легко растворяет ионные соединения (соли, кислоты, основания).

Вода обладает высокой теплоёмкостью, т. е. способностью поглощать тепловую энергию при минимальном повышении собственной температуры. Большая теплоёмкость воды защищает ткани организма от быстрого и сильного повышения температуры. Многие организмы охлаждаются, испаряя воду (транспирация у растений, потоотделение у животных).

Вода обладает также высокой теплопроводностью, обеспечивая равномерное распределение тепла по всему организму. Следовательно, высокая удельная теплоёмкость и высокая теплопроводность делают воду идеальной жидкостью для поддержания теплового равновесия клетки и организма.

Вода практически не сжимается, создавая тургорное давление, определяя объём и упругость клеток и тканей. Так, именно гидростатический скелет поддерживает форму у круглых червей, медуз и других организмов.

Вода характеризуется оптимальным для биологических систем значением силы поверхностного натяжения, которое возникает благодаря образованию водородных связей между молекулами воды и молекулами других веществ. Благодаря силе поверхностного натяжения происходит капиллярный кровоток, восходящий и нисходящий токи растворов в растениях.

В определенных биохимических процессах вода выступает в качестве субстрата.

Свойства воды и ее роль в клетке:

На первом месте среди веществ клетки стоит вода. Она составляет около 80% массы клетки. Вода важна для живых организмов вдвойне, ибо она необходима не только как компонент клеток, но для многих и как среда обитания.

1. Вода определяет физические свойства клетки - ее объем, упругость.

2. Многие химические процессы протекают только в водном растворе.

3. Вода - хороший растворитель: многие вещества поступают в клетку из внешней среды в водном растворе, и в водном же растворе отработанные продукты выводятся из клетки.

4. Вода обладает высокой теплоемкостью и теплопроводностью.

5. Вода обладает уникальным свойством: при охлаждении ее от +4 до 0 градусов, она расширяется. Поэтому лед оказывается легче жидкой воды и остается на ее поверхности. Это очень важно для организмов, обитающих в водной среде.

6. Вода может быть хорошим смазочным материалом.

Биологическая роль воды определяется малыми размерами ее молекул, их полярностью и способностью соединяться друг с другом водородными связями.

Биологические функции воды:

транспортная. Вода обеспечивает передвижение веществ в клетке и организме, поглощение веществ и выведение продуктов метаболизма. В природе вода переносит продукты жизнедеятельности в почвы и к водоемам.

метаболическая. Вода является средой для всех биохимических реакций, донором электронов при фотосинтезе; она необходима для гидролиза макромолекул до их мономеров.

вода участвует в образовании смазывающих жидкостей и слизей, секретов и соков в организме.

За очень немногими исключениями (кость и эмаль зуба), вода является преобладающим компонентом клетки. Вода необходима для метаболизма (обмена) клетки, так как физиологические процессы происходят исключительно в водной среде. Молекулы воды участвуют во многих ферментативных реакциях клетки. Например, расщепление белков, углеводов и других веществ происходит в результате катализируемого ферментами взаимодействия их с водой. Такие реакции называются реакциями гидролиза.

Вода служит источником ионов водорода при фотосинтезе. Вода в клетке находится в двух формах: свободной и связанной. Свободная вода составляет 95% всей воды в клетке и используется главным образом как растворитель и как дисперсионная среда коллоидной системы протоплазмы. Связанная вода, на долю которой приходится всего 4% всей воды клетки, непрочно соединена с белками водородными связями.

Из-за асимметричного распределения зарядов молекула воды действует как диполь и потому может быть связана как положительно, так и отрицательно заряженными группами белка. Дипольным свойством молекулы воды объясняется способность ее ориентироваться в электрическом поле, присоединяться к различным молекулам и участкам молекул, несущим заряд. В результате этого образуются гидраты

Благодаря своей высокой теплоемкости вода поглощает тепло и тем самым предотвращает резкие колебания температуры в клетке. Содержание воды в организме зависит от его возраста и метаболической активности. Оно наиболее высоко в эмбрионе (90%) и с возрастом постепенно уменьшается. Содержание воды в различных тканях варьируется в зависимости от их метаболической активности. Например, в сером веществе мозга воды до 80%, а в костях до 20%. Вода - основное средство перемещения веществ в организме (ток крови, лимфы, восходящие и нисходящие токи растворов по сосудам у растений) и в клетке. Вода служит «смазочным» материалом, необходимым везде, где есть трущиеся поверхности (например, в суставах). Вода имеет максимальную плотность при 4°С. Поэтому лед, обладающий меньшей плотностью, легче воды и плавает на ее поверхности, что защищает водоем от промерзания. Это свойство воды спасает жизнь многим водным организмам.

Содержание воды в различных органах растений колеблется в довольно широких пределах. Оно изменяется в зависимости от условий внешней среды, возраста и вида растений. Так, содержание воды в листьях салата составляет 93-95%, ку­курузы - 75-77%. Количество воды неодинаково в разных органах растений: в листьях подсолнечника воды содержится 80-83%, в стеблях - 87-89%, в кор­нях - 73-75%. Содержание воды, равное 6-11%, характерно главным образом для воздушно-сухих семян, в которых процессы жизнедеятельности заторможены.

Вода содержится в живых клетках, в мертвых элементах ксилемы и в межклет­никах. В межклетниках вода находится в парообразном состоянии. Основными испаряющими органами растения являются листья. В связи с этим естественно, что наибольшее количество воды заполняет межклетники листьев. В жидком состоянии вода находится в различных частях клетки: клеточной оболочке, ва­куоли, цитоплазме. Вакуоли - наиболее богатая водой часть клетки, где содержа­ние ее достигает 98%. При наибольшей оводненности содержание воды в цито­плазме составляет 95%. Наименьшее содержание воды характерно для клеточных оболочек. Количественное определение содержания воды в клеточных оболочках затруднено; по-видимому, оно колеблется от 30 до 50%.

Формы воды в разных частях растительной клетки также различны. В вакуолярном клеточном соке преобладает вода, удерживаемая сравнительно низкомолекулярными соединениями (осмотическисвязанная) и свободная вода. В оболочке растительной клетки вода связана, главным образом, высокополимер­ными соединениями (целлюлозой, гемицеллюлозой, пектиновыми веществами), т. е. коллоидно-связанная вода. В самой цитоплазме имеется вода свободная, коллоидно- и осмотическисвязанная. Вода, находящаяся на расстоянии до 1 нм от поверхности белковой молекулы, связана прочно и не имеет правильной гексагональной структуры (коллоидно-связанная вода). Кроме того, в цитоплаз­ме имеется определенное количество ионов, а, следовательно, часть воды осмо­тически связана.

Физиологическое значение свободной и связанной воды различно. Как счита­ет большинство исследователей, интенсивность физиологических процессов, в том числе и темпов роста, зависит в первую очередь от содержания свободной воды. Имеется прямая корреляция между содержанием связанной воды и ус­тойчивостью растений против неблагоприятных внешних условий. Указанные физиологические корреляции наблюдаются не всегда.

Для своего нормального существования клетки и растительный организм в целом должны содержать определенное количество воды. Однако это легко осущест­вимо лишь для растений, произрастающих в воде. Для сухопутных растений эта задача осложняется тем, что вода в растительном организме непрерывно теря­ется в процессе испарения. Испарение воды растением достигает огромных раз­меров. Можно привести такой пример: одно растение кукурузы испаряет за вегетационный период до 180 кг воды, а 1 га леса в Южной Америке испаряет в среднем за сутки 75 тыс. кг воды. Огромный расход воды связан с тем, что большинство растений обладает значительной листовой поверхностью, нахо­дящейся в атмосфере, не насыщенной парами воды. Вместе с тем развитие обширной поверхности листьев необходимо и выработалось в процессе длитель­ной эволюции для обеспечения нормального питания углекислым газом, со­держащимся в воздухе в ничтожной концентрации (0,03%). В своей знаменитой книге «Борьба растений с засухой» К.А. Тимирязев указывал, что противоречие между необходимостью улавливать углекислый газ и сокращать расходование воды наложило отпечаток на строение всего растительного организма.

Для того чтобы возместить потери воды при испарении, в растение должно непрерывно поступать большое ее количество. Непрерывно идущие в растении два процесса - поступление и испарение воды - называют водным балансом растений. Для нормального роста и развития растений необходимо, чтобы рас­ход воды примерно соответствовал приходу, или, иначе говоря, чтобы растение сводило свой водный баланс без большого дефицита. Для этого в растении в процессе естественного отбора выработались приспособления к поглощению воды (колоссально развитая корневая система), к передвижению воды (специ­альная проводящая система), к сокращению испарения (система покровных тка­ней и система автоматически закрывающихся устьичных отверстий).

Несмотря на все указанные приспособления, в растении часто наблюдается водный дефицит, т. е. поступление воды не уравновешивается ее расходованием в процессе транспирации.

Физиологические нарушения наступают у разных растений при разной сте­пени водного дефицита. Есть растения, выработавшие в процессе эволюции раз­нообразные приспособления к перенесению обезвоживания (засухоустойчивые растения). Выяснение физиологических особенностей, определяющих устой­чивость растений к недостатку воды,- важнейшая задача, разрешение которой имеет большое не только теоретическое, но и сельскохозяйственное практиче­ское значение. Вместе с тем, для того чтобы ее решить, необходимо знание всех сторон водообмена растительного организма.