Биохимические элементы. Биохимические основы питания человека. Характеристика и значение макроэлементов

Тема: «БИОХИМИЯ КРОВИ. ПЛАЗМА КРОВИ: КОМПОНЕНТЫ И ИХ ФУНКЦИИ. МЕТАБОЛИЗМ ЭРИТРОЦИТОВ. ЗНАЧЕНИЕ БИОХИМИЧЕСКОГО АНАЛИЗА КРОВИ В КЛИНИКЕ»


1. Белки плазмы крови: биологическая роль. Содержание белковых фракций в плазме. Изменения белкового состава плазмы при патологических состояниях (гиперпротеинемия, гипопротеинемия, диспротеинемия, парапротеинемия).
2. Белки острой фазы воспаления: биологическая роль, примеры белков.
3. Липопротеиновые фракции плазмы крови: особенности состава, роль в организме.
4. Иммуноглобулины плазмы крови: основные классы, схема строения, биологические функции. Интерфероны: биологическая роль, механизм действия (схема).
5. Ферменты плазмы крови (секреторные, экскреторные, индикаторные): диагностическое значение исследования активности аминотрансфераз (АЛТ и АСТ), щелочной фосфатазы, амилазы, липазы, трипсина, изоферментов лактатдегидрогеназы, креатинкиназы.
6. Небелковые азотсодержащие компоненты крови (мочевина, аминокислоты, мочевая кислота, креатинин, индикан, прямой и непрямой билирубин): строение, биологическая роль, диагностическое значение их определения в крови. Понятие об азотемии.
7. Безазотистые органические компоненты крови (глюкоза, холестерол, свободные жирные кислоты, кетоновые тела, пируват, лактат), диагностическое значение их определения в крови.
8. Особенности строения и функции гемоглобина. Регуляторы сродства гемоглобина к О2 . Молекулярные формы гемоглобина. Производные гемоглобина. Клинико-диагностическое значение определения гемоглобина в крови.
9. Метаболизм эритроцита: роль гликолиза и пентозофосфатного пути в зрелых эритроцитах. Глутатион: роль в эритроцитах. Ферментные системы, участвующие в обезвреживании активных форм кислорода.
10. Свёртывание крови как каскад активации проферментов. Внутренний и внешний пути свёртывания. Общий путь свёртывания крови: активация протромбина, превращение фибриногена в фибрин, образование фибрина-полимера.
11. Участие витамина К в посттрансляционной модификации факторов свёртывания крови. Дикумарол как антивитамин К.

30.1. Состав и функции крови.

Кровь - жидкая подвижная ткань, циркулирующая в замкнутой системе кровеносных сосудов, транспортирующая различные химические вещества к органам и тканям, и осуществляющая интеграцию метаболических процессов, протекающих в различных клетках.

Кровь состоит из плазмы и форменных элементов (эритроцитов, лейкоцитов и тромбоцитов). Сыворотка крови отличается от плазмы отсутствием фибриногена. 90% плазмы крови составляет вода, 10% - сухой остаток, в состав которого входят белки, небелковые азотистые компоненты (остаточный азот), безазотистые органические компоненты и минеральные вещества.

30.2. Белки плазмы крови.

Плазма крови содержит сложную многокомпонентную (более 100) смесь белков, различающихся по происхождению и функциям. Большинство белков плазмы синтезируется в печени. Иммуноглобулины и ряд других защитных белков иммунокомпетентными клетками.

30.2.1. Белковые фракции. При помощи высаливания белков плазмы можно выделить альбуминовую и глобулиновую фракции. В норме соотношение этих фракций составляет 1,5 - 2,5. Использование метода электрофореза на бумаге позволяет выявить 5 белковых фракций (в порядке убывания скорости миграции): альбумины, α1 -, α2 -, β- и γ-глобулины. При использовании более тонких методов фракционирования в каждой фракции, кроме альбуминовой, можно выделить целый ряд белков (содержание и состав белковых фракций сыворотки крови см. рисунок 1).

Рисунок 1. Электрофореграмма белков сыворотки крови и состав белковых фракций.

Альбумины - белки с молекулярной массой около 70000 Да. Благодаря гидрофильности и высокому содержанию в плазме играют важную роль в поддержании коллоидно-осмотического (онкотического) давления крови и регуляции обмена жидкостей между кровью и тканями. Выполняют транспортную функцию: осуществляют перенос свободных жирных кислот, желчных пигментов, стероидных гормонов, ионов Са2 + , многих лекарств. Альбумины также служат богатым и быстро реализуемым резервом аминокислот.

α1 -Глобулины:

  • Кислый α1 -гликопротеин (орозомукоид) - содержит до 40% углеводов, изоэлектрическая точка его находится в кислой среде (2,7). Функция этого белка до конца не установлена; известно, что на ранних стадиях воспалительного процесса орозомукоид способствует образованию коллагеновых волокон в очаге воспаления (Я.Мусил, 1985).
  • α1 -Антитрипсин - ингибитор ряда протеаз (трипсина, химотрипсина, калликреина, плазмина). Врождённое снижение содержания α1 -антитрипсина в крови может быть фактором предрасположенности к бронхо-лёгочным заболеваниям, так как эластические волокна лёгочной ткани особенно чувствительны к действию протеолитических ферментов.
  • Ретинолсвязывающий белок осуществляет транспорт жирорастворимого витамина А.
  • Тироксинсвязывающий белок - связывает и транспортирует иодсодержащие гормоны щитовидной железы.
  • Транскортин - связывает и транспортирует глюкокортикоидные го рмоны (кортизол, кортикостерон).

α2 -Глобулины:

  • Гаптоглобины (25% α2 -глобулинов) - образуют стабильный комплекс с гемоглобином, появляющимся в плазме в результате внутрисосудистого гемолиза эритроцитов. Комплексы гаптоглобин-гемоглобин поглощаются клетками РЭС, где гем и белковые цепи подвергаются распаду, а железо повторно используется для синтеза гемоглобина. Тем самым предотвращается потеря железа организмом и повреждение почек гемоглобином.
  • Церулоплазмин - белок, содержащий ионы меди (одна молекула церулоплазмина содержит 6-8 ионов Cu2+ ), которые придают ему голубую окраску. Является транспортной формой ионов меди в организме. Обладает оксидазной активностью: окисляет Fe2+ в Fe3+ , что обеспечивает связывание железа трансферрином. Способен окислять ароматическиеамины, участвует в обмене адреналина, норадреналина, серотонина.

β-Глобулины:

  • Трансферрин - главный белок β-глобулиновой фракции, участвует в связывании и транспорте трёхвалентного железа в различные ткани, особенно в кроветворные. Трансферрин регулирует содержание Fe3+ в крови, предотвращает избыточное накопление и потерю с мочой.
  • Гемопексин - связывает гем и предотвращает его потерю почками. Комплекс гем-гемопексин улавливается из крови печенью.
  • С-реактивный белок (С-РБ) - белок, способный преципитировать (в присутствии Са2 + ) С-полисахарид клеточной стенки пневмококка. Биологическая роль его определяется способностью активировать фагоцитоз и ингибировать процесс агрегации тромбоцитов. У здоровых людей концентрация С-РБ в плазме ничтожно мала и стандартными методами не определяется. При остром воспалительном процессе она увеличивается более чем в 20 раз, в этом случае С-РБ обнаруживается в крови. Исследование С-РБ имеет преимущество перед другими маркерами воспалительного процесса: определением СОЭ и подсчётом числа лейкоцитов. Данный показатель более чувствителен, его увеличение происходит раньше и после выздоровления быстрее возвращается к норме.

γ-Глобулины:

  • Иммуноглобулины (IgA, IgG, IgM, IgD, IgE) представляют собой антитела, вырабатываемые организмом в ответ на введение чужеродных веществ с антигенной активностью. Подробнее об этих белках см. 1.2.5.

30.2.2. Количественные и качественные изменения белкового состава плазмы крови. При различных патологических состояниях белковый состав плазмы крови может изменяться. Основными видами изменений являются:

  • Гиперпротеинемия - увеличение содержания общего белка плазмы. Причины: потеря большого количества воды (рвота, диарея, обширные ожоги), инфекционные заболевания (за счёт увеличения количества γ-глобулинов).
  • Гипопротеинемия - уменьшение содержания общего белка в плазме. Наблюдается при заболеваниях печени (вследствие нарушения синтеза белков), при заболеваниях почек (вследствие потери белков с мочой), при голодании (вследствие недостатка аминокислот для синтеза белков).
  • Диспротеинемия - изменение процентного соотношения белковых фракций при нормальном содержании общего белка в плазме крови, например, снижение содержания альбуминов и увеличение содержания одной или нескольких глобулиновых фракций при различных воспалительных заболеваниях.
  • Парапротеинемия - появление в плазме крови патологических иммуноглобулинов - парапротеинов, отличающихся от нормальных белков по физико-химическим свойствам и биологической активности. К таким белкам относятся, например, криоглобулины , образующие друг с другом преципитаты при температуре ниже 37° С. Парапротеины обнаруживаются в крови при макроглобулинемии Вальденстрема, при миеломной болезни (в последнем случае они могут преодолевать почечный барьер и обнаруживаться в моче как белки Бенс-Джонса). Парапротеинемия, как правило, сопровождается гиперпротеинемией.

30.2.3. Липопротеиновые фракции плазмы крови. Липопротеины - сложные соединения, осуществляющие транспорт липидов в крови. В состав их входят: гидрофобное ядро, содержащее триацилглицеролы и эфиры холестерола, иамфифильная оболочка, образованная фосфолипидами, свободным холестеролом и белками-апопротеинами (рисунок 2). В плазме крови человека содержатся следующие фракции липопротеинов:



Рисунок 2. Схема строения липопротеина плазмы крови.

  • Липопротеины высокой плотности или α-липопротеины , так как при электрофорезе на бумаге они движутся вместе с α-глобулинами. Содержат много белков и фосфолипидов, транспортируют холестерол из периферических тканей в печень.
  • Липопротеины низкой плотности или β-липопротеины , так как при электрофорезе на бумаге они движутся вместе с β-глобулинами. Богаты холестеролом; транспортируют его из печени в периферические ткани.
  • Липопротеины очень низкой плотности или пре-β-липопротеины (на электрофореграмме расположены между α- и β-глобулинами). Служат транспортной формой эндогенных триацилглицеролов, являются предшественниками липопротеинов низкой плотности.
  • Хиломикроны - электрофоретически неподвижны; в крови, взятой натощак, отсутствуют. Являются транспортной формой экзогенных (пищевых) триацилглицеролов.

30.2.4. Белки острой фазы воспаления. Это белки, содержание которых увеличивается в плазме крови при остром воспалительном процессе. К ним относятся, например, следующие белки:

  1. гаптоглобин ;
  2. церулоплазмин ;
  3. С-реактивный белок ;
  4. α1 -антитрипсин ;
  5. фибриноген (компонент свёртывающей системы крови; см. 30.7.2).

Скорость синтеза этих белков увеличивается прежде всего за счёт снижения образования альбуминов, трансферрина и альбуминов (небольшая фракция белков плазмы, обладающая наибольшей подвижностью при диск-электрофорезе, и которой соответствует полоса на электрофореграмме перед альбуминами), концентрация которых при остром воспалении снижается.

Биологическая роль белков острой фазы: а) все эти белки являются ингибиторами ферментов, освобождаемых при разрушении клеток, и предупреждают вторичное повреждение тканей; б) эти белки обладают иммунодепрессорным действием (В.Л.Доценко, 1985).

30.2.5. Защитные белки плазмы крови. К белкам, выполняющим защитную функцию, относятся иммуноглобулины и интерфероны.

Иммуноглобулины (антитела) - группа белков, вырабатываемых в ответ на попадание в организм чужеродных структур (антигенов). Они синтезируются в лимфоузлах и селезёнке лимфоцитами В. Выделяют 5 классов иммуноглобулинов - IgA, IgG, IgM, IgD, IgE.


Рисунок 3. Схема строения иммуноглобулинов (серым цветом показана вариабельная область, не закрашена - константная область).

Молекулы иммуноглобулинов имеют единый план строения. Структурную единицу иммуноглобулина (мономер) образуют четыре полипептидные цепи, соединённые между собой дисульфидными связями: две тяжёлые (цепи Н) и две лёгкие (цепи L) (см. рисунок 3). IgG, IgD и IgЕ по своей структуре, как правило, являются мономерами, молекулы IgM построены из пяти мономеров, IgA состоят из двух и более структурных единиц, или являются мономерами.

Белковые цепи, входящие в состав иммуноглобулинов, можно условно разделить на специфические домены, или области, имеющие определённые структурные и функциональные особенности.

N-концевые участки как L-, так и Н-цепей называются вариабельной областью (V), так как их структура характеризуется существенными различиями у разных классов антител. Внутри вариабельного домена имеются 3 гипервариабельных участка, отличающихся наибольшим разнообразием аминокислотной последовательности. Именно вариабельная область антител ответственна за связывание антигенов по принципу комплементарности; первичная структура белковых цепей в этой области определяет специфичность антител.

С-концевые домены Н- и L-цепей обладают относительно постоянной первичной структурой в пределах каждого класса антител и называются константной областью (С). Константная область определяет свойства различных классов иммуноглобулинов, их распределение в организме, может принимать участие в запуске механизмов, вызывающих уничтожение антигенов.

Интерфероны - семейство белков, синтезируемых клетками организма в ответ на вирусную инфекцию и обладающих противовирусным эффектом. Различают несколько типов интерферонов, обладающих специфическим спектром действия: лейкоцитарный (α-интерферон), фибробластный (β-интерферон) и& иммунный (γ-интерферон). Интерфероны синтезируются и секретируются одними клетками и проявляют свой эффект, воздействуя на другие клетки, в этом отношении они подобны гормонам. Механизм действия интерферонов показан на рисунке 4.


Рисунок 4. Механизм действия интерферонов (Ю.А.Овчинников, 1987).

Связываясь с клеточными рецепторами, интерфероны индуцируют синтез двух ферментов — 2",5"-олигоаденилатсинтетазы и протеинкиназы, вероятно, за счет инициации транскрипции соответствующих генов. Оба образующихся фермента проявляют свою активность в присутствии двухцепочечных РНК, а именно такие РНК являются продуктами репликации многих вирусов или содержатся в их вирионах. Первый фермент синтезирует 2",5"-олигоаденилаты (из АТФ), которые активируют клеточную рибонуклеазу I; второй фермент фосфорилирует фактор инициации трансляции IF2. Конечным результатом этих процессов является ингибирование биосинтеза белка и размножения вируса в инфицированной клетке (Ю.А.Овчинников, 1987).

30.2.6. Ферменты плазмы крови. Все ферменты, содержащиеся в плазме крови, можно разделить на три группы:

  1. секреторные ферменты - синтезируются в печени, выделяются в кровь, где выполняют свою функцию (например, факторы свёртывания крови);
  2. экскреторные ферменты - синтезируются в печени, в норме выделяются с желчью (например, щелочная фосфатаза), их содержание и активность в плазме крови возрастает при нарушении оттока желчи;
  3. индикаторные ферменты - синтезируются в различных тканях и попадают в кровь при разрушении клеток этих тканей. В разных клетках преобладают различные ферменты, поэтому при повреждении того или иного органа в крови появляются характерные для него ферменты. Это может быть использовано в диагностике заболеваний.

Например, при повреждении клеток печени (гепатит ) в крови возрастает активность аланинаминотраноферазы (АЛТ), аспартатаминотрансферазы (ACT), изофермента лактатдегидрогеназы ЛДГ5 , глутаматдегидрогеназы, орнитинкарбамоилтрансферазы.

При повреждении клеток миокарда (инфаркт ) в крови возрастает активность аспартатаминотрансферазы (ACT), иэофермента лактатдегидрогеназы ЛДГ1 , изофермента креатинкиназы MB.

При повреждении клеток поджелудочной железы (панкреатит ) в крови возрастает активность трипсина, α-амилазы, липазы.

30.3. Небелковые азотистые компоненты крови (остаточный азот).

К этой группе веществ относятся: мочевина, мочевая кислота, аминокислоты, креатин, креатинин, аммиак, индикан, билирубин и другие соединения (см. рисунок 5). Содержание остаточного азота в плазме крови здоровых людей - 15-25 ммоль/л. Повышение содержания остаточного азота в крови называется азотемией . В зависимости от причины, азотемия подразделяется на ретенционную и продукционную.

Ретенционная азотемия возникает при нарушении выведения продуктов азотистого обмена (в первую очередь мочевины) с мочой и характерна для недостаточности функции почек. В этом случае до 90% небелкового азота крови приходится на азот мочевины вместо 50% в норме.

Продукционная азотемия развивается при избыточном поступлении азотистых веществ в кровь вследствие усиленного распада тканевых белков (длительное голодание, сахарный диабет, тяжёлые ранения и ожоги, инфекционные заболевания).

Определение остаточного азота проводят в в безбелковом фильтрате сыворотки крови. В результате минерализации безбелкового фильтрата при нагревании с концентрированной Н2 SO4 азот всех небелковых соединений переходит в форму (NH4 )2 SO4 . Ионы NH4 + определяют с помощью реактива Несслера.

  • Мочевина - главный конечный продукт обмена белков в организме человека. Образуется в результате обезвреживания аммиака в печени, выводится из организма почками. Поэтому содержание мочевины в крови снижается при заболеваниях печени и возрастает при почечной недостаточности.
  • Аминокислоты - поступают в кровь при всасывании из желудочно-кишечного тракта или являются продуктами распада тканевых белков. В крови здоровых людей среди аминокислот преобладают аланин и глутамин, которые наряду с участием в биосинтезе белков являются транспортными формами аммиака.
  • Мочевая кислота - конечный продукт катаболизма пуриновых нуклеотидов. Содержание её в крови возрастает при подагре (в результате усиленного образования) и при нарушениях функции почек (из-за недостаточного выведения).
  • Креатин - синтезируется в почках и печени, в мышцах превращается в креатинфосфат - источник энергии для процессов мышечного сокращения. При заболеваниях мышечной системы содержание креатина в крови значительно возрастает.
  • Креатинин - конечный продукт азотистого обмена, образуется в результате дефосфорилирования креатинфосфата в мышцах, выводится из организма почками. Содержание креатинина в крови снижается при заболеваниях мышечной системы, повышается при почечной недостаточности.
  • Индикан - продукт обезвреживания индола, образуется в печени, выводится почками. Содержание его в крови снижается при заболеваниях печени, повышается - при усилении процессов гниения белков в кишечнике, при заболеваниях почек.
  • Билирубин (прямой и непрямой) - продукты катаболизма гемоглобина. Содержание билирубина в крови увеличивается при желтухах: гемолитической (за счёт непрямого билирубина), обтурационной (за счёт прямого билирубина), паренхиматозной (за счёт обеих фракций).


Рисунок 5. Небелковые азотистые соединения плазмы крови.

30.4. Безазотистые органические компоненты крови.

В эту группу веществ входят питательные вещества (углеводы, липиды) и продукты их метаболизма (органические кислоты). Наибольшее значение в клинике имеет определение содержания в крови глюкозы, холестерола, свободных жирных кислот, кетоновых тел и молочной кислоты. Формулы этих веществ представлены на рисунке 6.

  • Глюкоза - главный энергетический субстрат организма. Содержание её у здоровых людей в крови натощак - 3,3 - 5,5 ммоль/л. Повышение содержания глюкозы в крови (гипергликемия) наблюдается после приёма пищи, при эмоциональном стрессе, у больных сахарным диабетом, гипертиреозом, болезнью Иценко-Кушинга. Снижение содержания глюкозы в крови (гипогликемия) наблюдается при голодании, интенсивных физических нагрузках, остром алкогольном отравлении, передозировке инсулина.
  • Холестерол - обязательный липидный компонент биологических мембран, предшественник стероидных гормонов, витамина D3 , желчных кислот. Содержание его в плазме крови здоровых людей - 3,9 - 6,5 ммоль/л. Повышение содержания холестерола в крови (гиперхолестеролемия ) наблюдается при атеросклерозе, сахарном диабете, микседеме, желчно-каменной болезни. Снижение уровня холестерола в крови (гипохолестеролемия ) обнаруживается при гипертиреозе, циррозе печени, заболеваниях кишечника, голодании, при приёме желчегонных препаратов.
  • Свободные жирные кислоты (СЖК) используются тканями и органами в качестве энергетического материала. Содержание СЖК в крови повышается при голодании, сахарном диабете, после введения адреналина и глюкокортикоидов; снижается при гипотиреозе, после введения инсулина.
  • Кетоновые тела. К кетоновым телам относятся ацетоацетат,β-гидроксибутират, ацетон - продукты неполного окисления жирных кислот. Содержание кетоновых тел в крови повышается (гиперкетонемия ) при голодании, лихорадке, сахарном диабете.
  • Молочная кислота (лактат) - конечный продукт анаэробного окисления углеводов. Содержание её в крови повышается при гипоксии (физические нагрузки, заболевания лёгких, сердца, крови).
  • Пировиноградная кислота (пируват) - промежуточный продукт катаболизма углеводов и некоторых аминокислот. Наиболее резкое повышение содержания пировиноградной кислоты в крови отмечается при мышечной работе и недостаточности витамина В1 .


Рисунок 6. Безазотистые органические вещества плазмы крови.

30.5. Минеральные компоненты плазмы крови.

Минеральные вещества являются необходимыми компонентами плазмы крови. Важнейшими катионами являются ионы натрия, калия, кальция и магния. Им соответствуют анионы: хлориды, бикарбонаты, фосфаты, сульфаты. Часть катионов в плазме крови связаны с органическими анионами и белками. Сумма всех катионов равна сумме анионов, так как плазма крови электронейтральна.

  • Натрий - основной катион внеклеточной жидкости. Его содержание в плазме крови 135 - 150 ммоль/л. Ионы натрия участвуют в поддержании осмотического давления внеклеточной жидкости. Гипернатриемия наблюдается при гиперфункции коры надпочечников, при введении гипертонического раствора хлорида натрия парентерально. Гипонатриемия может быть обусловлена бессолевой диетой, надпочечниковой недостаточностью, диабетическим ацидозом.
  • Калий является основным внутриклеточным катионом. В плазме крови он содержится в количестве 3,9 ммоль/л, а в эритроцитах - 73,5 - 112 ммоль/л. Как и натрий, калий поддерживает осмотический и кислотно-основный гомеостаз в клетке. Гиперкалиемия отмечается при усиленном разрушении клеток (гемолитическая анемия, синдром длительного раздавливания), при нарушении выделения калия почками, при обезвоживании организма. Гипокалиемия наблюдается при гиперфункции коры надпочечников, при диабетическом ацидозе.
  • Кальций в плазме крови содержится в виде форм. Выполняющих различные функции: связанный с белками (0,9 ммоль/л), ионизированный (1,25 ммоль/л) и неионизированный (0,35 ммоль/л). Биологически активным является только ионизированный кальций. Гиперкальциемия наблюдается при гиперпаратиреозе, гипервитаминозе D, синдроме Иценко-Кушинга, деструктивных процессах в костной ткани. Гипокальциемия встречается при рахите, гипопаратиреозе, заболеваниях почек.
  • Хлориды содержатся в плазме крови в количестве 95 - 110 ммоль/л, участвуют в поддержании осмотического давления, кислотно-основного состояния внеклеточной жидкости. Гиперхлоремия наблюдается при сердечной недостаточности, артериальной гипертензии, гипохлоремия - при рвоте, заболеваниях почек.
  • Фосфаты в плазме крови являются компонентами буферной системы, их концентрация составляет 1 - 1,5 ммоль/л. Гиперфосфатемия наблюдается при заболеваниях почек, гипопаратиреозе, гипервитаминозе D. Гипофосфатемия отмечена при гиперпаратиреозе, микседеме, рахите.

0.6. Кислотно-основное состояние и его регуляция.

Кислотно-основное состояние (КОС) - соотношение концентрации водородных (Н+ ) и гидроксильных (ОН— ) ионов в жидкостях организма. Для здорового человека характерно относительное постоянство показателей КОС, обусловленное совместным действием буферных систем крови и физиологического контроля (органы дыхания и выделения).

30.6.1. Буферные системы крови. Буферные системы организма состоят из слабых кислот и их солей с сильными основаниями. Каждая буферная система характеризуется двумя показателями:

  • рН буфера (зависит от соотношения компонентов буфера);
  • буферная ёмкость , то есть количество сильного основания или кислоты, которое нужно прибавить к буферному раствору для изменения рН на единицу (зависит от абсолютных концентраций компонентов буфера).

Различают следующие буферные системы крови:

  • бикарбонатная (H2 CO3 /NaHCO3 );
  • фосфатная (NaH2 PO4 /Na2 HPO4 );
  • гемоглобиновая (дезоксигемоглобин в качестве слабой кислоты/ калиевая соль оксигемоглобина);
  • белковая (действие её обусловлено амфотерностью белков). Бикарбонатная и тесно связанная с ней гемоглобиновая буферные системы составляют в совокупности более 80% буферной ёмкости крови.

30.6.2. Дыхательная регуляция КОС осуществляется путём изменения интенсивности внешнего дыхания. При накоплении в крови СО2 и Н+ усиливается лёгочная вентиляция, что приводит к нормализации газового состава крови. Снижение концентрации углекислоты и Н+ вызывает уменьшение лёгочной вентиляции и нормализацию данных показателей.

30.6.3. Почечная регуляция КОС осуществляется главным образом за счёт трёх механизмов:

  • реабсорбции бикарбонатов (в клетках почечных канальцев из Н2 О и СО2 образуется угольная кислота Н2 СО3 ; она диссоциирует, Н+ выделяется в мочу, НСО3 — реабсорбируетоя в кровь);
  • реабсорбции Na+ из клубочкового фильтрата в обмен на Н+ (при этом Na2 HPO4 в фильтрате переходит в NaH2 PO4 и увеличивается кислотность мочи);
  • секреции NH4 + (при гидролизе глутамина в клетках канальцев образуется NH3 ; он взаимодействует с H+ , образуются ионы NH4 + , которые выводятся с мочой.

30.6.4. Лабораторные показатели КОС крови. Для характеристики КОС используют следующие показатели:

  • рН крови;
  • парциальное давление СО2 (рСО2 ) крови;
  • парциальное давление О2 (рО2 ) крови;
  • содержание бикарбонатов в крови при данных значениях рН и рСО2 (актуальный или истинный бикарбонат, АВ );
  • содержание бикарбонатов в крови пациента в стандартных условиях, т.е. при рСО2 =40 мм рт.ст. (стандартный бикарбонат, SB );
  • сумма оснований всех буферных систем крови (ВВ );
  • избыток или дефицит оснований крови по сравнению с нормальным для данного пациента показателем (BE , от англ. base excess).

Первые три показателя определяются непосредственно в крови с помощью специальных электродов, на основании полученных данных рассчитываются остальные показатели с помощью номограмм или формул.

30.6.5. Нарушения КОС крови. Известны четыре главные формы нарушений кислотно-основного состояния:

  • метаболический ацидоз - возникает при сахарном диабете и голодании (за счёт накопления кетоновых тел в крови), при гипоксии (за счёт накопления лактата). При этом нарушении снижается рСО2 и [НСО3 - ] крови, увеличивается экскреция NH4 + с мочой;
  • дыхательный ацидоз - возникает при бронхите, пневмонии, бронхиальной астме (в результате задержки углекислоты в крови). При этом нарушении повышается рСО2 и крови, увеличивается экскреция NH4 + с мочой;
  • метаболический алкалоз - развивается при потере кислот, например, при неукротимой рвоте. При этом нарушении повышается рСО2 и крови, увеличивается экскреция НСО3 - с мочой, снижается кислотность мочи.
  • дыхательный алкалоз - наблюдается при усиленной вентиляции лёгких, например, у альпинистов на большой высоте. При этом нарушении снижается рСО2 и [НСО3 - ] крови, уменьшается кислотность мочи.

Для лечения метаболического ацидоза используют введение раствора бикарбоната натрия; для лечения метаболического алкалоза - введение раствора глутаминовой кислоты.

30.7. Некоторые молекулярные механизмы свёртывания крови.

30.7.1. Свёртывание крови - совокупность молекулярных процессов, приводящих к прекращению кровотечения из повреждённого сосуда в результате образования кровяного сгустка (тромба). Общая схема процесса свёртывания крови представлена на рисунке 7.


Рисунок 7. Общая схема свёртывания крови.

Большинство факторов свёртывания присутствует в крови в виде неактивных предшественников - проферментов, активация которых осуществляется путём частичного протеолиза . Ряд факторов свёртывания крови являются витамин К-зависимыми: протромбин (фактор II), проконвертин (фактор VII), факторы Кристмаса (IX) и Стюарта-Прауэра (Х). Роль витамина К определяется участием в карбоксилировании остатков глутамата в N-концевом участке этих белков с образованием γ-карбоксиглутамата.

Свёртывание крови представляет собой каскад реакций, в котором активированная форма одного фактора свёртывания катализирует активацию следующего до тех пор, пока конечный фактор, который является структурной основой тромба, не будет активирован.

Особенности каскадного механизма заключаются в следующем:

1) в отсутствие фактора, инициирующего процесс тромбообразования, реакция не может произойти. Поэтому процесс свёртывания крови будет ограничен только тем участком кровяного русла, где появляется такой инициатор;

2) факторы, действующие на начальных этапах свёртывания крови, требуются в очень малых количествах. На каждом звене каскада их эффект многократно усиливается (амплифицируется ), что обеспечивает в итоге быструю ответную реакцию на повреждение.

В обычных условиях существуют внутренний и внешний пути свёртывания крови. Внутренний путь инициируется соприкосновением с атипичной поверхностью, что приводит к активации факторов, исходно присутствовавших в крови.Внешний путь свёртывания инициируется соединениями, в обычных условиях в крови не присутствующими, но поступающими туда в результате повреждения тканей. Для нормального протекания процесса свёртывания крови необходимы оба эти механизма; они различаются только на начальных этапах, а затем объединяются в общий путь , приводящий к образованию фибринового сгустка.

30.7.2. Механизм активации протромбина. Неактивный предшественник тромбина - протромбин - синтезируется в печени. В его синтезе участвует витамин К. Протромбин содержит остатки редкой аминокислоты - γ-карбоксиглутамата сокращённое обозначение - Gla). В процессе активации протромбина участвуют тромбоцитарные фосфолипиды, ионы Са2+ и факторы свёртывания Va и Хa. Механизм активации представляется следующим образом (рисунок 8).

Рисунок 8. Схема активации протромбина на тромбоцитах (Р.Марри и соавт., 1993).

Повреждение кровеносного сосуда приводит к взаимодействию тромбоцитов крови с коллагеновыми волокнами сосудистой стенки. Это вызывает разрушение тромбоцитов и способствует выходу наружу отрицательно заряженных молекул фосфолипидов внутренней стороны плазматической мембраны тромбоцитов. Отрицательно заряженные группировки фосфолипидов связывают ионы Са2+ . Ионы Са2+ в свою очередь взаимодействуют с остатками γ-карбоксиглутамата в молекуле протромбина. Эта молекула фиксируется на мембране тромбоцита в нужной ориентации.

Тромбоцитарная мембрана содержит также рецепторы для фактора Va. Этот фактор связывается с мембраной и присоединяет фактор Хa. Фактор Хa является протеазой; он расщепляет молекулу протромбина в определённых местах, в результате образуется активный тромбин.

30.7.3. Превращение фибриногена в фибрин. Фибриноген (фактор I) - растворимый гликопротеин плазмы с молекулярной массой около 340 000. Он синтезируется в печени. Молекула фибриногена состоит из шести полипептидных цепей: две А α-цепи, две В β-цепи, и две γ-цепи (см. рисунок 9). Концы полипептидных цепей фибриногена несут отрицательный заряд. Это обусловлено присутствием большого количества остатков глутамата и аспартата в N-концевых областях цепей Аa и Вb. Кроме того, В-области цепей Вb содержат остатки редкой аминокислоты тирозин-О-сульфата, также заряженные отрицательно:

Это способствует растворимости белка в воде и препятствует агрегации его молекул.

Рисунок 9. Схема строения фибриногена; стрелками показаны связи, гидролизуемые тромбином. Р.Марри и соавт., 1993).

Превращение фибриногена в фибрин катализирует тромбин (фактор IIa). Тромбин гидролизует четыре пептидные связи в фибриногене: две связи в цепях А α и две связи в цепях В β. От молекулы фибриногена отщепляются фибринопептиды А и В и образуется фибрин-мономер (его состав α2 β2 γ2 ). Мономеры фибрина нерастворимы в воде и легко ассоциируют друг с другом, образуя фибриновый сгусток.

Стабилизация фибринового сгустка происходит под действием фермента трансглутаминазы (фактор XIIIa). Этот фактор также активируется тромбином. Трансглутаминаза образует поперечные сшивки между мономерами фибрина при помощи ковалентных изопептидных связей.

30.8. Особенности метаболизма эритроцита.

30.8.1. Эритроциты - высокоспециализированные клетки, основной функцией которых является транспорт кислорода из лёгких в ткани. Продолжительность жизни эритроцитов составляет в среднем 120 суток; разрушение их происходит в клетках ретикуло-эндотелиальной системы. В отличие от большинства клеток организма, у эритроцита отсутствуют клеточное ядро, рибосомы и митохондрии.

30.8.2. Энергетический обмен. Основным энергетическим субстратом эритроцита является глюкоза, которая поступает из плазмы крови путём облегчённой диффузии. Около 90% ис-пользуемой эритроцитом глюкозы подвергается гликолизу (анаэробному окислению) с образованием конечного продукта - молочной кислоты (лактата). Запомните функции, которые выполняет гликолиз в зрелых эритроцитах:

1) в реакциях гликолиза образуется АТФ путём субстратного фосфорилирования . Основное направление использования АТФ в эритроцитах - обеспечение работы Na+ ,K+ -АТФазы. Этот фермент осуществляет транспорт ионов Nа+ из эритроцитов в плазму крови, препятствует накоплению Na+ в эритроцитах и способствует сохранению геометрической формы этих кле-ток крови (двояковогнутый диск).

2) в реакции дегидрирования глицеральдегид-3-фосфата в гликолизе образуется НАДН . Этот кофермент является кофактором фермента метгемоглобинредуктазы , участвующей в восстановлении метгемоглобина в гемоглобин по следующей схеме:

Эта реакция препятствует накоплению метгемоглобина в эритроцитах.

3) метаболит гликолиза 1, 3-дифосфоглицерат способен при участии фермента дифосфоглицератмутазы в присутствии 3-фосфоглицерата превращаться в 2, 3-дифосфоглицерат:

2,3-Дифосфоглицерат принимает участие в регуляции сродства гемоглобина к кислороду. Его содержание в эритроцитах повышает-ся при гипоксии. Гидролиз 2,3-дифосфоглицерата катализирует фермент дифосфоглицератфосфатаза.

Приблизительно 10% глюкозы, потребляемой эритроцитом, использует-ся в пентозофосфатном пути окисления. Реакции этого пути служат основ-ным источником НАДФН для эритроцита. Данный кофермент необходим для перевода окисленного глутатиона (см. 30.8.3) в восстановленную форму. Дефицит ключевого фермента пентозофосфатного пути - глюкозо-6-фосфатдегидрогеназы - сопровождается уменьшением в эритроцитах отношения НАДФН/НАДФ+ , увеличением содержания окисленной формы глутатиона и сни-жением резиcтентности клеток (гемолитическая анемия).

30.8.3. Механизмы обезвреживания активных форм кислорода в эритроцитах. Молекулярный кислород в определённых условиях может превращаться в активные формы, к которым относятся супероксидный анион О2 - , пероксид водорода Н2 О2 , гидроксильный радикал ОН. и синглетный кислород 1 О2 . Эти формы кислорода обладают высокой реакционной способностью, могут оказывать повреждающее действие на белки и липиды биологических мембран, вызывать разрушение клеток. Чем выше содержание О2 , тем больше образуется его активных форм. Поэтому эритроциты, постоянно взаимодействующие с кислородом, содержат эффективные антиоксидантные системы, способные обезвреживать активные метаболиты кислорода.

Важным компонентом антиоксидантных систем является трипептид глутатион, образующийся в эритроцитах в результате взаимодействия γ-глутамилцистеина и глицина:

Восстановленная форма глутатиона (сокращённое обозначение Г-SH) участвует в реакциях обезвреживания пероксида водорода и органических пероксидов (R-O-OH). При этом образуются вода и окисленный глутатион (сокращённое обозначение Г-S-S-Г).

Превращение окисленного глутатиона в восстановленный катализирует фермент глутатионредуктаза. Источник водорода - НАДФН (из пентозофосфатного пути, см. 30.8.2):

В эритроцитах имеются также ферменты супероксиддисмутаза и каталаза , осуществляющие следующие превращения:


Антиоксидантные системы имеют для эритроцитов особое значение, так как в эритроцитах не происходит обновления белков путём синтеза.

Что такое биохимия? Биологическая или физиологическая биохимия - наука о химических процессах, которые лежат в основе жизнедеятельности организма и тех, что происходят внутри клетки. Цель биохимии (термин происходит от греческого слова «bios» - «жизнь») как науки - это изучение химических веществ, структуры и метаболизма клеток, природы и методов его регуляции, механизма энергетического обеспечения процессов внутри клеток.

Медицинская биохимия: суть и цели науки

Медицинская биохимия - раздел который изучает химический состав клеток человеческого организма, обмен веществ в нем (в том числе при патологических состояниях). Ведь любая болезнь, даже в бессимптомном периоде, неизбежно наложит свой отпечаток на химические процессы в клетках, свойства молекул, что отразится в результатах биохимического анализа. Без знания биохимии невозможно найти причину развития болезни и путь ее эффективного лечения.

Биохимическое исследование крови

Что такое анализ «биохимия крови»? Биохимическим исследованием крови называют один из методов лабораторной диагностики во многих областях медицины (например, эндокринология, терапия, гинекология).

Он помогает точно диагностировать болезнь и исследовать образец крови по таким параметрам:

Аланинаминотрансфераза (АлАТ, АЛТ);

Холестерин или холестерол;

Билирубин;

Мочевина;

Диастаза;

Глюкоза, липаза;

Аспартатаминотрансфераза (АСТ, АсАТ);

Гамма-глутамил транспептидаза (ГГТ), гамма ГТ (глутамилтранспептидаза);

Креатинин, белок;

Антитела к вирусу Эпштейн-Барра.

Для здоровья каждого человека важно знать, что такое биохимия крови, и понимать, что показатели ее не только дадут все данные для эффективной схемы лечения, но и помогут предупредить болезнь. Отклонения от нормальных показателей - это первый сигнал о том, что в организме что-то не так.

крови для исследования печени: значимость и цели

Кроме того, биохимическая диагностика позволит провести мониторинг динамики заболевания и результатов лечения, создать полноценную картину обмена веществ, дефицита микроэлементов работы органов. Например, обязательным анализом для людей с нарушением работы печени станет биохимия печени. Что это? Так называют биохимический анализ крови для исследования количества и качества ферментов печени. Если их синтез нарушен, то такое состояние грозит развитием болезней, воспалительных процессов.

Специфика биохимии печени

Биохимия печени - что это такое? Печень человека состоит из воды, липидов, гликогена. Ее ткани содержат минералы: медь, железо, никель, марганец, поэтому биохимическое изучение тканей печени - очень информативный и довольно эффективный анализ. Самые важные ферменты в работе печени - это глюкокиназа, гексокиназа. Наиболее чувствительны к биохимическим тестам такие ферменты печени: аланинаминотрансфераза (АЛТ), гамма-глутамил трансфераза (ГГТ), аспартатаминотрансфераза (АСТ), Как правило, при исследовании ориентируются на показатели этих веществ.

Для полноценного и успешного мониторинга состояния своего здоровья каждый должен знать, что такое «анализ биохимия».

Сферы исследования биохимии и важность правильной интерпретации результатов анализа

Что изучает биохимия? Прежде всего, процессы обмена веществ, химический состав клетки, химическую природу и функцию ферментов, витаминов, кислот. Оценить показатели крови по этим параметрам возможно только при условии правильной расшифровки анализа. Если все хорошо, то показатели крови по разным параметрам (уровень глюкозы, белок, ферменты крови) не должны отклоняться от нормы. В противном случае это следует расценивать как сигнал о нарушении работы организма.

Расшифровка биохимии

Как же расшифровать цифры в результатах анализа? Ниже приведена по основным показателям.

Глюкоза

Уровень глюкозы показывает качество процесса углеводного обмена. Граничная норма содержания не должна превышать 5,5 ммоль/л. Если уровень ниже, то это может свидетельствовать о сахарном диабете, эндокринных заболеваниях, проблемах с печенью. Повышенный уровень глюкозы может быть из-за сахарного диабета, физических нагрузок, гормональных лекарств.

Белок

Холестерин

Мочевина

Так называют конечный продукт распада белков. У здорового человека она должна полностью выводиться из организма с мочой. Если этого не происходит, и она попадает в кровь, то следует обязательно проверить работу почек.

Гемоглобин

Это белок эритроцитов, который насыщает клетки организма кислородом. Норма: для мужчин - 130-160 г/л, у девушек - 120-150 г/л. Низкий уровень гемоглобина в крови считают одним из показателей развивающейся анемии.

Биохимическое исследование крови на ферменты крови (АлАТ, АсАТ, КФК, амилаза)

Ферменты отвечают за полноценную работу печени, сердца, почек, поджелудочной железы. Без нужного их количества полноценный обмен аминокислот просто невозможен.

Уровень аспартатаминотрансферазы (АсАТ, АСТ - клеточного фермента сердца, почек, печени) не должен быть выше 41 и 31 ед./л для мужчин и женщин соответственно. В противном случае это может свидетельствовать о развитии гепатита, болезней сердца.

Липаза (фермент, что расщепляет жиры) играет важную роль в обмене веществ и не должен превышать значение 190 ед./л. Повышенный уровень сигнализирует о нарушении работы поджелудочной железы.

Тяжело переоценить значимость биохимического анализа на ферменты крови. Что такое биохимия и что она исследует, обязан знать каждый человек, заботящийся о своем здоровье.

Амилаза

Этот фермент содержится в поджелудочной железе и слюне. Он отвечает за расщепление углеводов и их усвоение. Норма - 28-100 ед./л. Его высокое содержание в крови может указывать на почечную недостаточность, холецистит, сахарный диабет, перитонит.

Результаты биохимического анализа крови записывают в специальный бланк, где указаны уровни содержания веществ. Нередко этот анализ назначают как дополнительный для уточнения предполагаемого диагноза. При расшифровке результатов биохимии крови учитывайте, что на них также влияет пол пациента, его возраст и образ жизни. Теперь вы знаете, что изучает биохимия и как правильно интерпретировать ее результаты.

Как правильно подготовится к сдаче крови на биохимию?

Острых болезней внутренних органов;

Интоксикации;

Авитаминоза;

Воспалительных процессов;

Для профилактики заболеваний, во время беременности;

Для уточнения поставленного диагноза.

Кровь для анализа берут рано утром, и перед приходом к врачу есть нельзя. В противном случае результаты анализа будут искажены. Биохимическое исследование покажет, насколько правильным является ваш обмен веществ и солей в организме. Кроме того, воздержитесь от питья сладкого чая, кофе, молока хотя бы за час-два до забора крови.

Обязательно ответьте себе на вопрос о том, что такое биохимия, перед сдачей анализа. Знание процесса и его значимости поможет вам правильно оценить состояние здоровья и быть компетентным в медицинских вопросах.

Как берут кровь на биохимию?

Процедура длится недолго и практически безболезненна. У человека в положении сидя (иногда предлагают прилечь на кушетку) медик берет предварительно наложив жгут. Место укола обязательно должно быть обработано антисептиком. Взятый образец помещают в стерильную пробирку и отправляют на анализ в лабораторию.

Контроль за качеством проведения биохимического исследования проводят в несколько этапов:

Преаналитический (подготовка пациента, взятие анализа, транспортировка в лабораторию);

Аналитический (обработка и хранения биоматериала, дозирование, проведение реакции, анализ результата);

Постаналитический (заполнение бланка с результатом, лабораторно-клинический анализ, отправка врачу).

Качество результата биохимии зависит от целесообразности выбранного метода исследования, компетентности лаборантов, точности мерок, техничной оснащенности, чистоты реактивов, соблюдения диеты.

Биохимия для волос

Что такое биохимия для волос? Биозавивка - это способ долгосрочного завивания локонов. Разница между обычной химической завивкой и биозавивкой принципиальна. В последнем случае не используют пероксид водорода, аммиак, тиогликолевую кислоту. Роль действующего вещества исполняет аналог цистина (биологический белок). Именно отсюда и произошло название метода укладки волос.

Несомненными плюсами можно назвать:

Щадящее действие на структуру волоса;

Смытую грань между отросшими и волосами, подвергавшимся биозавивке;

Процедуру можно повторять, не дожидаясь окончательного исчезновения ее эффекта.

Но перед походом к мастеру следует учитывать следующие ньансы:

Технология биозавивки сравнительно сложная, и нужно щепетильно подойти к выбору мастера;

Эффект недолгосрочен, около 1-4 месяцев (особенно на волосах, которые не подвергались завивке, окрашиванию, имеют плотную структуру);

Биозавивка стоит недешево (в среднем 1500-3500 р.).

Методы биохимии

Что такое биохимия и какие методы используются для исследования? Их выбор зависит от его цели и поставленных доктором задач. Они призваны изучить биохимическую структуру клетки, исследовать образец на возможные отклонения от нормы и таким образом помочь диагностировать болезнь, узнать динамику выздоровления и т. п.


Биохимия - один из самых эффективных анализов для уточнения, постановки диагноза, мониторинга лечения, определения успешной схемы терапии.

Системы биологических (биохимических) элементов

Известно, что построение и функционирование сложных информационных устройств базируется на применении типовых унифицированных узлов и элементов. К примеру, все информационные процессы в цифровой технике основаны на использовании различных типовых логических элементов, выполняющих элементарные логические функции и простейшие действия по преобразованию двоичной информации. Логические элементы служат как для построения электронных схем, так и для переработки двоичной информации. А теоретической основой при анализе переключательных схем являются законы и принципы алгебры логики. В алгебре логики рассматриваются переменные, которые могут принимать только два значения: 1 и 0. В основу типовых структур логических интегральных схем, как правило, закладывают элементы, выполняющие операции - И, ИЛИ, И-НЕ, ИЛИ-НЕ. Все сколь угодно сложные цифровые устройства микроэлектронной техники строятся на базе логических элементов, которые реализуют простейшие логические операции и функции двоичной арифметики. Базовые элементы являются своего рода строительно-функциональными единицами и используются как при проектировании, так и при построении цифровых информационных систем. Они реализуют функционально полный набор логических операций, поэтому при их применении можно получить логическую функцию любой сложности. При этом каждая типовая логическая схема элемента выполнена на основе отдельных дискретных физических компонентов - транзисторов, резисторов, конденсаторов и диодов.

Удивительно, но и при рассмотрении живых молекулярных систем наблюдаются такие же закономерности. Живые молекулярные системы тоже имеют свою унифицированную био-логическую (биохимическую) элементную базу. Поэтому и здесь возможен обобщенный подход, основанный на применении простых органических молекул (мономеров), которые играют роль составных элементов различных биологических молекул и структур. А “теоретической и технологической” основой применения молекулярной базы служат свои универсальные законы и принципы, которые, по соответствующей аналогии, можно отнести к закономерностям “молекулярной биохимической логики”. Биохимическая логика предусматривает и такое понятие как “молекулярный био-логический элемент”. Этот факт лишний раз напоминает нам о том, что любая живая клетка является информационной системой. Поэтому, чтобы понять закономерности её функционирования, - в первую очередь следует разобраться с элементной базой живой формы материи и принципами и правилами её использования. Это основная тема данной статьи.

Известно, что все живые организмы состоят из одних и тех же молекулярных строительных блоков - стандартного набора более чем трёх десятков типовых биохимических (био-логических) элементов: нуклеотидов, аминокислот, простых сахаров, жирных кислот и др. Число этих мономеров невелико, и они имеют одно и то же строение у всех видов организмов. Причем, каждый элемент в отдельности, также представляет собой простейшую схему, структурными компонентами которой могут быть несколько химических элементов - водород, кислород, углерод, азот, фосфор и сера.

А наличие тех или иных типовых функциональных атомных групп, боковых групп и атомов в составе каждого элемента позволяет прогнозировать не только его поведение в химических реакциях, но и предвидеть ту структурно-информационную роль, которую элемент будет играть в составе макромолекулы.

Таким образом, живые системы при построении различных биологических молекул и структур применяют свои особые, сугубо специфические молекулярные элементы. Эти элементы (в составе живой материи) реализуют функционально полный набор элементарных биохимических функций и операций, поэтому при их использовании живая природа может получить био-логическую функцию любой сложности. При этом, естественно, наблюдается как аналогия, так и существенные различия между технической и биологической элементными базами и технологиями их применения.

К примеру, микросхемы технических устройств могут состоять из сотен, тысяч и более логических элементов нескольких типов, соединенных между собой соответствующим образом. Биологические макромолекулы также могут состоять из сотен, тысяч и более биохимических элементов нескольких типов, которые ковалентно соединяются между собой и размещаются в цепях биомолекул в виде линейной позиционной последовательности. Разница также состоит в том, что живые системы используют свои принципы и методы кодирования, передачи и реализации информации, и отличаются от технических систем не только субстратным носителем, но и методами представления информации.

Более того, если логический элемент в цифровой технике является простейшим преобразователем двоичной информации, то каждый био-логический элемент в живой системе сам играет роль элементарной структурной и информационно-функциональной единицы. В технической и биологической системах информационные сообщения осуществляются в различных формах. В технических устройствах используются элементарные сигналы 1 и 0 двоичного кода. То есть для передачи информационных сообщений применяется всего лишь два цифровых символа. Обычно символу 1 соответствует потенциал высокого уровня, символу 0 - низкого. Двоичные коды получили широкое применение главным образом из-за сравнительно простой аппаратурной реализации логических операций и арифметических действий, а также устройств для передачи и запоминания сообщений. Здесь каждый логический элемент служит для простейших преобразований двоичной информации, то есть для преобразования двоичных символов. Таким образом, в технических устройствах применяется аппаратный способ преобразования информации.

Однако в биологических системах, - наряду с аппаратным способом преобразования информации, применяется также и информационный способ построения и преобразования самой аппаратной части. Это - уникальная особенность информационных процессов в живых молекулярных системах.

Причем, единицей информации служит сам биохимический элемент, который и является буквой или символом информации. Поэтому при помощи химических букв и символов (элементов) строится аппаратная система клетки и, одновременно, в её структуры записывается программная информация. То есть, на первом этапе информационные сообщения передаются фиксированной позиционной последовательностью расположения букв или символов в “линейных” цепях биологических молекул. Значит, если в технической системе применяется только аппаратный способ преобразование информации, то в молекулярно-биологической системе, - с помощью генетической информации и элементной базы сначала идёт построение и преобразование различных биомолекул и структур, и только потом эти средства могут участвовать в различных информационных процессах. В связи с этим аппаратная часть клетки становится носителем и реализатором соответствующей программной и молекулярной биологической информации.

Получается так, что если в технической системе аппарат является преобразователем информационных символов, то в живой клетке наоборот, - молекулярные буквы и символы, организованные в различные молекулярные последовательности информационных сообщений, сами выступают в роли преобразователей аппаратной части. Причем, функции биомолекул полностью определяются элементарными функциями составляющих их био-логических элементов (букв или символов), - то есть информацией. А каждый элемент в составе биомолекулы всегда взаимодействует с другими элементами или молекулами воды по особым принципам и правилам, которые вполне можно назвать закономерностями молекулярной биохимической логики. Поэтому биохимические элементы здесь, по-видимому, становятся ещё и теми программными элементами, с помощью которых строятся алгоритмы функционального поведения различных биологических молекул и структур. Таким образом, чтобы изменить функциональную направленность деятельности клетки - ей, в определённой мере, с помощью новых информационных сообщений, необходимо частично менять свою аппаратную систему. Смена аппаратной системы, естественно, связана с синтезом новых биомолекул и разрушением старых, которые отслужили свой срок и выполнили свою задачу. Поэтому, после выполнения своих функций, каждая биомолекула расчленяется на элементарные структурно-информационные единицы, которые вновь могут быть вовлечены в информационные процессы. Использованная информация как бы стирается и ликвидируется, а отдельные составляющие её буквы или символы, то есть “молекулярный биологический шрифт” рассыпается для того, чтобы вновь быть использованным в новых информационных сообщениях или других клеточных процессах. Такова основная отличительная особенность информационных передач в молекулярно-биологических системах.

Живая клетка экономна во всём. Если вспомнить, что химические буквы и символы (элементы) строятся на базе отдельных атомов и атомных групп, то можно себе представить, какое колоссальное количество информации хранится в генетической памяти и циркулирует в живой клетке, размеры которой в длину подчас составляют сотые доли миллиметра. К примеру, зигота содержит всю информацию необходимую для развития целостного организма.

Для изменения управляющих воздействий, клетке постоянно нужно обновлять информационные сообщения, что, соответственно, приводит и к обновлению аппаратной части клетки. Поэтому в живой клетке идет постоянное движение информации и вещества. С одной стороны идёт процесс переработки и обновление управляющей информации, а значит ферментов и других белковых молекул, с другой - это приводит к изменению химических управляемых процессов, которые осуществляются ферментами.

В случае необходимости данные процессы поддерживаются дозовой циркуляцией химической энергии в форме АТФ.

Можно убедиться в том, что для построения различных классов высокомолекулярных соединений, таких как нуклеиновые кислоты, белки, полисахариды или липиды, живая клетка использует различные системы (алфавиты) биохимических элементов. Заметим, что с информационной точки зрения, эти классы биологических молекул, представляют собой ничто иное, как различные виды и формы молекулярной информации. Поэтому, для представления молекулярной информации в различных её видах и формах в живых системах существуют системы био-логических элементов разных типов:

  • 1) нуклеотиды, - система структурно-функциональных и информационных биохимических элементов ДНК и РНК (алфавит нуклеиновых кислот);
  • 2) аминокислоты, - система структурно-функциональных и информационных элементов белков (алфавит белковых молекул), для которых существует генетический код в виде тройки нуклеотидов;
  • 3) простые сахара, - структурно-функциональные элементы и информационные символы (алфавит) полисахаридов;
  • 4) жирные кислоты, - структурно-функциональные элементы и информационные символы (алфавит) липидов и др.

Более четкой идентификацией и классификацией био-логических элементов, по всей вероятности, должна заниматься отдельная дисциплина, такая как “молекулярная биологическая информатика”.

Наличие в живой клетке систем молекулярных биохимических элементов (мономеров) существенно упрощает процессы построения различных классов макромолекул и структурных компонентов, повышает технологичность их изготовления и, одновременно, расширяет их функциональные и информационные возможности.

Как мы видим, каждый типовой набор организован в свою систему элементов, которая обладает общими биохимическими, структурными и технологическими особенностями, образует однотипные связи между элементами, совместимые по своим физико-химическим параметрам. В основном из этих молекулярных элементов в различных сочетаниях, составе и последовательности построены все структурные и функциональные компоненты живой клетки. Следует отметить, что каждая система биохимических элементов в клетке является отдельным алфавитом и характеризуется своим способом кодирования, а также видом и формой представления молекулярной биологической информации. Это, соответственно, и является первопричиной появления различных классов и великого разнообразия биологических молекул в живых системах.

Удивительно, но факт - всё живое на Земле, от ничтожной бактерии до человека, состоит из одинаковых строительных блоков - стандартного набора более чем трёх десятков типовых функциональных био-логических (биохимических) элементов.

В состав этого уникального набора входят:

  • 1) восемь нуклеотидов, - “четыре из них играют роль кодирующих единиц ДНК, а другие четыре используются для записи информации в структуру РНК” ;
  • 2) двадцать различных стандартных аминокислот, которые кодируются в ДНК и служат для матричного построения белковых молекул;
  • 3) несколько жирных кислот, - сравнительно небольшое число простых стандартных органических молекул, служащих для построения липидов;

4) родоначальниками большинства полисахаридов является несколько простых сахаров (моносахаридов).

Все эти элементы были отобраны в процессе эволюции, вследствие их уникальной пригодности к выполнению различных - химических, энергетических, молекулярных, информационных и других биологических функций в живых клетках.

Как мы видим, основой каждой системы являются свои индивидуальные молекулярные био-логические (биохимические) элементы. А на базе различных систем био-логических элементов, - молекулярных алфавитов, могут быть “сконструированы” разнообразные макромолекулы клетки - ДНК, РНК, белки, полисахариды и липиды. Поэтому элементная база представляет собой те системы биохимических элементов, используя которые живая клетка способна информационным путём строить различные биологические молекулы и структуры, а затем с помощью этих средств осуществлять любые биологические функции и химические превращения.

“Структурные схемы” базовых молекулярных элементов, их природные свойства и особенности достаточно наглядно рассмотрены и представлены в различных учебниках по биохимии. Наша задача - больше уделить внимания информационным аспектам применения таких биохимических единиц.

Структура, свойства и функции белков.

Выяснение структуры белков является одной из главных проблем современной биохимии.

Белковые молекулы представляют собой высокомолекулярные соединения, образованные аминокислотами.

Большинство белков имеют 4 уровня организации (4 структуры белковой молекулы).

Первичная структура белка.

В настоящее время расшифрована первичная структура около 2500 белков, а в природе имеется 10 12 разнообразных белков.

Первичная структура – это последовательность (порядок) соединения аминокислотных остатков с помощью пептидной связи.

Пептидная связь образуется за счет карбоксильной группы одной аминокислоты и аминогруппы другой аминокислоты.

В образовании первичной структуры участвуют -аминокислоты.

Пептидная связь образует остов полипептидной цепи, она является повторяющимся фрагментом.

Особенности пептидной связи:

    Копланарность – все атомы, входящие в пептидную связь, находятся в одной плоскости.

    Заместители по отношению связи C-N-связи находятся в транс положении.

    Пептидная связь способна к образованию двух водородных связей с другими группами, в том числе с пептидными.

Пептидная связь – прочная ковалентная связь, энергия связи равняется 110 ккал/моль.

Свойства первичной структуры белка

    Детерминированность – последовательность аминокислот в белке генетически закодирована. Информация о последовательности аминокислот содержится в ДНК.

    Уникальность – для каждого белка в организме характерна определенная последовательность аминокислот.

Аминокислоты, входящие в состав белков делят на 2 группы:

    Взаимозаменяемые аминокислоты – это амиокислоты, сходные по структуре и свойствам.

    Невзаимозаменяемые аминокислоты, отличающиеся по структуре и свойствам.

В белковой молекуле различают 2 вида замен аминокислот:

    Консервативная – замена одной аминокислоты на другую сходную по структуре. Такая замена не приводит к изменению свойств белка.

Примеры: гли-ала, асп-глу, тир-фен, вал-лей.

    Радикальная замена – замена одной аминокислоты на другую отличающуюся по структуре. Такая замена приводит к изменению свойств белка.

Примеры: глу-вал, сер-цис, про-три, фен-асп, илей-мет.

При радикальной замене возникает белок с другими свойствами, что может привести к патологии.

Радикальная замена глу на вал в шестом положении в молекуле гемоглобина приводит к развитию серповидно-клеточной анемии. При этой патологии эритроциты в условиях низкого парциального давления приобретают форму серпа. После отдачи кислорода такой гемоглобин превращается в плохо растворимую форму и начинает выпадать в осадок в виде веретенообразных кристаллоидов, названных тактоидами. Тактоиды деформируют клетку и эритроциты приобретают форму серпа. При этом происходит гемолиз эритроцитов. Болезни протекает остро и дети погибают. Эта патология называется серповидно-клеточной анемией.

    Универсальность первичной структуры. Белки, выполняющие одинаковые функции в разных организмах имеют одинаковую или близкую первичную структуру.

    В природных белках одна и та же аминокислота не встречается подряд больше 3 раз.

Вторичная структура белка.

Вторичная структура – это способ укладки полипептидной цепи в спиральную или складчатую конформацию.

Конформация – это пространственное расположение в органической молекуле замещающих групп, способных свободно изменять свое положение в пространстве без разрыва связей, благодаря свободному вращению вокруг одинарных углеродных связей.

Различают 2 вида вторичной структуры белка:

1. -спираль

2. -складчатость.

Вторичную структуру стабилизируют водородные связи. Водородные связи возникают между атомом водорода в NH группе и карбоксильным кислородом.

Характеристика -спирали.

Для каждого белка характерна своя степень спирализации полипептидной цепи. Спирализованные участки чередуются с линейными. В молекуле гемоглобина и -цепи спирализованы на 75%, в лизоциме – 42%, пепсине – 30%.

Степень спирализации зависит от первичной структуры белка.

Спирализации белковой молекулы препятствует аминокислота пролин.

Складчатость имеет слабоизогнутую конфигурацию полипептидной цепи.

Для - складчатости характерны водородные связи в пределах одной полипептидной цепи или сложных полипептидных цепей.

В белках возможны переходы от -спирали к -складчатости и обратно вследствие перестройки водородных связей.

Складчатость имеет плоскую форму.

Спираль имеет стержневую форму.

Водородные связи – слабые связи, энергия связи 10 – 20 ккал/моль, но большое количество связей обеспечивает стабильность белковой молекулы.

В молекуле белка имеются прочные (ковалентные) связи, а также слабые, что обеспечивает с одной стороны стабильность молекулы, а с другой лабильность.

Третичная структура белка.

Третичной структурой белка называется способ укладки полипептидной цепи в пространстве.

По форме третичной структуры белка делят на глобулярные и фибриллярные.

В стабилизации третичной структуры белковой молекулы участвуют ковалентные связи (пептидные и дисульфидные). Основную роль в стабилизации играют нековалентные связи: водородные, электростатические взаимодействия заряженных групп, межмолекулярные ван-дер-вальсовы силы, взаимодействия неполярных боковых радикалов аминокислот, так называемые гидрофобные взаимодействия.

Гидрофобные радикалы аминокислот ала, вал, изолей, мет, фен в водной среде взаимодействуют друг с другом. При этом неполярные гидрофобные радикалы аминокислот как бы погружаются внутрь белковой молекулы, образуя там сухие зоны, а полярные радикалы оказываются ориентированными в сторону воды.

При укладке полипептидная цепь белка стремится принять энергетически выгодную форму с меньшим запахом энергии.

При формировании третичной структуры полипептидная цепь изгибается в местах нахождения пролина, глицина.

Глобулярные белки растворимы в воде, а фибриллярные нет.

Четвертичная структура белка.

Белки, состоящие из одной полипептидной цепи, имеют только третичную структуру (лизоцим, пепсин, миоглобин, трипсин).

Для белков, состоящих из нескольких полипептидных цепей, характерна четвертичная структура.

Под четвертичной структурой понимают объединение отдельных полипептидных цепей с третичной структурой в функционально активную молекулу белка. Каждая отдельная полипептидная цепь называется протомером и чаще не обладает биологической активностью.

В молекуле белка может быть несколько протомеров, которые при объединении образуют олигомер или мультимер.

Для белков с четвертичной структурой характерно понятие субъединицы.

Субъединица – это функционально активная часть молекулы белка.

Примером белка с четвертичной структурой является гемоглобин, состоящий из 4 протомеров: 2 и 2 -цепей.

Взаимодействие полипептидных цепей при формировании олигомера происходит за счет полярных групп аминокислотных остатков. Между полярными группами образуется ионная, водородные связи, гидрофобные взаимодействия.

Денатурация.

Денатурация – это процесс нарушения высших уровней организации белковой молекулы (вторичного, третичного, четвертичного) под действием различных факторов.

При этом полипептидная цепь разворачивается и находится в растворе в развернутом виде или в виде беспорядочного клубка.

При денатурации утрачивается гидратная оболочка и белок выпадает в осадок и при этом утрачивает нативные свойства.

Денатурацию вызывают физические факторы: температура, давление, механические воздействия, ультразвуковые и ионизирующие излучения; химические факторы: кислоты, щелочи, органические растворители, алкалоиды, соли тяжелых металлов.

Различают 2 вида денатурации:

    Обратимая денатурация – ренатурация или ренактивация – это процесс, при котором денатурированный белок, после удаления денатурирующих веществ вновь самоорганизуется в исходную структуру с восстановлением биологической активности.

    необратимая денатурация – это процесс, при котором биологическая активность не восстанавливается после удаления денатурирующих агентов.

Свойства денатурированных белков.

    Увеличение числа реактивных или функциональных групп по сравнению с нативной молекулой белка (это группы COOH, NH 2 , SH, OH, группы боковых радикалов аминокислот).

    Уменьшение растворимости и осаждение белка (связано с потерей гидратной оболочки), развертыванием молекулы белка, с «обнаружением» гидрофобных радикалов и нейтрализации зарядов полярных групп.

    Изменение конфигурации молекулы белка.

    Потеря биологической активности, вызванная нарушением нативной структуры.

    Более легкое расщепление протеолитическими ферментами по сравнению с нативным белком – переход компактной нативной структуры в развернутую рыхлую форму облегчает доступ ферментов к пептидным связям белка, которые они разрушают.

Ферментные методы гидролиза основаны на избирательности действия протеолитических ферментов расщепляющих пептидные связи между определенными аминокислотами.

Пепсин расщепляет связи, образованные остатками фенилаланина, тирозина и глутаминовой кислоты.

Трипсин расщепляет связи между аргинином и лизином.

Химотрипсин гидролизует связи триптофана, тирозина и фенилаланина.

ЗАНЯТИЕ 3

Структура и свойства ферментов.

Ферменты (энзимы) – специфические белки, входящие в состав всех клеток и тканей живых организмов, играющие роль биологических катализаторов.

Доказательства белковой природы ферментов.

    Инативация ферментов при нагревании. Инактивация ферментов совпадает с денатурацией белка. Ферменты разрушаются также под действием минеральных кислот, щелочей, солей, алкалоидов, при облучении рентгеновскими и ультрафиолетовыми лучами.

    Электрохимические свойства ферментов.

    1. Изоэлектрическая точка ферментов.

      Поведение ферментов при изменении концентрации водородных генов.

      Высокая специфичность ферментов.

      Ферменты не способны проникать через полупроницаемые мембраны.

      Сохранение активности ферментами после действия водоотнимающими средствами (ацетон, спирт, нейтральные соли щелочных металлов).

Для ферментов и неорганических катализаторов характерны общие свойства:

    Неорганические катализаторы и биологические катализаторы – ферменты требуются в небольшом количестве для проведения реакции.

БИОХИМИЯ ПИТАНИЯ

Пептиды

Имеют в своем составе от трех до нескольких десятков аминокислотных остатков. Функционируют только в высших отделах нервной системы.

Эти пептиды, как и катехоламины, выполняют функцию не только нейромедиаторов, но и гормонов. Передают информацию от клетки к клетке по системе циркуляции. Сюда относятся:

а) Нейрогипофизарные гормоны (вазопрессин, либерины, статины). Эти вещества одновременно и гормоны и медиаторы.

б) Гастроинтестинальные пептиды (гастрин, холецистокинин). Гастрин вызывает чувство голода, холецистокинин вызывает чувство насыщения, а также стимулирует сокращение желчного пузыря и функцию поджелудочной железы.

в) Опиатоподобные пептиды (или пептиды обезболивания). Образуются путем реакций ограниченного протеолиза белка-предшественника проопиокортина. Взаимодействуют с теми же рецепторами, что и опиаты (например, морфин), тем самым имитируют их действие. Общее название - эндорфины - вызывают обезболивание. Они легко разрушаются протеиназами, поэтому их фармакологический эффект незначителен.

г) Пептиды сна. Их молекулярная природа не установлена. Известно лишь, что их введение животным вызывает сон.

д) Пептиды памяти (скотофобин). Накапливается в мозге крыс при тренировке на избегание темноты.

е) Пептиды - компоненты РААС-системы. Показано, что введение ангиотензина-II в центр жажды головного мозга вызывает появление этого ощущения и стимулирует секрецию антидиуретического гормона.

Образование пептидов происходит в результате реакций ограниченного протеолиза, разрушаются также под действием протеиназ.

Полноценное питание должно содержать:

1. ИСТОЧНИКИ ЭНЕРГИИ (УГЛЕВОДЫ, ЖИРЫ, БЕЛКИ).

2. НЕЗАМЕНИМЫЕ АМИНОКИСЛОТЫ.

3. НЕЗАМЕНИМЫЕ ЖИРНЫЕ КИСЛОТЫ.

4. ВИТАМИНЫ.

5. НЕОРГАНИЧЕСКИЕ (МИНЕРАЛЬНЫЕ) КИСЛОТЫ.

6. КЛЕТЧАТКУ

ИСТОЧНИКИ ЭНЕРГИИ.

Углеводы, жиры и белки являются макропитательными веществами. Их потребление зависит от роста, возраста и пола человека и определяется в граммах.

Углеводы составляют основной источник энергии в питании человека - самая дешевая пища. В развитых странах около 40% потребления углеводов приходится на рафинированные сахара, а 60% составляет крахмал. В менее развитых странах доля крахмала возрастает. За счет углеводов образуется основная часть энергии в организме человека.

Жиры - это один из основных источников энергии. Перевариваются в желудочно-кишечном тракте (ЖКТ) гораздо медленнее, чем углеводы, поэтому лучше способствуют возникновению чувства сытости. Триглицериды растительного происхождения являются не только источником энергии, но и незаменимымых жирных кислот: линолевой и линоленовой.


Белки - энергетическая функция не является для них основной. Белки - это исочники незаменимых и заменимых аминокислот, а также предшественники биологически активных веществ в организме. Однако при окислении аминокислот образуется энергия. Хотя она и невелика, но составляет некоторую часть энергетического рациона.