Главным свойством системы является. Характеристики системы. Группы свойств системы

В этой статье мы рассмотрим определение системы как устройства, составленного из различных структурных элементов. Здесь будет затронут вопрос о классификации систем и их характеристике, а также постановка закона Эшби и понятие об общей теории.

Введение

Определение системы представляет собой множественный ряд элементов, которые находятся в определенной связи между собой и образуют целостность.

Использование системы как термина обуславливается необходимостью подчеркнуть различные характеристики чего-либо. Речь, как правило, идет о сложном и огромном устройстве объекта. Разобрать такой механизм чаще всего сложно однозначно, что является еще одной причиной для эксплуатации термина «система».

Определение системы имеет характерное отличие от «множества» или «совокупности», которое проявляет себя в том, что основной термин статьи говорит нам об упорядоченности и целостности в определенном объекте. В системе всегда присутствует определенная закономерность ее построения и функционирования, а также она обладает спецификой развития.

Определение термина

Существуют различные определения системы, которые могут классифицироваться по самым разнообразным характеристикам. Это очень широкое понятие, которое может использоваться по отношению практически ко всему и в любых науках. Содержание контекста о системе, области знания и цели изучения и анализа также сильно влияет на определение этого понятия. Проблема исчерпывающей характеристики заключается в использовании термина как объективного, так и субъективного.

Рассмотрим некоторые дескриптивные определения:

  • Система - это комплексное образование взаимодействующих фрагментов целостного «механизма».
  • Система - общее скопление элементов, пребывающих в некотором отношении друг по отношению к другу, а также связанным со средой.
  • Система - это набор взаимосвязанных компонентов и деталей, обособленных от среды, но взаимодействующих с ней и работающих как единое целое.

Первые определения системы дескриптивного характера относятся к раннему периоду развития науки о системах. В такую терминологию включались лишь элементы и набор связей. Далее стали включать различные понятия, например функции.

Система в повседневности

Человек использует определение системы в самых различных сферах жизни и деятельности:

  • При наименовании теорий, например философской системы Платона.
  • При создании классификации.
  • При создании конструкции.
  • При наименовании совокупности установившихся жизненных норм и поведенческих правил. Примером служит система законодательства или моральных ценностей.

Исследование систем - это ход развития в науке, который изучается в самых разнообразных дисциплинах, например в инженерии, теории систем, системном анализе, системологии, термодинамике, системной динамике и т. д.

Характеристика системы посредством ее составных компонентов

Основные определения системы включают в себя ряд характеристик, посредством анализа которых можно так или иначе дать ей исчерпывающее описание. Рассмотрим главенствующие:

  • Пределом расчленения системы на фрагменты является определение элемента. С точки зрения рассматриваемых аспектов, решаемых задач и поставленной цели они могут по-разному классифицироваться и различаться.
  • Компонентом называют подсистему, которая представлена нам в виде относительно независимой частицы системы и обладает при этом ее некоторыми свойствами и подцелью.
  • Связью именуют взаимоотношение между элементами системы и тем, что они ограничивают. Связь позволяет снижать степень свободы фрагментов «механизма», но приобретать при этом новые свойства.
  • Структура - перечень самых существенных компонентов и связей, мало изменяемых в процессе текущего функционирования системы. Она отвечает за наличие главных свойств.
  • Основным понятием в определении системы также является понятие цели. Цель - это многогранное понятие, которое можно определять в зависимости от данных контекста и этапа познания, на котором система находится.

Подход к определению системы также зависит от таких понятий, как состояние, поведение, развитие и жизненный цикл.

Наличие закономерностей

При разборе основного термина статьи важно будет обратить внимание на наличие некоторых закономерностей. Первой является наличие ограниченности от общей среды. Другими словами, это интегративность, которая определяет систему как абстрактную сущность, обладающую целостностью и четко поставленными пределами своих границ.

Система обладает синергичностью, эмерджентностью и холизмом, а также системным и сверхаддитивным эффектом. Элементы системы могут быть взаимосвязаны между конкретными компонентами, а с некоторыми никак не взаимодействовать, однако влияние в любом случае оказывается всеохватывающим. Оно производится посредством косвенного взаимодействия.

Определение системы - это термин, тесно связанный с явлением иерархичности, которое представляет собой определение различных деталей системы как отдельных систем.

Классификационные данные

Практически все издания, изучающие теорию систем и системный анализ, занимаются обсуждением вопроса о том, как их правильно классифицировать. Самое большое разнообразие среди перечня мнений о таком различии относится к определению сложных систем. Преобладающая часть классификаций относится к произвольным, которые также называют эмпирическими. Это означает, что чаще всего авторы произвольно используют данный термин в случае потребности охарактеризовать определенную решаемую задачу. Различие чаще всего осуществляется по определению предмета и категориального принципа.

Среди главных свойств чаще всего обращают внимание на:

  • Количественную величину всех компонентов системы, а именно на монокомпонентность или поликомпонентность.
  • При рассмотрении статичной структуры необходимо брать в расчет состояние относительного покоя и наличие динамичности.
  • Отношение к закрытому или открытому типу.
  • Характеристику детерминированной системы в конкретный момент времени.
  • Необходимо учитывать гомогенность (например, популяцию организмов в виде) или гетерогенность (наличие различных элементов с различными свойствами).
  • При анализе дискретной системы всегда четко ограничивают закономерности и процессы, а в соответствии с происхождением выделяют: искусственную, естественную и смешанную.
  • Важно обращать внимание на степень организованности.

Определение системы, видов систем и системы в целом связано еще и с вопросом о восприятии их как сложных или простых. Однако здесь находится наибольшее количество разногласий при попытке дать исчерпывающий перечень характеристик, в соответствии с которыми необходимо их разграничивать.

Понятие вероятностной и детерминированной системы

Определение термина «система», созданное и предложенное Ст. Биром, стало одним из самых широко известных и распространенных по всему миру. В основу фундамента различия он вложил сочетание уровней детерминированности и сложности и получил вероятностные и детерминированные. Примером последних могут служить простые структуры, например оконные задвижки и проекты механизированных мастерских. Сложные представлены компьютерами и автоматизацией.

Вероятностным устройством элементов в простой форме может послужить подбрасывание монеты, передвижение медузы, наличие статистического контроля по отношению к качеству продукции. Среди сложных примеров системы можно вспомнить о хранении запасов, условных рефлексах и т. д. Сверхсложные формы вероятностного типа: понятие экономики, структура мозга, фирма и т. д.

Закон Эшби

Определение понятия системы тесно связано с законом Эшби. В случае создания определенной структуры, в которой компоненты обладают связями между собой, необходимо обусловить наличие проблеморазрешающей способности. Важно, чтобы система обладала разнообразием, превышающим этот же показатель у проблемы, над которой идет работа. Второй чертой является наличие у системы возможности создать такое разнообразие. Другими словами, устройство системы необходимо регулировать так, чтобы она могла изменять свои свойства в ответ на изменение условий решаемой задачи или проявление возмущения.

В случае отсутствия подобных характеристик в изучаемом явлении система не сможет удовлетворять требования к управленческим заданиям. Она станет малоэффективной. Важно также обращать внимание на наличие разнообразия в перечне подсистем.

Понятие об общей теории

Определение системы - это не только ее общая характеристика, но и набор различных важных аспектов. Одним из них является понятие об общей теории систем, которое представлено в виде научной и методологической концепции исследований объектов, образующих систему. Она взаимосвязана с такой терминологической единицей, как «системный подход», и является перечнем его конкретизированных принципов и методологий. Первую форму общей теории выдвинул Л. Фон Берталанфи, а идея его основывалась на признании изоморфизма основополагающих утверждений, отвечающих за управление и функциональные возможности объектов системы.

Свойства систем можно условно разделить на общие свойства, характеризующие тип системы; структурные, характеризующие особенности организации системы; динамические, характеризующие поведение системы и особенности взаимодействия с окружающей сре­дой; отдельную группу составляют свойства, характеризующие описание и управление в системе. Перечисленные группы свойств для организационно-технических (больших) систем представлены в табл. 2.

Таблица 2

Основные свойства организационно-технических (больших) систем

К основным структурным свойствам относятся: иерархическая упорядоченность, централизация, а также вертикальная целостность и горизонтальная обособленность. К основным динамическим свойствам относятся систематизация, изоляция, стабильность, адаптивность, инерционность и ряд других. Иерархическая упорядоченность заключается в возможности разделения системы на подсистемы и отражает тот факт, что поведение подсистемы не может быть полностью аналогичным поведению системы. Большинство систем иерархически упорядочены. Для технических систем, в частности, это проявляется в модульном принципе построения. Целостность системы проявляется в том, что изменение в некоторой ее части вызывает изменения в других частях и в системе в целом. В этом случае говорят о связном образовании. Обособленность проявляется в том, что система, может быть представлена в виде совокупности несвязных частей. Изменение в каждой части зависит только от самой этой части. Изменение в системе в целом есть физическая сумма изменений в ее отдельных частях. В этом случае говорят об обособлении или физически суммативном поведении. Следует отметить, что целостность и обособленность могут проявляться в одной и той же системе в разной степени.

Свойство прогрессирующей изоляции. Большинство неабстрактных систем изменяется во времени. Если эти изменения приводят к постепенному переходу от целостности к суммативности, то говорят, что такая система подвержена прогрессирующей изоляции. Изоляция может проявляться в виде распада, имеющего место при разрушении системы, и роста, заключающегося в возрастании деления на подсистемы; при этом возрастает дифференциация функций (процесс творчества, эволюция, развитие).

Свойство прогрессирующей систематизации является обратным к предыдущему и заключается в усилении прежних отношений между частями и развитии отношений между частями, не связанными между собой (унификация системы в целом). Изоляция и систематизация могут происходить в одной системе одновременно и в течение длительного времени (говорят, что система находится в равновесном состоянии) или последовательно.

Централизация. Централизованная система - это такая, в которой один элемент или подсистема играет главную (доминирующую) роль в функционировании всей системы. Эта часть системы называется ведущей или центром системы. При этом малые изменения в ведущей части вызывают значительные изменения в системе. Существуют как централизованные, так и децентрализованные (распределенные) системы. При этом речь идет о функциональном влиянии центра, определяющем назначение системы. Например, в измерительном приборе центр – датчик, в автомобиле – двигатель, в компьютере центр отсутствует (одинаково важны и процессор, и память). Высокоорганизованные системы также могут не быть централизованными. Например, человек имеет осевую симметрию (одинаково важны сердце и мозг). Отметим, что центр не следует отождествлять с системой управления. Например, в вузе центром является преподавательский состав, в институте – специалисты, в интегрированных производствах – техника и т.п. Целостность и систематизация могут сопровождаться прогрессирующей централизацией.

Адаптивность системы заключается в способности системы сохранять свои функции при воздействии окружающей среды, т.е. реагировать на среду так, чтобы получить благоприятные последствия для деятельности системы (обучение, эволюция в больших системах). Подчеркнем, что речь идет о функциональной адаптивности. Все системы в той или иной степени адаптивны: наименее адаптивны неживые системы; более адаптивны – биологические (живые системы) и технические системы; наиболее адаптивны социальные и организационно-технические системы. Свойство адаптивности тесно связано с живучестью систем, которая состоит в способности сохранять равновесие со средой.

О стабильности системы можно говорить относительно некоторых ее свойств (величин, переменных), если они стремятся сохраниться в определенных пределах. Система может быть стабильной в одном отношении и нестабильной в другом.

Так как наибольший практический интерес представляют организационно-технические системы, то остановимся на их особенностях. Организационно-технические системы являются динамическими и обладают свойствами адаптивности, стабильности, совместимости, а также в известной мере свойством оптимизации, заклю­чающейся в приспособлении к среде. В силу существующих ограничений на развитие таких систем имеется тенденция к усилению оптимизации, что проявляется в необходимости оптимизации структуры, функций, минимизации затрат на развитие, в возрастании эффективности систем и т.д. Важным свойством больших, сложных систем, таких как организационно-технические, является инерционность, связанная со скоростью изменения функций. Она определяется временем отклика системы в ответ на внешнее возмущение, т.е. промежутком времени от начала возмущающего воздействия до изменения деятельности системы в нужном направлении, и зависит от возмущающего воздействия (t = t 1 + t 2 , где t 1 – время отклика управляющей подсистемы; t 2 – время прохождения возмущения через все уровни системы). В связи с этим системы такого типа следует рассматривать как обладающие относительными свойствами, т.е. как относительно открытые, относительно адаптивные и т.д. Динамические свойства проявляются в полной мере, если промежуток времени, в течение которого изучается система, превышает время отклика, и если возмущающее воздействие превышает некоторый порог. Свойство инерционности тесно связано с такими свойствами систем и их элементов, как быстродействие, жесткость, адаптивность, стабильность и другие. Изменение свойств организационно-технических систем обусловлено объективными изменениями, происходящими в процессе развития (эволюция), и субъективными, т.е. планируемыми людьми (директивными). В силу этого существенное значение имеет полнота информации о системах. Неполнота (нечеткость) информации о системе может привести к существенному изменению ее динамических свойств (например, увеличить инерционность, замедлить рост, снизить адаптивность и т. д.). Решающим обстоятельством, оказывающим влияние на развитие таких систем, является установление оптимальных пропорций, в том числе временных, между эволюционными и директивными изменениями.

управление менеджмент хозяйственный

Характеристика - то, что отражает некоторое свойство системы.

Из определения "системы" следует, что главным свойством системы является целостность, единство, достигаемое посредством определенных взаимосвязей и взаимодействий элементов системы и проявляющиеся в возникновении новых свойств, которыми элементы системы не обладают.

Это свойство эмерджентности (от анг. emerge - возникать, появляться).

Эмерджентность - свойство систем, обусловливающее появление новых свойств и качеств, не присущих элементам, входящих в состав системы.

Свойству эмерджентности близко свойство целостности системы. Однако их нельзя отождествлять.

Целостность системы означает, что каждый элемент системы вносит вклад в реализацию целевой функции системы.

Целостность и эмерджентность - интегративные свойства системы.

Наличие интегративных свойств является одной из важнейших черт системы. Целостность проявляется в том, что система обладает собственной закономерностью функциональности, собственной целью.

Организованность - сложное свойство систем, заключающиеся в наличие структуры и функционирования (поведения). Непременной принадлежностью систем является их компоненты, именно те структурные образования, из которых состоит целое и без чего оно не возможно.

Функциональность - это проявление определенных свойств (функций) при взаимодействии с внешней средой. Здесь же определяется цель (назначение системы) как желаемый конечный результат.

Структурность - это упорядоченность системы, определенный набор и расположение элементов со связями между ними. Между функцией и структурой системы существует взаимосвязь, как между философскими категориями содержанием и формой. Изменение содержания (функций) влечет за собой изменение формы (структуры), но и наоборот.

Важным свойством системы является наличие поведения - действия, изменений, функционирования и т.д.

Считается, что это поведение системы связано со средой (окружающей), т.е. с другими системами с которыми она входит в контакт или вступает в определенные взаимоотношения.

Процесс целенаправленного изменения во времени состояния системы называется поведением. В отличие от управления, когда изменение состояния системы достигается за счет внешних воздействий, поведение реализуется исключительно самой системой, исходя из собственных целей.

Еще одним свойством является свойство роста (развития). Развитие можно рассматривать как составляющую часть поведения (при этом важнейшим).

Одним из первичных, а, следовательно, основополагающих атрибутов системного подхода является недопустимость рассмотрения объекта вне его развития, под которым понимается необратимое, направленное, закономерное изменение материи и сознания. В результате возникает новое качество или состояние объекта. Отождествление (может быть и не совсем строгое) терминов "развитие" и "движение" позволяет выразиться в таком смысле, что вне развития немыслимо существование материи, в данном случае - системы. Наивно представлять себе развитие, происходящее стихийно. В неоглядном множестве процессов, кажущихся на первый взгляд чем-то вроде броуновского (случайного, хаотичного) движения, при пристальном внимании и изучении вначале как бы проявляются контуры тенденций, а затем и довольно устойчивые закономерности.

Эти закономерности по природе своей действуют объективно, т.е. не зависят от того, желаем ли мы их проявления или нет. Незнание законов и закономерностей развития - это блуждание в потемках.

Поведение системы определяется характером реакции на внешние воздействия.

Фундаментальным свойством систем является устойчивость, т.е. способность системы противостоять внешним возмущающим воздействиям. От нее зависит продолжительность жизни системы.

Простые системы имеют пассивные формы устойчивости: прочность, сбалансированность, регулируемость, гомеостаз. А для сложных определяющими являются активные формы: надежность, живучесть и адаптируемость.

Если перечисленные формы устойчивости простых систем (кроме прочности) касается их поведения, то определяющая форма устойчивости сложных систем носят в основном структурный характер.

Надежность - свойство сохранения структуры систем, несмотря на гибель отдельных ее элементов с помощью их замены или дублирования, а живучесть - как активное подавление вредных качеств. Таким образом, надежность является более пассивной формой, чем живучесть.

Адаптируемость - свойство изменять поведение или структуру с целью сохранения, улучшения или приобретение новых качеств в условиях изменения внешней среды. Обязательным условием возможности адаптации является наличие обратных связей.

Всякая реальная система существует в среде. Связь между ними бывает настолько тесной, что определять границу между ними становится сложно. Поэтому выделение системы из среды связано с той или иной степенью идеализации. Можно выделить два аспекта взаимодействия:

Во многих случаях принимает характер обмена между системой и средой (веществом, энергией, информацией);

Среда обычно является источником неопределенности для систем.

Воздействие среды может быть пассивным либо активным (антогонистическим, целенаправленно противодействующее системе).

Поэтому в общем случае среду следует рассматривать не только безразличную, но и антагонистическую по отношению к исследуемой системе.3. Характеристики строения систем

Система может быть представлена простым перечислением элементов, или "чёрным ящиком" (моделью "вход - выход"). Однако чаще всего при исследовании объекта такое представление недостаточно, так как требуется выяснить, что собой представляет объект, что в нём обеспечивает выполнение поставленной цели, получение требуемых результатов. В этих случаях систему отображают путём расчленения на подсистемы, компоненты, элементы с взаимосвязями, которые могут носить различный характер, и вводят понятие структуры.

Одна и та же система может быть представлена разными структурами в зависимости от стадии познания объектов или процессов, от аспекта их рассмотрения, цели создания. При этом по мере развития исследований или в ходе проектирования структура системы может изменяться.

Структуры могут быть представлены в матричной форме, в форме теоретико-множественных описаний, с помощью языка топологии, алгебры и других средств моделирования систем.

Структуры, особенно иерархические, могут помочь в раскрытии неопределённости сложных систем. Иными словами, структурные представления систем могут являться средством их исследования. В связи с этим полезно выделить и исследовать определённые виды (классы) структур.

В соответствии с задачами системного исследования можно выделить два типа определения системы - дескриптивное и конструктивное.

Дескриптивное (описательное) - определение системы через ее свойства, через внешние проявления. Например, ключ - это предмет, легко открывающий замок.

Конструктивное определение - описание через элементы системы, связанные с основным системообразующим фактором - с функцией. В конструктивном плане система рассматривается как единство входа, выхода и процессора (преобразователя), предназначенных для реализации определенной функции.

Понятие системы широко используется в науке, технике, в экономике когда говорят о некоторой упорядоченной совокупности любого содержания.

Система – это объективное единство закономерно связанных друг с другом предметов и явлений, а так же знаний о природе и обществе.

Определение системы, как объекта исследования, начинается с выделения входящих в нее элементов из внешней среды, с которой она взаимодействует.

Под элементом системы понимается простейшая неделимая часть системы. Элемент является пределом деления системы с точки зрения решаемой исследователем задачи. Система может быть разделена на элементы не сразу, а последовательным расчленением ее на подсистемы.

Элемент системы не способен к самостоятельному существованию и не может быть описан вне его функциональных характеристик. С точки зрения системы важно не то, из чего состоит элемент, а какова его функция в рамках системы. Элемент определяется как минимальная единица, способная к самостоятельному осуществлению некоторой функции.

Подсистема представляет собой совокупность взаимосвязанных элементов, способных выполнять относительно независимую функцию, направленную на достижение общей цели системы.

Элементы, образующие систему, находятся в определенных отношениях и связях между собой. Как целое, система противостоит среде, во взаимодействии с которой проявляются ее свойства. Функционирование системы во внешней среде и сохранение ее целостности возможно благодаря определенной упорядоченности ее элементов, описываемой понятием структуры.

Структура есть совокупность наиболее существенных связей между элементами системы, мало изменяющихся при ее функционировании и обеспечивающих существование системы и ее основных свойств. Понятие структуры отражает инвариантный аспект системы. Структура системы часто изображается в виде графа, в котором элементы представлены вершинами, а связи между ними дугами.

Возможность выделения для системы внешнего окружения и относительно независимых подсистем приводит к представлению об иерархичности систем. Иерархичность означает возможность представить каждую систему как подсистему или элемент системы более высокого уровня. В свою очередь, каждая подсистема может рассматриваться как самостоятельная система, для которой исходная система служит системой более высокого уровня. Этот взгляд приводит к представлению о мире, как о иерархической системе взаимно вложенных систем.

Основным свойством системы, выделяющим ее из простой совокупности элементов, является целостность. Целостность – это принципиальная несводимость свойств системы к сумме свойств ее элементов, а также невыводимость свойств системы из свойств ее элементов. Система есть нечто большее, чем сумма ее частей. Именно наличие этого свойства выделяет системы из произвольных совокупностей элементов как самостоятельный объект исследования.

2.2. Классификация систем

Классификацию систем можно проводить по различным признакам. В наиболее общем плане системы можно разделить на материальные и абстрактные.

Материальные системы представляют собой совокупность материальных объектов. Среди материальных систем можно выделит неживые системы (физические, химические, технические и т.п.), живые или биологические системы и системы, содержащие в своем составе как неживые, так и биологические элементы. Важное место среди материальных систем занимают социально-экономические системы, в которых связями между элементами являются общественные отношения людей в процессе производства.

Абстрактные системы – это продукты человеческого мышления: знания, теории, гипотезы и т.п.

В зависимости от изменения состояния системы во времени различают статические и динамические системы. В статических системах с течением времени состояние не изменяется, в динамических системах происходит изменение состояния в процессе функционирования.

По степени определенности состояния системы делятся на детерминированные и стохастические (вероятностные). В детерминированное системе состояние её элементов в любой момент времени полностью определяется их состоянием в предшествующие моменты времени. Поведение детерминированной системы всегда можно точно предсказать. Состояние стохастической системы можно предсказать только с некоторой вероятностью.

По способу взаимодействия системы с внешней средой различают замкнутые и открытые системы. Замкнутые системы не взаимодействуют с внешней средой, все процессы, кроме энергетических, замыкаются внутри системы. Открытые системы активно взаимодействуют с внешней средой, что позволяет им развиваться и усложнять свою структуру.

По степени сложности системы делятся на простые и сложные.

Под сложностью системы часто понимается количество ее элементов и связей между ними. Такое определение сложности не отражает качественных изменений, происходящих в поведении систем при их усложнении. Под сложной системой будем понимать систему, способную управлять своим поведением. Системы, не обладающие таким свойством, отнесем к простым. В соответствии с этим определением атом и солнечную систему следует отнести к простым системам. Любые технические системы, взятые сами по себе, вне зависимости от человека, также являются простыми. Действительно сложными системами, способными управлять своим поведением, являются человеко-машинные системы. В строгом смысле сложные системы появляются только с появлением жизни.

Среди сложных систем можно выделить системы, существенной особенностью которых является наличие разумной деятельности. Примерами таких систем являются экономическая система, любые виды социальных систем, эколого-экономическая система. Характерной особенностью таких систем является целенаправленность их поведения.

Под целенаправленностью понимается способность системы к выбору поведения в зависимости от внутренней цели. Для обозначения такого рода систем с высшим типом сложности в общей теории систем вводится понятие целеустремленной системы.

Целеустремленной системой называется система, осуществляющая целенаправленное поведение и способная к самосохранению и развитию посредством самоорганизации и самоуправления на основе переработки информации. Способность системы формировать цель своего поведения предполагает присутствие в ней человека, обладающего свободой выбора при принятии решений. Все социальные и экономические системы являются целеустремленными, поскольку в них присутствуют люди, ставящие перед собой определенные цели.

Целенаправленная система должна обладать следующими свойствами, позволяющими ей моделировать и прогнозировать свое поведение во внешней среде:

    воспринимать и распознавать внешнее воздействие, формирую образ внешней среды;

    обладать априорной информацией о среде, хранимой в виде ее образов;

    обладать информацией о самой себе и о своих свойствах, хранимой в виде морфологического и функционального образов, образующих информационное описание системы.

В переводе с греческого слово «система» означает «соединение, целое, составленное из частей». Эти части, или элементы, находятся в единстве, в рамках которого они определенным образом упорядочены, взаимосвязаны, оказывают друг на друга то или иное воздействие.

Управление также обладает свойством системности, поэтому изучение его механизма мы начинаем со знакомства с основными положениями теории систем. В соответствии с ней любая система обладает рядом основных признаков.

Во-первых, как уже говорилось, она представляет собой набор элементов, или отдельных частей, выделенных по тому или иному принципу, являющихся ее структурообразующими факторами и играющих роль подсистем. Последние, хотя и относительно самостоятельны, но различным образом взаимодействуют в рамках системы; в простейшей форме тем, что находятся рядом и граничат друг с другом; более сложными формами взаимодействия является обусловленность (порождение одним элементом другого) и взаимное влияние, оказываемое ими друг на друга. Для сохранения системы такое взаимодействие должно быть гармоничным.

В результате взаимодействия у элементов и формируются общесистемные качества, то есть признаки, свойственные системе в целом и каждому из них в отдельности (например, человеческое тело в целом и каждый его орган осуществляют обменные процессы, имеют нервные клетки, постоянно обновляются и пр.

Свойства элементов (подсистем) определяют место последних во внутренней организации системы и реализуются в их функциях. Это проявляется в определенном влиянии на другие элементы, или объекты, находящиеся вне системы и способные это влияние воспринимать, преобразовывать и изменяться в соответствии с ним.

Во-вторых, система имеет границы, отделяющие ее от окружающей среды. Эти границы могут быть «прозрачными», допускающими проникновение в систему внешних влияний, и «непрозрачными», наглухо отделяющими ее от всего остального мира. Системы, осуществляющие свободный двусторонний обмен энергией, веществом, информацией со средой, получили название открытых; в противном случае говорится о закрытых системах, функционирующих относительно не зависимо от среды.

Если в систему вообще не поступают ресурсы извне, она имеет тенденцию к затуханию (энтропии) и прекращает свое существование (например, часы, если их не завести, останавливаются).

Открытые системы, самостоятельно черпающие необходимые для себя ресурсы из внешней среды, и преобразующие их для удовлетворения своих потребностей, в принципе неиссякаемы. В то же время, недостаточно, или наоборот, чрезмерно активный обмен со средой может систему разрушить (по причине нехватки ресурсов или неспособности их ассимилировать ввиду избыточного количества и разнообразия). Поэтому система должна находиться в состоянии внутреннего равновесия и баланса со средой. Это обеспечивает ее оптимальное приспособление к ней и успешное развитие.

Открытые системы стремятся к постоянным изменениям за счет специализации, дифференциации, интеграции элементов. Это ведет к усложнению связей, совершенствованию самой системы, позволяет достигать целей многими способами (для закрытых возможен только один), но требует дополнительных ресурсов.

В третьих, каждая система имеет определенную структуру, то есть упорядоченную совокупность взаимосвязанных элементов (иногда в обиходе понятие структура используется как синоним понятию организация).

Упорядоченность придает системе внутреннюю организацию, в рамках которой взаимодействие элементов подчиняется определенным принципам, законам. Системы, где такая организация минимальна, называются неупорядоченными, например, толпа на улице. Структура может в той или иной степени зависеть от особенностей самих элементов (например, взаимоотношения в чисто женском, мужском, детском или смешенном коллективах неодинаковы).

В-четвертых, в каждой системе есть некое явное системообразующее отношение или качество, которое в той или иной степени проявляется во всех остальных, обеспечивает их единство и целостность. Если оно определяется природой системы, то называется внутренними, в противном случае - внешним. В то же время, внутренние отношения могут распространяться и на другие системы (например, через подражание, заимствование опыта). Возможность реализации отношений и свойств системы исключительно на данной основе (субстрате) делает ее уникальной. В социальных системах кроме явного системообразующего отношения могут существовать неявные.

В-пятых, каждая система обладает определенными качествами. Многокачественность системы является следствием бесконечности связей и отношений, существующих на различных ее уровнях. Качества проявляются в отношении к другим объектам, причем, неодинаково. Например, один и тот же человек в роли руководителя может кричать на подчиненных и лебезить перед своим непосредственным начальником. Качества системы в определенной степени воздействуют на качество вошедших в них элементов, преобразуют их. Способность достигать этого характеризует силу системы.

В-шестых, системе присуща эмерджентность, то есть появление качественно новых свойств, отсутствующих у ее элементов, или не характерных для них. Таким образом, свойства целого не равны сумме свойств частей, хотя и зависят от них, а объединенные в систему элементы могут терять свойства, присущие им вне системы, или приобретать новые.

Нетождественность суммы качеств элементов качествам системы в целом обусловлена наличием структуры, поэтому структурные преобразования приводят к качественным, но последние могут происходить также и за счет количественных изменений. Таким образом, система может качественно изменяться, не меняя своей структуры, а в рамках одного и того же количественного состава могут существовать несколько качественных состояний.

В-седьмых, система обладает обратной связью, под которой понимается определенная реакция ее в целом или отдельных элементов на импульсы друг друга и внешние воздействия.

Теперь рассмотрим, какими бывают системы.

По характеру связей между элементами системы делятся на централизованные и децентрализованные. В первых все связи осуществляются через один центральный элемент; во вторых они могут происходить без «посредника» напрямую. Системы, где взаимосвязь элементов идет только по одной линии получили название частичных, а по многим - полных. В цепных системах каждый элемент связан не более, чем с двумя другими.

Системы, характеризующиеся преобладанием внутренних связей по сравнению внешним, где центростремительность больше центробежное, а отдельным элементам присущи общие характеристики, получили название целостных.

Системы, сохраняющиеся в целом при изменении или исчезновении одного или нескольких элементов, можно назвать стабильными, устойчивыми. Если при этом возможно восстановление утраченных элементов, то система называется регенеративной.

Изменяющиеся системы динамичны. Их элементы и они в целом могут изменяться линейно, однонаправлено с равной интенсивностью, и тогда будет наблюдаться рост, или нелинейно, разнонаправлено, с неодинаковой интенсивностью, что приводит к их качественным изменениям и развитию. Неизменные системы статичны.

С точки зрения состояния динамичные системы подразделяются на первичные, исходные, или вторичные, уже претерпевшие определенные изменения. Если система не допускает дальнейшего развития, без того, чтобы не преобразоваться в другую, она считается завершенной; если же развитие может продолжаться - незавершенной. Незавершенность может быть субстратной (преобразования могут происходить в основе элементов) и структурной (изменяется состав и соотношение элементов).

Если система сохраняет свои характеристики при изменении субстрата, она называется стационарной.

Система, состоящая из ряда разнородных элементов, называется сложной. Сложность означает, что введение новой единицы в систему не только порождает новые отношения, но и изменяет существующие. Степень сложности зависит также от взаимосвязанности этих элементов и от их числа.

Едва ли не важнейшими разновидностями систем являются механические и органические. Механические системы обладают постоянным набором неизменных элементов, четкими границами, однозначными связями, не способны изменяться и развиваться, функционируют под воздействием внешних импульсов. Выход элемента из механического целого нарушает его функционирование. Наиболее наглядный их пример - часовой механизм.

В механической системе элементы находятся во внешней связи друг с другом, не затрагивающей внутреннего существа каждого из них, и пребывают в безразличной самостоятельности. Они менее зависимы от системы, и вне ее сохраняют в неизменности свое бытие (колесико от часов может продолжительное время играть роль запасной детали).

Органические системы характеризуются противоположными качествами. В них увеличивается зависимость части от целого, а целого от части, наоборот, уменьшается. Причем, чем глубже связь частей, тем больше роль целого по отношению к ним. Кроме того, им присущи такие важные свойства, которых нет у механических систем, как способность к самоорганизации и самовоспроизведению.

В качестве образца органической системы можно привести живые существа или их сообщества. Специфической формой органической системы является социально-экономическая (общество, коллектив, организация и пр.).

Социально-экономические системы всегда являются упорядоченными, целостными, функционально и технологически неоднородными, иерархичными по структуре, динамичными с точки зрения состава и количества элементов. Подсистемы (элементы) в социально-экономических системах выделяются по тем или иным четким критериям, обычно в зависимости от их типа и целей.

Такие системы устойчивы, и в то же время постоянно развиваются, эволюционируют в более сложные образования (хотя иногда могут временно стабилизироваться или деградировать). Это развитие протекает под влиянием противоречивого взаимодействия внешних и внутренних факторов, интенсивность которого весьма различна. Поэтому оно неравномерно, может быть прерывистым, скачкообразным и не всегда предсказуемым.

Небольшие изменения в одном из элементов социальной системы могут привести к значительным последствиям для нее в целом, поэтому с помощью небольших, но продуманных действий в нужном месте и в соответствующее время легко достичь крупных желаемых результатов (теория рычага).

Для того, чтобы социальная система была динамически устойчивой, она должна обладать управляющим элементом, осуществляющим интеграцию ее отдельных звеньев, контроль за их функционированием, поступлением ресурсов, удалением отходов, получаемыми результатами, способным на основе обратной связи корректировать эти процессы. Для успеха саморазвития и самовоспроизведения системы управляющий элемент должен обладать не меньшей степенью сложности, чем управляемый. , — Системный подход, основная цель которого состоит в интеграции элементов организации, является основой современного менеджмента. Он рассматривает любую организацию как целостную совокупность различных видов деятельности и элементов, находящихся в противоречивом единстве и взаимосвязи, в рамках пространственно-временного бытия, в динамике, с учетом историчности, этапности, цикличности развития.