Технология автоматического распознавания образов. Системы распознавания образов (идентификации) Принципы распознавания образов

Общая структура системы распознавания и этапы в процессе ее разработки показаны на рис. 4.

Рис. 4. Структура системы распознавания

Задачи распознавания имеют следующие характерные черты.

Это информационные задачи, состоящие из двух этапов: - преобразование исходных данных к виду, удобному для распознавания; - собственно распознавание (указание принадлежности объекта определенному классу).

В этих задачах можно вводить понятие аналогии или подобия объектов и формулировать правила, на основании которых объект зачисляется в один и тот же класс или в разные классы.

В этих задачах можно оперировать набором прецедентов-примеров, классификация которых известна и которые в виде формализованных описаний могут быть предъявлены алгоритму распознавания для настройки на задачу в процессе обучения.

Для этих задач трудно строить формальные теории и применять классические математические методы (часто недоступна информация для точной математической модели или выигрыш от использования модели и математических методов несоизмерим с затратами).

Выделяют следующие типы задач распознавания: - Задача распознавания - отнесение предъявленного объекта по его описанию к одному из заданных классов (обучение с учителем); - Задача автоматической классификации - разбиение множества объектов, ситуаций, явлений по их описаниям на систему непересекающихся классов (таксономия, кластерный анализ, самообучение);

Задача выбора информативного набора признаков при распознавании; - Задача приведения исходных данных к виду, удобному для распознавания; - Динамическое распознавание и динамическая классификация - задачи 1 и 2 для динамических объектов;

Задача прогнозирования - суть предыдущий тип, в котором решение должно относиться к некоторому моменту в будущем.

Заключение

Распознавание образов (а часто говорят - объектов, сигналов, ситуаций, явлений или процессов) - самая распространенная задача, которую человеку приходится решать практически ежесекундно от первого до последнего дня своего существования. Для этого он использует огромные ресурсы своего мозга, которые мы оцениваем таким показателем как число нейронов, равное 10 10 .

Можно даже не утруждая себя примерами заметить, что похожие действия наблюдаются в биологии, в живой природе, а иногда даже в неживой. Кроме того, распознавание постоянно встречается в технике. А если это так, то, очевидно, следует считать механизм распознавания всеобъемлющим.

С более общих позиций можно утверждать, и это вполне очевидно, что в повседневной деятельности человек постоянно сталкивается с задачами, связанными с принятием решений, обусловленных непрерывно меняющейся окружающей обстановкой. В этом процессе принимают участие: органы чувств, с помощью которых человек воспринимает информацию извне; центральная нервная система, осуществляющая отбор, переработку информации и принятие решений; двигательные органы, реализующие принятое решение. Но в основе решений этих задач лежит, в чем легко убедиться, распознавание образов.

В своей практике люди решают разнообразные задачи по классификации и распознаванию объектов, явлений и ситуаций (мгновенно узнают друг друга, с большой скоростью читают печатные и рукописные тексты, безошибочно водят автомобили в сложном потоке уличного движения, осуществляют отбраковку деталей на конвейере, разгадывают коды, древнюю египетскую клинопись и т.д.).

Вычисления в сетях формальных нейронов, во многом напоминают обработку информации мозгом. В последнее десятилетие нейрокомпьютинг приобрел чрезвычайную популярность на Западе, где он уже успел превратиться в инженерную дисциплину, тесно связанную с производством коммерческих продуктов. Ежегодно выходят десятки книг, посвященных практическим аспектам нейрокомпьютинга. Интенсивно ведутся работы по созданию новой – аналоговой элементной базы для нейровычислений.

В России же, где в силу общего снижения тонуса научных исследований структура науки оказалась «замороженной», до сих пор бытует мнение, что традиционные математические методы в принципе достаточны для решения любых задач распознавания образов. Нейрокомпьютинг же воспринимается как излишество и дань кратковременной моде. Однако на фоне многочисленных практических успехов нейротехнологий утверждения, что любая конкретная задача может быть в принципе решена и без них выглядят несколько схоластично. Раз нейрокомпьютинг на деле доказывает свою конкурентоспособность разумнее повнимательнее приглядеться к этому феномену. Не рискуем ли мы со своим скептицизмом просмотреть начало нового этапа компьютерной революции? Не отстанет ли российская компьютерная наука от мировой, на сей раз окончательно, в этой чрезвычайно быстро развивающейся и стратегически важной отрасли?

Перспективы в ближайшем будущем. Основной чертой, отличающей нейрокомпьютеры от современных компьютеров и обеспечивающей будущее этого направления, по мнению автора, является способность решать неформализованные проблемы, для которых в силу тех или иных причин еще не существует алгоритмов решения. Нейрокомпьютеры предлагают относительно простую технологию порождения алгоритмов путем обучения. В этом их основное преимущество, их «миссия» в компьютерном мире.

Возможность порождать алгоритмы оказывается особенно полезной для задач распознавания образов, в которых зачастую не удается выделить значимые признаки априори. Вот почему нейрокомпьютинг оказался актуален именно сейчас, в период расцвета мультимедиа, когда развитие глобальной сети Internet требует разработки новых технологий, тесно связанных с распознаванием образов. Однако – обо всем по порядку.

Одна из основных проблем развития и применения искусственного интеллекта остаётся проблема распознавания звуковых и визуальных образов. Однако интернет и развитые коммуникационные каналы уже позволяют создавать системы, решающие эту проблему с помощью социальных сетей, готовых прийти на помощь роботам 24 часа в сутки.

Профессия инженера систем распознавания образов на базе социальных сетей будет востребована уже в ближайшем будущем и до тех пор, пока системы ИИ не будут способны сами пройти тест Тьюринга.

Экстраполируя экспоненциальный рост уровня технологии в течение нескольких десятилетий, футурист Рэймонд Курцвейл предположил, что машины, способные пройти тест Тьюринга, будут изготовлены не ранее 2029 года.

Однако системы ИИ не могут ждать так долго – все остальные технологии уже готовы к тому, чтобы найти своё применение в медицине, биологии, системах безопасности и т.д. Их глазами и ушами станут миллионы людей по всему миру, готовые распознать фотографию террориста, надпись на пузырьке с лекарством или слова о помощи.

Аудитория социальных сетей растёт гиганскими темпами. Согласно результатам исследования ComScore, в мае 2009 года аудитория пользователей одной только Facebook в США насчитывала 70,28 млн человек. И это практически в два раза выше аналогичного показателя за май 2008 года.

Работа инженера будет заключаться в том, чтобы организовать процесс передачи пользователям нераспознанных визуальных или звуковых образов в виде MMS, поп-апов на сайтах, символов CAPTCHA на формах в блогах и др., верификации полученных данных и отправке распознанного слова или образа обратно системе ИИ.

В целом, можно выделить три метода распознавания образов: Метод перебора. В этом случае производится сравнение с базой данных, где для каждого вида объектов представлены всевозможные модификации отображения. Например, для оптического распознавания образов можно применить метод перебора вида объекта под различными углами, масштабами, смещениями, деформациями и т. д. Для букв нужно перебирать шрифт, свойства шрифта и т. д. В случае распознавания звуковых образов, соответственно, происходит сравнение с некоторыми известными шаблонами (например, слово, произнесенное несколькими людьми).

Второй подход - производится более глубокий анализ характеристик образа. В случае оптического распознавания это может быть определение различных геометрических характеристик. Звуковой образец в этом случае подвергается частотному, амплитудному анализу и т. д.

Следующий метод - использование искусственных нейронных сетей (ИНС). Этот метод требует либо большого количества примеров задачи распознавания при обучении, либо специальной структуры нейронной сети, учитывающей специфику данной задачи. Тем не менее, его отличает более высокая эффективность и производительность.

4. История распознавания образов

Рассмотрим кратко математический формализм распознавания образов. Объект в распознавании образов описывается совокупностью основных характеристик (признаков, свойств). Основные характеристики могут иметь различную природу: они могут браться из упорядоченного множества типа вещественной прямой, либо из дискретного множества (которое, впрочем, так же может быть наделено структурой). Такое понимание объекта согласуется как потребностью практических приложений распознавания образов, так и с нашим пониманием механизма восприятия объекта человеком. Действительно, мы полагаем, что при наблюдении (измерении) объекта человеком, сведения о нем поступают по конечному числу сенсоров (анализируемых каналов) в мозг, и каждому сенсору можно сопоставить соответствующую характеристику объекта. Помимо признаков, соответствующих нашим измерениям объекта, существует так же выделенный признак, либо группа признаков, которые мы называем классифицирующими признаками, и в выяснении их значений при заданном векторе Х и состоит задача, которую выполняют естественные и искусственные распознающие системы.

Понятно, что для того, чтобы установить значения этих признаков, необходимо иметь информацию о том, как связаны известные признаки с классифицирующими. Информация об этой связи задается в форме прецедентов, то есть множества описаний объектов с известными значениями классифицирующих признаков. И по этой прецедентной информации и требуется построить решающее правило, которое будет ставить произвольному описанию объекта значения его классифицирующих признаков.

Такое понимание задачи распознавания образов утвердилось в науке начиная с 50-х годов прошлого века. И тогда же было замечено что такая постановка вовсе не является новой. С подобной формулировкой сталкивались и уже существовали вполне не плохо зарекомендовавшие себя методы статистического анализа данных, которые активно использовались для многих практических задач, таких как например, техническая диагностика. Поэтому первые шаги распознавания образов прошли под знаком статистического подхода, который и диктовал основную проблематику.

Статистический подход основывается на идее, что исходное пространство объектов представляет собой вероятностное пространство, а признаки (характеристики) объектов являют собой случайные величины заданные на нем. Тогда задача исследователя данных состояла в том, чтобы из некоторых соображений выдвинуть статистическую гипотезу о распределении признаков, а точнее о зависимости классифицирующих признаков от остальных. Статистическая гипотеза, как правило, представляла собой параметрически заданное множество функций распределения признаков. Типичной и классической статистической гипотезой является гипотеза о нормальности этого распределения (разновидностей таких гипотез статистики придумали великое множество). После формулировки гипотезы оставалось проверить эту гипотезу на прецедентных данных. Это проверка состояла в выборе некоторого распределения из первоначально заданного множества распределений (параметра гипотезы о распределении) и оценки надежности(доверительного интервала) этого выбора. Собственно эта функция распределения и была ответом к задаче, только объект классифицировался уже не однозначно, но с некоторыми вероятностями принадлежности к классам. Статистиками были разработано так же и ассимптотическое обоснование таких методов. Такие обоснования делались по следующей схеме: устанавливался некоторый функционал качества выбора распределения (доверительный интервал) и показывалось, что при увеличении числа прецедентов, наш выбор с вероятностью стремящейся к 1 становился верным в смысле этого функционала (доверительный интервал стремился к 0). Забегая вперед скажем, что статистический взгляд на проблему распознавания оказался весьма плодотворным не только в смысле разработанных алгоритмов (в число которых входят методы кластерного, дискриминантного анализов, непараметрическая регрессия и т.д.), но и привел впоследствии Вапника к созданию глубокой статистической теории распознавания.

Тем не менее существует серьезная аргументация в пользу того, что задачи распознавания образов не сводятся к статистике. Любую такую задачу, в принципе, можно рассматривать со статистической точки зрения и результаты ее решения могут интерпретироваться статистически. Для этого необходимо лишь предположить, что пространство объектов задачи является вероятностным. Но с точки зрения инструментализма, критерием удачности статистической интерпретации некоторого метода распознавания может служить лишь наличие обоснавания этого метода на языке статистики как раздела математики. Под обоснаванием здесь понимается выработка основных требований к задаче которые обеспечивают успех в применении этого метода. Однако на данный момент для большей части методов распознавания, в том числе и для тех, которые напрямую возникли в рамках статистического подхода, подобных удовлетворительных обоснований не найдено. Кроме этого, наиболее часто применяемые на данный момент статистические алгоритмы, типа линейного дискриминанта Фишера, парзеновского окна, EM-алгоритма, метода ближайших соседей, не говоря уже о байесовских сетях доверия, имеют сильно выраженный эвристический характер и могут иметь интерпретации отличные от статистических. И наконец, ко всему вышесказанному следует добавить, что помимо асимптотического поведения методов распознавания, которое и является основным вопросом статистики, практика распознавания ставит вопросы вычислительной и структурной сложности методов, которые выводят далеко за рамки одной лишь теории вероятностей.

Итого, вопреки стремлениям статистиков рассматривать распознавание образов как раздел статистики, в практику и идеологию распознавания входили совершенно другие идеи. Одна из них была вызвана исследованиями в области распознавания зрительных образов и основана на следующей аналогии.

Как уже отмечалось, в повседневной жизни люди постоянно решают (зачастую бессознательно) проблемы распознавания различных ситуаций, слуховых и зрительных образов. Подобная способность для ЭВМ представляет собой в лучшем случае дело будущего. Отсюда некоторыми пионерами распознавания образов был сделан вывод, что решение этих проблем на ЭВМ должно в общих чертах моделировать процессы человеческого мышления. Наиболее известной попыткой подойти к проблеме с этой стороны было знаменитое исследование Ф. Розенблатта по перцептронам .

К середине 50-х годов казалось, что нейрофизиологами были поняты физические принципы работы мозга (в книге "Новый Разум Короля" знаменитый британский физик-теоретик Р. Пенроуз интересно ставит под сомнение нейросетевую модель мозга, обосновывая существенную роль в его функционировании квантово-механических эффектов; хотя, впрочем, эта модель подвергалась сомнению с самого начала. Отталкиваясь от этих открытий Ф.Розенблатт разработал модель обучения распознаванию зрительных образов, названную им персептроном. Персептрон Розенблатта представляет собой следующую функцию (рис. 1):

Рис 1. Схема Персептрона

На входе персептрон получает вектор объекта, который в работах Розенблатта представлял собой бинарный вектор, показывавший какой из пикселов экрана зачернен изображением а какой нет. Далее каждый из признаков подается на вход нейрона, действие которого представляет собой простое умножение на некоторый вес нейрона. Результаты подаются на последний нейрон, который их складывает и общую сумму сравнивает с некоторым порогом. В зависимости от результатов сравнения входной объект Х признается нужным образом либо нет. Тогда задача обучения распознаванию образов состояла в таком подборе весов нейронов и значения порога, чтобы персептрон давал на прецедентных зрительных образах правильные ответы. Розенблатт полагал, что получившаяся функция будет неплохо распознавать нужный зрительный образ даже если входного объекта и не было среди прецедентов. Из бионических соображений им так же был придуман и метод подбора весов и порога, на котором останавливаться мы не будем. Скажем лишь, что его подход оказался успешным в ряде задач распознавания и породил собой целое направление исследований алгоритмов обучения основанных на нейронных сетях, частным случаем которых и является персептрон.

Далее были придуманы различные обобщения персептрона, функция нейронов была усложнена: нейроны теперь могли не только умножать входные числа или складывать их и сравнивать результат с порогами, но применять по отношению к ним более сложные функции. На рисунке 2 изображено одно из подобных усложнений нейрона:

Рис. 2 Схема нейронной сети.

Кроме того топология нейронной сети могла быть значительно сложнее той, что рассматривал Розенблатт, например такой:

Рис. 3. Схема нейронной сети Розенблатта.

Усложнения приводили к увеличению числа настраиваемых параметров при обучении, но при этом увеличивали возможность настраиваться на очень сложные закономерности. Исследования в этой области сейчас идут по двум тесно связанным направлениям - изучаются и различные топологии сетей и различные методы настроек.

Нейронные сети на данный момент являются не только инструментом решения задач распознавания образов, но получили применение в исследованиях по ассоциативной памяти, сжатию изображений. Хотя это направление исследований и пересекается сильно с проблематикой распознавания образов, но представляет собой отдельный раздел кибернетики. Для распознавателя на данный момент, нейронные сети не более чем очень специфически определенное, параметрически заданное множество отображений, которое в этом смысле не имеет каких-либо существенных преимуществ над многими другим подобными моделями обучения которые далее будут кратко перечислены.

В связи с данной оценкой роли нейронных сетей для собственно распознавания (то есть не для бионики, для которой они имеют первостепенное значение уже сейчас) хотелось бы отметить следующее: нейронные сети, будучи чрезвычайно сложным объектом для математического анализа, при грамотном их использовании, позволяют находить весьма нетривиальные законы в данных. Их трудность для анализа, в общем случае, объясняется их сложной структурой и как следствие, практически неисчерпаемыми возможностями для обобщения самых различных закономерностей. Но эти достоинства, как это часто и бывает, являются источником потенциальных ошибок, возможности переобучения. Как будет рассказано далее, подобный двоякий взгляд на перспективы всякой модели обучения является одним из принципов машинного обучения.

Еще одним популярным направлением в распознавании являются логические правила и деревья решений. В сравнении с вышеупомянутыми методами распознавания эти методы наиболее активно используют идею выражения наших знаний о предметной области в виде, вероятно самых естественных (на сознательном уровне) структур - логических правил. Под элементарным логическим правилом подразумевается высказывание типа «если неклассифицируемые признаки находятся в соотношении X то классифицируемые находятся в соотношении Y». Примером такого правила в медицинской диагностике служит следующее: если возраст пациента выше 60 лет и ранее он перенёс инфаркт, то операцию не делать - риск отрицательного исхода велик.

Для поиска логических правил в данных необходимы 2 вещи: определить меру «информативности» правила и пространство правил. И задача поиска правил после этого превращается в задачу полного либо частичного перебора в пространстве правил с целью нахождения наиболее информативных из них. Определение информативности может быть введено самыми различными способами и мы не будем останавливаться на этом, считая что это тоже некоторый параметр модели. Пространство же поиска определяется стандартно.

После нахождения достаточно информативных правил наступает фаза «сборки» правил в конечный классификатор. Не обсуждая глубоко проблемы которые здесь возникают (а их возникает немалое количество) перечислим 2 основных способа «сборки». Первый тип - линейный список. Второй тип – взвешенное голосование, когда каждому правилу ставится в соответствие некоторый вес, и объект относится классификатором к тому классу за который проголосовало наибольшее количество правил.

В действительности, этап построения правил и этап «сборки» выполняются сообща и, при построении взвешенного голосования либо списка, поиск правил на частях прецедентных данных вызывается снова и снова, чтобы обеспечить лучшее согласование данных и модели.

Sun, Mar 29, 2015

В настоящее время существует множество задач, в которых требуется принять некоторое решение в зависимости от присутствия на изображении объекта или классифицировать его. Способность «распознавать» считается основным свойством биологических существ, в то время как компьютерные системы этим свойством в полной мере не обладают.

Рассмотрим общие элементы модели классификации.

Класс - множество объектом имеющие общие свойства. Для объектов одного класса предполагается наличие «схожести». Для задачи распознавания может быть определено произвольное количество классов, больше 1. Количество классов обозначается числом S. Каждый класс имеет свою идентифицирующую метку класса.

Классификация - процесс назначения меток класса объектам, согласно некоторому описанию свойств этих объектов. Классификатор - устройство, которое в качестве входных данных получает набор признаков объекта, а в качестве результата выдающий метку класса.

Верификация - процесс сопоставления экземпляра объекта с одной моделью объекта или описанием класса.

Под образом будем понимать наименование области в пространстве признаков, в которой отображается множество объектов или явлений материального мира. Признак - количественное описание того или иного свойства исследуемого предмета или явления.

Пространство признаков это N-мерное пространство, определенное для данной задачи распознавания, где N - фиксированное число измеряемых признаков для любых объектов. Вектор из пространства признаков x, соответствующий объекту задачи распознавания это N-мерный вектор с компонентами (x_1,x_2,…,x_N), которые являются значениями признаков для данного объекта.

Другими словами, распознавание образов можно определить, как отнесение исходных данных к определенному классу с помощью выделение существенных признаков или свойств, характеризующих эти данные, из общей массы несущественных деталей.

Примерами задач классификации являются:

  • распознавание символов;
  • распознавание речи;
  • установление медицинского диагноза;
  • прогноз погоды;
  • распознавание лиц
  • классификация документов и др.

Чаще всего исходным материалом служит полученное с камеры изображение. Задачу можно сформулировать как получение векторов признаков для каждого класса на рассматриваемом изображении. Процесс можно рассматривать как процесс кодирования, заключающийся в присвоении значения каждому признаку из пространства признаков для каждого класса.

Если рассмотреть 2 класса объектов: взрослые и дети. В качестве признаков можно выбрать рост и вес. Как следует из рисунка эти два класса образуют два непересекающихся множества, что можно объяснить выбранными признаками. Однако не всегда удается выбрать правильные измеряемые параметры в качестве признаков классов. Например выбранные параметры не подойдут для создания непересекающихся классов футболистов и баскетболистов.

Второй задачей распознавания является выделение характерных признаков или свойств из исходных изображений. Эту задачу можно отнести к предварительной обработке. Если рассмотреть задачу распознавания речи, можно выделить такие признаки как гласные и согласные звуки. Признак должен представлять из себя характерное свойство конкретного класса, при этом общие для этого класса. Признаки, характеризующие отличия между - межклассовые признаки. Признаки общие для всех классов не несут полезной информации и не рассматриваются как признаки в задаче распознавания. Выбор признаков является одной из важных задач, связанных с построением системы распознавания.

После того, как определены признаки необходимо определить оптимальную решающую процедуру для классификации. Рассмотрим систему распознавания образов, предназначенную для распознавания различных M классов, обозначенных как m_1,m_2,…,m3. Тогда можно считать, что пространство образов состоит из M областей, каждая содержит точки, соответствующие образом из одного класса. Тогда задача распознавания может рассматриваться как построение границ, разделяющих M классов, исходя из принятых векторов измерений.

Решение задачи предварительной обработки изображения, выделение признаков и задачи получения оптимального решения и классификации обычно связано с необходимостью произвести оценку ряда параметров. Это приводит к задаче оценки параметров. Кроме того, очевидно, что выделение признаков может использовать дополнительную информацию исходя из природы классов.

Сравнение объектов можно производить на основе их представления в виде векторов измерений. Данные измерений удобно представлять в виде вещественных чисел. Тогда сходство векторов признаков двух объектов может быть описано с помощью евклидова расстояния.

где d - размерность вектора признака.

Разделяют 3 группы методов распознавания образов:

  • Сравнение с образцом . В эту группу входит классификация по ближайшему среднему, классификация по расстоянию до ближайшего соседа. Также в группу сравнения с образцом можно отнести структурные методы распознавания.
  • Статистические методы . Как видно из названия, статистические методы используют некоторую статистическую информацию при решении задачи распознавания. Метод определяет принадлежность объекта к конкретному классу на основе вероятности В ряде случаев это сводится к определению апостериорной вероятности принадлежности объекта к определенному классу, при условии, что признаки этого объекта приняли соответствующие значения. Примером служит метод на основе байесовского решающего правила.
  • Нейронные сети . Отдельный класс методов распознавания. Отличительной особенностью от других является способность обучаться.

Классификация по ближайшему среднему значению

В классическом подходе распознавания образов, в котором неизвестный объект для классификации представляется в виде вектора элементарных признаков. Система распознавания на основе признаков может быть разработана различными способами. Эти векторы могут быть известны системе заранее в результате обучения или предсказаны в режиме реального времени на основе каких-либо моделей.

Простой алгоритм классификации заключается в группировке эталонных данных класса с использованием вектора математического ожидания класса (среднего значения).

где x(i,j)- j-й эталонный признак класса i, n_j- количество эталонных векторов класса i.

Тогда неизвестный объект будет относиться к классу i, если он существенно ближе к вектору математического ожидания класса i, чем к векторам математических ожиданий других классов. Этот метод подходит для задач, в которых точки каждого класса располагаются компактно и далеко от точек других классов.

Трудности возникнут, если классы будут иметь несколько более сложную структуру, например, как на рисунке. В данном случае класс 2 разделен на два непересекающихся участка, которые плохо описываются одним средним значением. Также класс 3 слишком вытянут, образцы 3-го класса с большими значениями координат x_2 ближе к среднему значению 1-го класса, нежели 3-го.

Описанная проблема в некоторых случаях может быть решена изменением расчета расстояния.

Будем учитывать характеристику «разброса» значений класса - σ_i, вдоль каждого координатного направления i. Среднеквадратичное отклонение равно квадратному корню из дисперсии. Шкалированное евклидово расстояние между вектором x и вектором математического ожидания x_c равно

Эта формула расстояния уменьшит количество ошибок классификации, но на деле большинство задач не удается представить таким простым классом.

Классификация по расстоянию до ближайшего соседа

Другой подход при классификации заключается в отнесении неизвестного вектора признаков x к тому классу, к отдельному образцу которого этот вектор наиболее близок. Это правило называется правилом ближайшего соседа. Классификация по ближайшему соседу может быть более эффективна, даже если классы имеют сложную структуру или когда классы пересекаются.

При таком подходе не требуется предположений о моделях распределения векторов признаков в пространстве. Алгоритм использует только информацию об известных эталонных образцах. Метод решения основан на вычислении расстояния x до каждого образца в базе данных и нахождения минимального расстояния. Преимущества такого подхода очевидны:

  • в любой момент можно добавить новые образцы в базу данных;
  • древовидные и сеточные структуры данных позволяют сократить количество вычисляемых расстояний.

Кроме того, решение будет лучше, если искать в базе не одного ближайшего соседа, а k. Тогда при k > 1 обеспечивает наилучшую выборку распределения векторов в d-мерном пространстве. Однако эффективное использование значений k зависит от того, имеется ли достаточное количество в каждой области пространства. Если имеется больше двух классов то принять верное решение оказывается сложнее.

Литература

  • M. Castrillón, . O. Déniz, . D. Hernández и J. Lorenzo, «A comparison of face and facial feature detectors based on the Viola-Jones general object detection framework,» International Journal of Computer Vision, № 22, pp. 481-494, 2011.
  • Y.-Q. Wang, «An Analysis of Viola-Jones Face Detection Algorithm,» IPOL Journal, 2013.
  • Л. Шапиро и Д. Стокман, Компьютерное зрение, Бином. Лаборатория знаний, 2006.
  • З. Н. Г., Методы распознавания и их применение, Советское радио, 1972.
  • Дж. Ту, Р. Гонсалес, Математические принципы распознавания образов, Москва: “Мир” Москва, 1974.
  • Khan, H. Abdullah и M. Shamian Bin Zainal, «Efficient eyes and mouth detection algorithm using combination of viola jones and skin color pixel detection» International Journal of Engineering and Applied Sciences, № Vol. 3 № 4, 2013.
  • V. Gaede и O. Gunther, «Multidimensional Access Methods,» ACM Computing Surveys, pp. 170-231, 1998.

Аннотация: Мы хотим прийти к пониманию феномена мышления, идя от задач поведения и восприятия, т. е. от задач, для решения которых возник и эволюционно развивался мозг. В предыдущих лекциях мы говорили о поведении. Теперь посмотрим, что дает для понимания феномена мышления задача восприятия. Мы рассмотрим некоторые принципы "интеллектуального" восприятия, конкретизирующиеся на примере решения задачи автоматического чтения рукописных символов. Практическая ориентация не привела, как это часто бывает, к упрощению и выхолащиванию проблемы восприятия. Наоборот, для получения работоспособного решения потребовалось введение "интеллектуальных" составляющих, ориентированных на распознавание "с пониманием".

Распознавание образов

С самого начала развития кибернетики машинное восприятие изображений чаще всего выбиралось для исследования и моделирования интеллекта и, в частности, таких очевидных составляющих мышления, как построение системы обобщенных знаний о среде и использование этих знаний в процессе принятия решений . Восприятие зрительной информации представлялось наиболее удобным для моделирования и в то же время наиболее практически значимым.

Сразу было ясно, что для полного решения задачи машинного зрительного восприятия необходимо "интеллектуальное" распознавание , или распознавание "с пониманием". Часто даже пытались сводить мышление к восприятию, попросту ставя между ними знак тождества. В дальнейшем мы увидим, что мышление и восприятие неразрывно связаны, но это далеко не одно и то же. Поэтому исследования живого восприятия (в первую очередь зрительного), безусловно, полезны для понимания процесса мышления, но проблему в целом далеко не решают. В то же время практическая ориентация работ в области автоматического анализа зрительной информации и стремление к технической реализуемости привели к серьезной трансформации проблемы. Оказалось практически почти вынужденным упрощенное рассмотрение процесса восприятия путем сведения его к классификации по признакам простых объектов, рассматриваемых по отдельности. Это направление стало называться " Распознавание образов ".

Распознавание образов к направлению " Искусственный интеллект " (ИИ) чаще всего не относили, поскольку в отличие от задач ИИ в распознавании образов появился хорошо разработанный математический аппарат, и для не очень сложных объектов, оказалось возможным строить практически работающие системы распознавания (классификации). В результате традиционное распознавание образов , с одной стороны, не решает задачу машинного анализа сложных изображений и, с другой стороны, не является серьезным инструментом для моделирования интеллекта. Рассмотрим связанные с этим вопросы более подробно.

Для любого распознавания нужны эталоны или модели классов распознаваемых объектов. Классификация методов распознавания возможна по типам используемых эталонов или, что почти то же самое, по способу представления объектов на входе распознающей системы. В большинстве систем распознавания изображений обычно применяются растровый, признаковый или структурный методы.

Растровому подходу соответствуют эталоны, являющиеся изображениями либо какими-то препаратами изображений. При распознавании представленное в виде точечного растра входное изображение сопоставляется точка в точку со всеми эталонными и определяется, с каким из эталонов изображение совпадает лучше, например, имеет больше общих точек. Входное и эталонное изображения должны быть одного размера и одной ориентации. Например, в так называемых multifont-OCR (многошрифтовых распознавателях печатного текста) это достигается построением разных эталонов не только для разных шрифтов, но и для разных размеров символов (кеглей) в пределах одного шрифта. Распознавание таким способом рукописных символов невозможно ввиду их слишком большой вариабельности по форме, размеру и ориентации.

Возможен также вариант использования растрового распознавания с приведением входного изображения к стандартным размерам и ориентации. В этом случае распознавание рукописных символов растровым методом становится возможным после кластеризации каждого распознаваемого класса и создания отдельного растрового эталона для каждого кластера.

В общем случае получение инвариантности по отношению к размерам, форме и ориентации распознаваемых по растру объектов является сложной, а часто и неразрешимой проблемой. Другую проблему порождает необходимость выделения из изображения его фрагмента, относящегося к отдельному объекту. Эта проблема является общей для всех классических методов распознавания образов.

В подавляющем большинстве систем распознавания и, в частности, в существующих omnifont -системах оптического чтения основным является признаковый метод. При признаковом подходе эталоны строятся с использованием выделяемых на изображении признаков. Изображение на входе распознающей системы представляется вектором признаков. В качестве признаков может рассматриваться все что угодно - любые характеристики распознаваемых объектов. Признаки должны быть инвариантны к ориентации, размеру и вариациям формы объектов. Желательно также, чтобы векторы признаков, относящиеся к разным объектам одного класса, принадлежали выпуклой компактной области пространства признаков. Пространство признаков должно быть фиксировано и одинаково для всех распознаваемых объектов. Алфавит признаков придумывается разработчиком системы. Качество распознавания во многом зависит от того, насколько удачно придуман алфавит признаков. Какого-либо общего способа автоматического построения оптимального алфавита признаков не существует.

Распознавание состоит в априорном получении полного вектора признаков для любого выделенного на изображении отдельного распознаваемого объекта и лишь затем в определении того, какому из эталонов этот вектор соответствует. Эталоны чаще всего строятся как статистические либо как геометрические объекты. В первом случае обучение может состоять, например, в получении матрицы частот появления каждого признака в каждом классе объектов, а распознавание - в определении вероятностей принадлежности вектора признаков каждому из эталонов.

При геометрическом подходе результатом обучения чаще всего является разбиение пространства признаков на области, соответствующие разным классам распознаваемых объектов, а распознавание состоит в определении того, в какую из этих областей попадает соответствующий распознаваемому объекту входной вектор признаков. Затруднения при отнесении входного вектора признаков к какой-либо области могут возникать в случае пересечения областей, а также если области, соответствующие отдельным распознаваемым классам, не выпуклы и так расположены в пространстве признаков, что распознаваемый класс от других классов одной гиперплоскостью, не отделяется. Эти проблемы решаются чаще всего эвристически, например, за счет вычисления и сравнения расстояний (необязательно евклидовых) в пространстве признаков от экзаменуемого объекта до центров тяжести подмножеств обучающей выборки, соответствующих разным классам. Возможны и более радикальные меры, например, изменение алфавита признаков или кластеризация обучающей выборки, или то и другое одновременно.

Структурному подходу соответствуют эталонные описания, строящиеся в терминах структурных частей объектов и пространственных отношений между ними. Структурные элементы выделяются, как правило, на контуре или на "скелете" объекта. Чаще всего структурное описание может быть представлено графом, включающим структурные элементы и отношения между ними. При распознавании строится структурное описание входного объекта. Это описание сопоставляется со всеми структурными эталонами, например, отыскивается изоморфизм графов.

Растровый и структурный методы иногда сводят к признаковому подходу, рассматривая в первом случае в качестве признаков точки изображения, а во втором - структурные элементы и отношения между ними. Сразу заметим, что между этими методами есть очень важное принципиальное различие. Растровый метод обладает свойством целостности. Структурный метод может обладать свойством целостности. Признаковый метод свойством целостности не обладает.

Что такое целостность , и какую роль она играет при восприятии?

Классическое распознавание образов обычно организуется как последовательный процесс, разворачивающийся "снизу вверх" (от изображения к пониманию) при отсутствии управления восприятием с верхних понятийных уровней. Этапу распознавания предшествует этап получения априорного описания входного изображения. Операции выделения элементов этого описания, например, признаков, или структурных элементов, выполняются на изображении локально, части изображения получают независимую интерпретацию, то есть отсутствует целостное восприятие, что в общем случае может приводить к ошибкам - рассматриваемый изолированно фрагмент изображения часто можно интерпретировать совершенно по -разному в зависимости от гипотезы восприятия, т. е. от того, какой целостный объект предполагается увидеть.

Во-вторых, традиционные подходы ориентированы на распознавание (классификацию) объектов, рассматриваемых по отдельности. Этапу собственно распознавания должен предшествовать этап сегментации (разбиения) изображения на части, соответствующие изображениям отдельных распознаваемых объектов. Методы априорной сегментации обычно используют специфические свойства входного изображения. Общего решения задачи предварительной сегментации не существует. За исключением самых простых случаев, критерий разделения не может быть сформулирован в терминах локальных свойств самого изображения, т. е. до его распознавания.

Строчный, даже рукописный текст не является самым сложным случаем, но и для таких изображений выделение строк, слов и отдельных символов в словах может оказаться серьезной проблемой. Практическое решение этой проблемы часто основывается на переборе вариантов сегментации, и это совершенно не похоже на то, что делает мозг человека или животного в процессе целостного целенаправленного зрительного восприятия. Вспомним сказанное Сеченовым: "Мы не слышим и видим, а слушаем и смотрим". Для такого активного восприятия необходимы целостные представления объектов всех уровней - от отдельных частей до полных сцен - и интерпретация частей только в составе целого.

Таким образом, недостатки большинства традиционных подходов и в первую очередь признакового подхода - это отсутствие целостности восприятия, отсутствие целенаправленности и последовательная однонаправленная организация процесса "снизу вверх", или от изображения к "пониманию".

Распознавание возможно также с использованием окутанных чуть ли не мистическим туманом искусственных или формальных распознающих нейронных сетей (РНС). Иногда их рассматривают даже как какой-то аналог мозга. В последнее время в текстах просто пишут "нейронные сети", опуская прилагательные "искусственный" или "формальный". На самом деле РНС - это чаще всего просто признаковый классификатор , строящий разделяющие гиперплоскости в пространстве признаков.

Используемый в этих сетях формальный нейрон - это сумматор с пороговым элементом, подсчитывающий сумму произведений значений признаков на некоторые коэффициенты , являющиеся не чем иным, как коэффициентами уравнения разделяющей гиперплоскости в пространстве признаков. Если сумма меньше порога, то вектор признаков находится по одну сторону от разделяющей плоскости, если больше - по другую. Вот и все. Кроме построения разделяющих гиперплоскостей и классификации по признакам, никаких чудес.

Введение в формальном нейроне вместо порогового скачка от - 1 к 1 плавного (дифференцируемого), чаще всего сигмаобразного перехода ничего принципиально не меняет, а лишь позволяет использовать градиентные алгоритмы обучения сети, то есть нахождения коэффициентов в уравнениях разделяющих плоскостей, и делать "размазывание" разделяющей границы, присваивая результату распознавания, то есть работе формального нейрона вблизи границы, оценку, например, в диапазоне от 0 до 1. Эта оценка в определенной степени может отражать "уверенность" системы в отнесении входного вектора к той или иной из разделяемых областей пространства признаков. В то же время эта оценка, строго говоря, не является ни вероятностью, ни расстоянием до разделяющей плоскости.

Сеть из формальных нейронов может также аппроксимировать плоскостями нелинейные разделяющие поверхности и объединять по результату несвязанные области пространства признаков. Это и делается в многослойных сетях.

Во всех случаях признаковая распознающая формальная нейронная сеть (ПРНС) - это признаковый классификатор , строящий разделяющие гиперплоскости и выделяющий области в фиксированном пространстве признаков (характеристик). Никаких других задач ПРНС решать не может, причем задачу распознавания ПРНС решает не лучше обычных признаковых распознавателей, использующих аналитические методы.

Кроме того, помимо признаковых распознавателей на формальных нейронах могут строиться растровые, в том числе ансамблевые распознаватели. В этом случае сохраняются все отмеченные недостатки растровых распознавателей. Правда, могут быть и некоторые преимущества, о которых мы еще будем говорить в дальнейшем.

Во избежание недоразумений следует заметить, что на формальных нейронах в принципе можно построить универсальный компьютер , с использованием как разделяющих плоскостей в пространстве переменных, так и легко реализуемых на формальных нейронах логических функций И , ИЛИ и НЕ , однако таких компьютеров никто не строит и обсуждение связанных с этим вопросов выходит за рамки рассматриваемых проблем. Нейрокомпьюторами обычно называют либо просто нейронный распознаватель , либо специальные системы, решающие задачи, близкие распознаванию образов и фактически использующие распознавание на основе построения разделяющих гиперплоскостей в пространстве признаков или на основе сравнения растра с эталоном.

Выше уже отмечалось, что для моделирования мышления очень важно, а может быть, и необходимо понять, как работают нейронные механизмы живого мозга. В связи с этим возникает вопрос: а не являются ли формальные распознающие нейронные сети если и не решением проблемы моделирования нейронных механизмов мозга, то хотя бы важным шагом в этом направлении? К сожалению, ответ должен быть отрицательным. В отличие от активной живой нейронной сети РИС - это пассивный признаковый или растровый классификатор со всеми недостатками традиционных классификаторов. Аргументы, на основании которых сделан этот вывод , более подробно мы рассмотрим в дальнейшем.

Итак, традиционные, в первую очередь признаковые, системы распознавания, основывающиеся на последовательной организации процесса распознавания и классификации объектов, рассматриваемых по отдельности, эффективно решать задачи восприятия сложной зрительной информации не могут, главным образом по причине отсутствия целостности и целенаправленности восприятия, отсутствия целостности в описаниях (эталонах) распознаваемых объектов и последовательной организации процесса распознавания. По этой же причине такие системы распознавания образов мало что дают для понимания живого зрительного восприятия и процесса мышления.