Химические св ва галогенов. Физические и химические свойства галогенов. Взаимодействие галогенов с растворами щелочей

Из учебника химии многие знают, что к галогенам относятся химические элементы периодической системы Менделеева из 17 группы в таблице.

С греческого переводится как рождение, происхождение. Практически все они высокоактивны, благодаря чему бурно реагируют с простыми веществами за исключением нескольких неметаллов. Что же такое галогены и каковы их свойства?

Вконтакте

Перечень галогенов

Галогены являются хорошими окислителями, по этой причине в природе их можно встретить только в каких-либо соединениях. Чем выше порядковый номер, тем химическая активность элементов этой группы меньше. К группе галогенов относятся нижеперечисленные элементы:

  • хлор (Cl);
  • фтор (F);
  • иод (I);
  • бром (Br);
  • астат (At).

Последний разработан в институте ядерных исследований, который расположен в городе Дубна. Фтор относится к ядовитым газам бледно-жёлтого цвета. Хлор также ядовит. Это газ, имеющий довольно резкий и неприятный запах светло-зелёного цвета. Бром имеет красно-бурый окрас, это ядовитая жидкость, которая может даже поражать обоняние. Он очень летуч, поэтому его хранят в ампулах. Йод — кристаллическое легко возгоняющееся вещество тёмно-фиолетового цвета. Астат радиоактивен, цвет кристаллов: чёрный с синевой, период полураспада составляет 8,1 часа.

Высокая активность окисления галогенов падает от фтора к иоду. Самым активным из собратьев является фтор, который имеет свойство вступать в реакцию с любыми металлами, образуя соли , некоторые из них при этом самовоспламеняются, при этом выделяется огромное количество тепла. Без нагрева этот элемент реагирует почти со всеми неметаллами , реакции сопровождаются выделением некоторого количества теплоты (экзотермические).

С инертными газами фтор вступает во взаимодействие, при этом облучаясь (Хе + F 2 = XeF 2 + 152 кДж). Нагреваясь, фтор влияет на другие галогены, окисляя их. Имеет место формула: Hal 2 + F 2 = 2НalF, где Hal = Cl, Br, I, At, в случае, когда HalF степени окисления хлора, брома, иода и астата равны + 1.

Со сложными веществами фтор также взаимодействует довольно энергично. Следствием является окисление воды. При этом происходит взрывная реакция, которая коротко записывается формулой: 3F 2 + ЗН 2 О = OF 2 + 4HF + Н 2 О 2.

Хлор

Активность свободного хлора несколько меньше, в сравнении со фтором, но он также имеет хорошую способность вступать в реакцию. Это может происходить при взаимодействии со многими простыми веществами, за редким исключением в виде кислорода, азота, инертных газов. Он может бурно реагировать со сложными веществами , создавая реакции замещения, свойство присоединения углеводородов — это тоже присуще хлору. При нагреве происходит вытеснение брома или йода из соединений с водородом или металлами.

Своеобразные отношения у этого элемента с водородом. При комнатной температуре и без попадания света, хлор никак не реагирует на этот газ, но стоит его лишь нагреть или направить свет, произойдёт взрывная цепная реакция. Формула приведена ниже:

Cl 2 + h ν → 2Cl , Cl + Н 2 → HCl + Н, Н + Cl 2 → HCl + Cl , Cl + Н 2 → HCl + Н и т. д.

Фотоны, возбуждаясь, вызывают разложение на атомы молекул Cl 2, при этом возникает цепная реакция, вызывая появление новых частиц, которые инициируют начало следующей стадии. В истории химии это явление было исследовано. Русский химик и лауреат Нобелевской премии Семёнов Н.Н. в 1956 году занимался изучением цепной фотохимической реакции и внёс тем самым большой вклад в науку.

Хлор реагирует со многими сложными веществами, это реакции замещения и присоединения. Он хорошо растворяется в воде.

Cl 2 + Н 2 О = HCl + HClO - 25 кДж.

Со щелочами при нагреве хлор может диспропорционировать .

Бром, йод и астат

Химическая активность брома чуть меньше, чем у вышеназванных фтора или хлора, однако она тоже довольно велика. Бром часто применяют в жидком виде. Он, как и хлор, очень хорошо растворяется в воде. Происходит частичная реакция с ней, позволяющая получать «бромную воду».

Химическая активность йода заметно отличается от остальных представителей этого ряда. Он почти не взаимодействует с неметаллами, а с металлами реакция идёт очень медленно и только при нагреве . При этом происходит большое поглощение тепла (эндотермическая реакция), которая сильно обратима. К тому же йод нельзя никаким образом растворить в воде , этого не достичь даже при нагреве, поэтому в природе не бывает «йодной воды». Йод можно растворить только в растворе йодида. При этом образуются комплексные анионы . В медицине такое соединение называется раствором Люголя.

Астат реагирует с металлами и водородом. В ряду галогенов химическая активность уменьшается по направлению от фтора к астату. Каждый галоген в ряду F - At способен вытеснять после­дующие элементы из соединений с металлами или водородом. Астат — самый пассивный среди этих элементов. Но ему присуще взаимодействие с металлами.

Применение

Химия прочно входит в нашу жизнь, внедряясь во все сферы. Человек научился применять галогены, а также его соединения на своё благо. Биологическое значение галогенов неоспоримо. Области применения их различны:

  • медицина;
  • фармакология;
  • производство различных пластмасс, красителей и т. д.;
  • сельское хозяйство.

Из природного соединение криолита, химическая формула которого выглядит следующим образом: Na3AlF6, получают алюминий . Соединения фтора нашли широкое распространение при производстве зубных паст . Фтор, как известно, служит для профилактики кариеса. Спиртовую настойку йода применяют для дезинфекции и обеззараживания ран .

Наиболее широкое применение в нашей жизни нашёл хлор. Область его применения довольно многообразна. Примеры использования:

  1. Производство пластмасс.
  2. Получение соляной кислоты.
  3. Производство синтетического волокна, растворителей, каучуков и др.
  4. Отбеливание тканей (льняных и хлопчатобумажных), бумаги.
  5. Обеззараживание питьевой воды. Но всё чаще для этой цели используется озон, так как применение хлора вредно для организма человека.
  6. Дезинфекция помещений

Нужно помнить, что галогены — очень токсичные вещества. Особенно ярко это свойство выражено у фтора. Галогены могут оказывать удушающее и воздействие на органы дыхания и поражать биологические ткани.

Огромную опасность могут иметь пары хлора, а также аэрозоль фтора, имеющий слабый запах, он может ощутиться при большой концентрации. Человек может получить эффект удушья. При работе с такими соединениями нужно соблюдать меры предосторожности.

Методы производства галогенов сложные и многообразные. В промышленности к этому подходят с определёнными требованиями, соблюдение которых неукоснительно соблюдаются.

Общая характеристика

К галогенам относятся пять основных неметаллических элементов, которые расположены в VII группе таблицы Менделеева. В эту группу входят такие химические элементы, как фтор F, хлор Cl, бром Br, иод I, астат At.

Свое название галогены получили от греческого слова, которое в переводе обозначает образующий соль или «солеобразующий», так как в принципе большая часть соединений, которые содержат галогены и носят названия солей.

Галогены вступают в реакцию практически со всеми простыми веществами, за исключением только нескольких металлов. Они являются довольно таки энергичными окислителями, имеют очень сильный и резкий запах, прекрасно взаимодействуют с водой, а также имеют большую летучесть и высокую электроотрицательность. А вот в природе их можно встретить лишь в качестве соединений.

Физические свойства галогенов

1. Такие простые химические вещества, как галогены, состоят из двух атомов;
2. Если рассматривать галогены в обычных условиях, то следует знать, что фтор и хлор, находятся в газообразном состоянии, тогда как бром является жидким веществом, а йод и астат относятся к твердым веществам.



3. У галогенов температура плавления, кипения и плотность повышаются с увеличением атомной массы. Также при этом и меняется их окраска, она становиться более темной.
4. При каждом увеличении порядкового номера, уменьшается химическая активность, электроотрицательность и более слабыми становятся неметаллические свойства.
5. Галогены обладают способностью образовывать соединения между собой, как например BrCl.
6. Галогены при комнатной температуре могут находиться во всех трех состояниях материи.
7. Так же важно запомнить то, что галогены относятся к довольно таки токсичным химическим веществам.

Химические свойства галогенов

При химической реакции с металлами, галогены действуют, как окислители. Если, к примеру, взять фтор, то даже в обычных условиях он дает реакцию с большинством металлов. А вот алюминий и цинк воспламеняется даже в атмосфере: +2-1:ZnF2.



Получение галогенов

При получении фтора и хлора в масштабах промышленности используют электролиз или растворы солей.

Если вы внимательно рассмотрите рисунок, изображенный внизу, то увидите, как в лабораторных условиях с помощью установки для электролиза можно получить хлор:



На первом рисунке изображена установка для расплава хлорида натрия, а на втором уже для получения раствора хлорида натрия.

Такой процесс электролиза расплава хлорида натрия можно представить в виде даного уравнения:


При помощи такого электролиза, кроме получения хлора еще образуются также водород и гидроксид натрия:


Конечно же, водород получают более простым и дешевым способом, чего не скажешь об гидроксиде натрия. Его, так же, как и хлор получают практически всегда только с помощью электролиза раствора поваренной соли.


Если вы рассмотрите рисунок, изображенный вверху, то увидите, как лабораторным способом можно получить хлор. А получают его с помощью взаимодействия соляной кислоты с оксидом марганца:

В промышленности бром и йод получают с помощью реакции вытеснения этих веществ хлором из бромидов и йодидов.

Применение галогенов

Фтор или правильнее будет назвать фторид меди (CuF2) имеет довольно таки широкое применение. Его используют при изготовлении керамики, эмалей и различных глазурей. Имеющая в каждом доме тефлоновая сковородка и хладагент в холодильниках и кондиционере, также появились благодаря фтору.

Кроме бытовых нужд тефлон также используют в медицинских целях, так как его применяют при производстве имплантатов. Фтор необходим при изготовлении лизн в оптике и в зубных пастах.

Хлор также в нашей жизни встречается буквально на каждом шагу. Самым массовым и распространенным применением хлора, является, конечно же, поваренная соль NaCl. Она так же выступает в роли дезинтоксикационного средства и используется в борьбе с гололедом.

Кроме этого, хлор незаменим в производстве пластика, синтетического каучука и поливинилхлорида, благодаря которым мы получаем одежду, обувь и другие, нужные в нашей повседневной жизни вещи. Его используют при производстве отбеливателей, порошков, красителей, а также другой бытовой химии.

Бром, как правило, необходим, как светочувствительное вещество при печатании фотографий. В медицине он применяется, как успокаивающее средство. Также бром используют при производстве инсектицидов и пестицидов и т.д.

Ну, а всем известный йод, который имеется в аптечке у каждого человека, в первую очередь используется, как антисептик. Кроме своих антисептических свойств, йод присутствует в источниках света, а также является помощником для обнаружения отпечатков пальцев на бумажной поверхности.

Роль галогенов и их соединений для организма человека

Выбирая в магазине зубную пасту, наверное, каждый из вас обращал внимание на то, что на ее этикетке указывается содержание соединений фтора. И это неспроста, так как этот компонент участвует в построении зубной эмали и костей, повышает устойчивость зубов к кариесу. Также он играет важную роль в процессах обмена веществ, участвует в построении скелета костей и предупреждает появление такого опасного заболевания, как остеопороз.

Важная роль в организме человека отведена и хлору, так как он принимает активное участие в сохранении водно-солевого баланса и поддерживание осмотического давления. Хлор участвует в обмене веществ человеческого организма, построении тканей, ну и что тоже немаловажно – в избавление от лишнего веса. Соляная кислота, находящаяся в составе желудочного сока большое значение имеет для пищеварения, так как без нее невозможен процесс переваривания пищи.

Хлор необходим нашему организму и должен ежедневно в необходимых дозах поступать в него. Но если, же его норму поступления в организм превысить или резко снизить, то мы сразу же это ощутим в виде отеков, головных болей и других неприятных симптомов, которые способны не только нарушить обмен веществ, но и вызвать заболевания кишечника.

У человека в мозге, почках, крови и печени присутствует небольшое количество брома. В медицинских целях бром применяют, как успокоительное средство. Но при его передозировке могут быть неблагоприятные последствия, которые могут привести к угнетенному состоянию нервной системы, а в некоторых случаях и к психическим расстройствам. А недостаток брома в организме ведет к дисбалансу между процессами возбуждения и торможения.

Без йода наша щитовидная железа не может обходиться, так как он способен убивать микробы, поступающие в наше тело. При дефиците йода в организме человека может начаться заболевание щитовидной железы, под названием зоб. При этом заболевании появляются довольно неприятные симптомы. Человек, у которого появился зоб, чувствует слабость, сонливость, повышение температуры, раздражительность и упадок сил.

Из всего этого можно сделать вывод, что без галогенов человек мог бы не только лишиться многих необходимых в повседневной жизни вещей, но без них и не смог бы нормально функционировать наш организм.

На валентных орбиталях - 7 электронов ns2np5. Являются сильными окислителями, присоединяя ион - образуют отрицательно заряженные галогениды. Хлор бром йод астат имеют степени гокисления +1 +3 +5 +7, фтор - с самой высокой электроотричательностью, не имеет + СО. F->at радиусы атома возрастают, уменьшается: энергия ионизации, сродство к электрону, электроотрицательность - неметалл свойства - ослабевают. Образуют двухатомные молекула Г2. в ряду F2-Cl2-Br2-I2 прочность связи убывает из за снижения плотности перекрывания валентных орбиталей с ростом гланого кв. числа. В этом же ряду увеличивается ван-дер-ваальсово взаимодействие (рост темп плавления) и снижается окислительная активность

Физические

Фтор - бледно-зеленый газ, температура плавления -219оС, кипения -188оС, в воде растворен быть не может, так как интенсивно с ней взаимодействует. Хлор - желто-зеленый газ, температура плавления -101оС, кипения -34оС, легко сжижается при 20оС и давлении 6 атм (0,6 Мпа), растворимость в воде при 20оС - 2,5 л в 1 л воды. Раствор хлора в воде практически бесцветен и называется хлорной водой. Бром - красно-бурая жидкость, температура плавления -70оС, кипения +59оС, растворимость в воде при 20оС равна 0,02 г в 100 г воды. Раствор брома в воде - бромная вода - бурого цвета. Иод - черно-фиолетовые с металлическим блеском кристаллы, плавятся при +113,6оС, температура кипения жидкого иода +185,5оС. Кристаллический иод легко возгоняется (сублимируется) - переходит из твердого в газообразное состояние. Растворимость в воде при 20оС равна 0,02 г в 100 г воды. Образующийся раствор светло-желтого цвета называется иодной водой. Значительно лучше, чем в воде, иод и бром растворяются в органических растворителях: четыреххлористом углероде, хлороформе, бензоле. Т. кипения/плавления с ряду F2-Cl2-Br2-I2 - -219/-188, -101/-34, -7/60, 113/185

Хим. свойства

Образуют кислородные соединения - оксиды и оксокислоты

Растворимы в спиртах бензоле простых эфирах

В водном растворе все кроме фтора диспропорционируют, равновесие смещается влево

Фтор окисляет воду

Образую галлогениды с металлами

Убывание окислительной активности: Н2 + Г2 =2НГ (фтор в темноте, хлор на свету, бром ещё и при нагреве, а йод - ещё и обратима)

Вытесняют из солец более слабые Г - хлор вытесняет бромиды и йодиды (Cl2 + 2KBr=Br2+2KCl)

Различная окисл. способность влияет на живые организмы - хлор и бром - отравляющие. а йод - антисептик

Применение:

Хлор - поливинилхлорид, хлорбензол и т.д. для отбеливания тканей, очищения воды, дезинфекции, а произвоные (KClO3) являются компонентами ракетного топлива. Бром - как краситель и лекарственный препарат. Иод - получение металлов высокой степени чистоты, как катализатор в орг синтезе, как антисептик и лекарство



Получение:

В природе эти элементы встречаются в основном в виде галогенидов (за исключением иода, который также встречается в виде иодата натрия или калия в месторождениях нитратов щелочных металлов). Поскольку многие хлориды, бромиды и иодиды растворимы в воде, то эти анионы присутствуют в океане и природных рассолах. Основным источником фтора является фторид кальция, который очень малорастворим и находится в осадочных породах (как флюорит CaF2). В промышленности хлор в основном получают электролизом водного раствора хлорида натрия в специальных электролизёрах. Основным способом получения простых веществ является окисление галогенидов Бром получают химическим окислением бромид-иона, находящегося в морской воде. Подобный процесс используется и для получения иода из природных рассолов, богатых I-. В качестве окислителя в обоих случаях используют хлор, обладающий более сильными окислительными свойствами, а образующиеся Br2 и I2 удаляются из раствора потоком воздуха. В природе встречаются следующие стабильные изотопы галогенов: фтора - 19F, хлора - 35Cl и 37Cl, брома - 79Br и 81Br, иода - 127I. Галогены в природе находятся только в виде соединений, причем в состав этих соединений галогены входят (за редчайшим исключением) только в степени окисления -1. Практическое значение имеют минералы фтора: CaF2 - плавиковый шпат, Na2AlF6 - криолит, Ca5F(PO4)3 - фторапатит и минералы хлора: NaCl - каменная соль (это же вещество - главный компонент, обуславливающий соленость морской воды), KСl - сильвин, MgCl2*KCl*6H2O - карналлит, KCl*NaCl - сильвинит. Бром в виде солей содержится в морской воде, в воде некоторых озер и в подземных рассолах. Соединения иода содержатся в морской воде, накапливаются в некоторых водрослях. Существуют незначительные залежи солей иода - KIO3 и KIO4 - В Чили и Боливии.

3. Растворимость . Галогены обладают некоторой растворимостью в воде, однако, как и следовало ожидать, из-за ковалентного характера связи XX и малого заряда растворимость их невелика. Фтор настолько активен, что оттягивает электронную пару от кислорода воды, при этом выделяется свободный O2 и образуются OF2 и HF. Хлор менее активен, но в реакции с водой получается некоторое количество HOCl и HCl. Гидраты хлора (например, Cl2*8H2O) могут быть выделены из раствора при охлаждении. Иод проявляет необычные свойства при растворении в различных растворителях. При растворении небольших количеств иода в воде, спиртах, кетонах и других кислородсодержащих растворителях образуется раствор коричневого цвета (1%-ный раствор I2 в спирте обычный медицинский антисептик). Молекулы галогенов неполярны, галогены хорошо растворяются в спиртах, бензоле, простых эфирах. Фтор: в воде растворен быть не может, так как интенсивно с ней взаимодействует.

Хлор: растворимость в воде при 20оС - 2,5 л в 1 л воды. Раствор хлора в воде практически бесцветен и называется хлорной водой.

Бром: растворимость в воде при 20оС равна 0,02 г в 100 г воды. Раствор брома в воде - бромная вода - бурого цвета.

Иод: Растворимость в воде при 20оС равна 0,02 г в 100 г воды. Образующийся раствор светло-желтого цвета называется иодной водой. Значительно лучше, чем в воде, иод и бром растворяются в органических растворителях: четыреххлористом углероде, хлороформе, бензоле. Взаимодействие галогенов с водой - сложный процесс, включающий растворение, образование сольватов и диспропорционирование.

Фтор в отличие от других галогенов воду окисляет:

2H2O + 2F2 = 4HF + O2.

Однако при насыщении льда фтором при -400С образуется соединение HFO. Можно отметить два типа взаимодействия молекул воды с молекулами галогенов. К первому относится процесс образования клатратов, например, 8Cl2. 46H2O при замораживании растворов. Молекулы галогена в клатратах занимают свободные полости в каркасе из молекул H2O, связанных между собой водородными связями. Ко второму типу можно отнести гетеролитическое расщепление и окислительно-восстановительное диспропорционированиесостав продуктов взаимодействия в системе Cl2+H2O: растворенный в воде хлор (он преобладает), HCl, HClO, HClO3. При насыщении хлором холодной воды (0-20оС) часть молекул Cl2 диспропорционирует:

Cl2 + H2O = HCl + HClO,

при этом кислотность раствора постепенно увеличивается. Бром и иод взаимодействуют с водой аналогично хлору.

4. Молекулы HХ полярны. Полярность количественно характеризуется величиной дипольного момента. Дипольные моменты убывают в ряду HF-HI. С точки зрения МО ЛКАО полярность определяется различием энергий взаимодействующих 1s-атомной орбитали водорода и ns-, np-орбиталей атома галогена. Как отмечалось, в ряду F-Cl-Br-I эта разница, а также степень локализации электронов на атомах галогена и полярность молекул НХ уменьшаются. В стандартных условиях галогеноводороды - газы. С ростом массы и размеров молекул усиливается межмолекулярное взаимодействие и, как следствие, повышаются температуры плавления (Тпл) и кипения (Ткип). Однако для HF величины Тпл и Ткип, полученные экстраполяцией в ряду однотипных соединений HF-HCl-HBr-HI, оказываются существенно ниже, чем экспериментальные (табл.4). Аномально высокие температуры плавления и кипения объясняются усилением межмолекулярного взаимодействия за счет образования водородных связей между молекулами HF. Твердый HF состоит из зигзагообразных полимерных цепей. В жидком и газообразном HF вплоть до 60оС присутствуют полимеры от (HF)2 до (HF)6. Для HCl, HBr, HI образование водородных связей не характерно из-за меньшей электроотрицательности атома галогена. Растворимость в воде. Благодаря высокой полярности газообразные НХ хорошо растворимы в воде *) , например, в 1 объеме воды при 0оС растворяется 507 объемов HCl или 612 объемов HBr. При охлаждении из водных растворов выделены кристаллические гидраты HF. H2O, HCl. 2H2O и т.д., которые построены из соответствующих галогенидов оксония. В водных растворах НХ устанавливается протолитическое равновесие

HX + HOH = + H3O+ (X = F, Cl, Br, I), (1),

то есть эти растворы являются кислотами.

Водные растворы HCl, HBr и HI ведут себя как сильные кислоты. В разбавленных водных растворах HF является слабой кислотой (рКа = 3.2), что связано с высокой энергией связи H-F по сравнению с энергией связи H-О в молекуле воды. Однако при повышении концентрации HF выше 1 М сила кислоты увеличивается. Особенностью фтороводорода и плавиковой кислоты является способность разъедать стекло.

Восстановительные свойства галогеноводородов. С увеличением размера и уменьшением энергии ионизации атома галогена восстановительная способность в ряду HF-HCl-HBr-HI увеличивается (табл.5). Например, плавиковая HF и соляная HCl кислоты с концентрированной серной кислотой не взаимодействуют, а HBr и HI ею окисляются:

2HBr + H2SO4(конц) = Br2 + SO2 + 2H2O

8HI + H2SO4(конц) = 4I2 + H2S + 4H2O.

Сжигание хлора с водородом является основным промышленным способом получения HCl. Бром и иод реагируют с водородом более спокойно, однако выход невелик, поскольку равновесие Н2 + Х2 = 2НХ (Х = Br, I) смещено влево. Газообразные НХ выделяются при действии нелетучих сильных кислот на твердые ионные галогениды металлов: (на практике пользуются 70-85%-ным р-ром серной к-ты, т.к. реакция идет на поверхности кристаллов соли. Если брать конц. к-ту, осаждается NaHSO4. При использовании разб серной к-ты значительная часть HCl остается в р-ре. Выделяющийся HCL сушат над конц. серной к-той. Оксид фосфора для этого непригоден так как взаимодействует с HCL: P4O10 + 12HCL = 4POCL3 + 6H2O

CaF2 + H2SO4(конц) = CaSO4 + 2HF

NaCl + H2SO4(конц) = NaHSO4 + HCl

Большинство галогенидов неметаллов относятся к соединениям с ковалентной связью и гидролизуются с выделением соответствующего галогеноводорода, например,

SiCl4 + 4H2O = SiO2. 2H2O + 4HCl

Галогеноводороды образуются также при галогенировании органических соединений, например:

RH +Cl2 = RCl + HCl

Соляную кислоту получают растворением газообразного хлороводорода в воде. Хлороводород получают сжиганием водорода в хлоре. В лабораторных условиях используется разработанный ещё алхимиками способ, заключающийся в действии крепкой серной кислоты на поваренную соль:

NaCl + H2SO4(конц.) (150 °C) > NaHSO4 + HCl^

При температуре выше 550 °C и избытке поваренной соли возможно взаимодействие:

NaCl + NaHSO4 (>550 °C) = Na2SO4 + HCl^

Хлороводород прекрасно растворим в воде. Так, при 0 °C 1 объём воды может поглотить 507 объёмов HCl, что соответствует концентрации кислоты 45 %. Однако при комнатной температуре растворимость HCl ниже, поэтому на практике обычно используют 36-процентную соляную кислоту.

Промышленность.

Применяют в гидрометаллургии и гальванопластике (травление, декапирование), для очистки поверхности металлов при паянии и лужении, для получения хлоридов цинка, марганца, железа и др. металлов. В смеси с ПАВ используется для очистки керамических и металлических изделий (тут необходима ингибированная кислота) от загрязнений и дезинфекции. В пищевой промышленности зарегистрирована в качестве регулятора кислотности, пищевой добавки E507. Применяется для изготовления зельтерской (содовой) воды.

Медицина

Составная часть желудочного сока; разведенную соляную кислоту ранее назначали внутрь главным образом при заболеваниях, связанных с недостаточной кислотностью желудочного сока.

5. Гипогалогенитные кислотыHXO

Гипогалогенитные кислоты являются слабыми. Растворы гипогалогенитов имеют сильно щелочную реакцию, а пропускание через них СО2 приводит к образованию кислоты, например,

NaClO + H2O + CO2 = NaHCO3 + HClO.

Высокую окислительную способность гипохлоритов иллюстрируют следующие реакции:

NaСlO +2NaI + H2O = NaCl + I2 + 2NaOH

2NaClO + MnCl2 + 4NaOH = Na2MnO4 + 4NaCl + 2H2O.

Из оксокислот HXO2 известны лишь хлористая кислота HClO2. Она не образуется при диспропорционировании HClO. Водные растворы HClO2 получают обработкой Вa(ClO2)2 серной кислотой с последующим отфильтровыванием осадка BaSO4:

Оксокислоты HXO3 более устойчивы, чем HXO (см. реакции 1, 3-5, 7). Хлорноватая HClO3 кислота получены в растворах с концентрацией ниже 30%. Растворы HClO3 получают действием разбавленной H2SO4 на растворы cоответствующих солей, например,

При концентрации растворов выше 30% кислоты HBrO3 и HClO3 разлагаются со взрывом. Водные растворы HXO3 являются сильными кислотами, соли более устойчивы к нагреванию, чем соответствующие кислоты. В частности, некоторые из иодатов встречаются в природе в виде минералов, например, лаутарит NaIO3. При нагревании твердого КСIO3 до 500оС возможно диспропорционирование 4KClO3 3KClO4 +KCl,

Хлорная кислота (Тпл.= -102оС, Ткип.= 90оС) получена в индивидуальном состоянии нагреванием твердой соли КClO4 с концентрированной H2SO4 с последующей отгонкой при пониженном давлении:

КClO4 ,тв.+ H2SO4,конц HClO4 + KHSO4

HClO4 легко взрывается при контакте с органическими веществами. Хлорная кислота - одна из сильных кислот. Бесцветная концентрированная HClO4 даже при комнатной температуре синтеза темнеет из-за образования оксидов хлора с более низкими степенями окисления. Устойчивость солей выше, чем соответствующих оксокислот HXO4. Кристаллы солей, например, KClO4, построены из ионов K+ и ClО, электростатическое взаимодействие которых увеличивает энергию кристаллической решетки и повышает стабильность.

6. Гипогалогенитные кислоты HXO известны лишь в разбавленных водных растворах. Их получают взаимодействием галогена с суспензией оксида ртути:

2X2 + 2HgO + H2O = HgO. HgХ2+2HOX.

Следует отметить особенность соединения HOF. Оно образуется при пропускании фтора над льдом при -400С и конденсацией образующегося газа при температуре ниже 0оС.

F2,газ + H2Oлед HOF + HF

HOF, в частности, не образует солей, а при его взаимодействии с водой появляется пероксид водорода:

HOF + H2O = H2O2 + HF

Гипогалогенитные кислоты являются слабыми. При переходе от хлора к иоду по мере увеличения радиуса и уменьшения

электроотрицательности атом галогена слабее смещает электронную плотность от атома кислорода и, тем самым, слабее поляризует связь Н-О. В результате кислотные свойства в ряду HClO - HBrO - HIO ослабляютсяИз оксокислот HXO2 известны лишь хлористая кислота HClO2. Она не образуется при диспропорционировании HClO. Водные растворы HClO2 получают обработкой Вa(ClO2)2 серной кислотой с последующим отфильтровыванием осадка BaSO4:

Ba(ClO2)2 + H2SO4 = BaSO4 + 2HClO2.

HClO2 является кислотой средней силы: рКа = 2.0 (табл.7). Хлориты используют для отбеливания. Их получают мягким восстановлением ClO2 в щелочной среде:

2СlO2 + Ba(OH)2 + H2O2 = Ba(ClO2)2 + 2H2O + O2

2СlO2 + PbO + 2NaOH = PbO2 + 2NaClO2 + H2O.

Бромит бария удалось синтезировать по реакции:

Ba(BrO)2 + 2Br2 + 4KOH Ba(BrO2)2 +4KBr + 2Н2О.

Оксокислоты HXO3 более устойчивы, чем HXO (см. реакции 1, 3-5, 7 в 9.3). Хлорноватая HClO3 и бромноватая HBrO3 кислоты получены в растворах с концентрацией ниже 30%, а твердая йодноватая HIO3 выделена как индивидуальное вещество.

Растворы HClO3 и HBrO3 получают действием разбавленной H2SO4 на растворы cоответствующих солей, например,

Ba(ClO3)2 + H2SO4 = 2HClO3 + BaSO4 .

Водные растворы HXO3 являются сильными кислотами. В ряду HClO3-HBrO3-HIO3 наблюдается некоторое уменьшение силы кислот (табл.10). Это можно объяснить тем, что с ростом размера атома галогена прочность кратной связи О уменьшается, что приводит к уменьшению полярности связи H-O и уменьшению легкости отрыва от нее водорода молекулами воды. метаиодная кислота HIO4 и некоторые ее соли известны, иод(VII) из-за роста радиуса в ряду Сl-Br-I и повышения его координационного числа образует, главным образом, гидроксопроизводные состава (HO)5IO H5IO6, в которых атом иода октаэдрически окружен атомом кислорода и пятью гидроксильными группами

Бромная кислота HBrO4 известна лишь в растворах (не выше 6М), получаемых подкислением перброматов NaBrO4, которые, в свою очередь, удалось синтезировать окислением броматов фтором в разбавленных щелочных растворах (броматы можно окислить до перброматов с помощью XeF2 или электролитически) :

NaBrO3 + F2 + 2NaOH = NaBrO4 + 2NaF +H2O .

Хлорная кислота - одна из сильных кислот. По силе к ней приближается бромная кислота.Иодная кислота существует в нескольких формах, главными из которых являются ортоиодная H5IO6 и метаиодная HIO4 кислоты. Ортоиодная кислота образуется в виде бесцветных кристаллов при осторожном упаривании раствора, образующегося при обменной реакции

Ba3(H2IO6)2 + 3H2SO4 = 3BaSO4 + 2H5IO6.

Устойчивость солей выше, чем соответствующих оксокислот HXO4. Кристаллы солей, например, KClO4, построены из ионов K+ и ClО,

электростатическое взаимодействие которых увеличивает энергию кристаллической решетки и повышает стабильность.

8. В водородных оединениях Н2Э элементы имеют степень окисления (-2)Темодинамическая активность уменьшается от Н2О до Н2Те (по эн. Гибса) В обычных условиях - это ядовитые газы с неприятным запахом. Т. плавл. в ряду Н2S H2Se H2Te увелич, т.к. с увеличением числа электронов и размеров молекул усиливается ван-дер-ваальсово взаим. Вода имеет аномально выскоие темп. кипения и плавления для этой группы, т.к. за счёт водородных связей молекул взаим между её молекулами оч сильное. В расворах ведут себя как двухосн кислоты. Сила кислот в ряду от Н2О до Н2Те возрастает. Восстановительная способность тоже возрастает из-за увеличенияэтома происходит ослабление связей H - Э.

Галогены в периодической таблице расположены слева от благородных газов. Эти пять токсических неметаллических элементов входят в 7 группу периодической таблицы. К ним относятся фтор, хлор, бром, йод и астат. Хотя астат радиоактивен и имеет только короткоживущие изотопы, он ведет себя, как йод, и его часто причисляют к галогенам. Поскольку галогенные элементы имеют семь валентных электронов, им необходим лишь один дополнительный электрон для образования полного октета. Эта характеристика делает их более активными, чем другие группы неметаллов.

Общая характеристика

Галогены образуют двухатомные молекулы (вида Х 2 , где Х обозначает атом галогена) - устойчивую форму существования галогенов в виде свободных элементов. Связи этих двухатомных молекул являются неполярными, ковалентными и одинарными. позволяют им легко вступать в соединение с большинством элементов, поэтому они никогда не встречаются в несвязанном виде в природе. Фтор - наиболее активный галоген, а астат - наименее.

Все галогены образуют соли I группы с похожими свойствами. В этих соединениях галогены присутствуют в виде галоидных анионов с зарядом -1 (например, Cl - , Br -). Окончание -ид указывает на наличие галогенид-анионов; например Cl - называется «хлорид».

Кроме того, химические свойства галогенов позволяют им действовать в качестве окислителей - окислять металлы. Большинство химических реакций, в которых участвуют галогены - окислительно-восстановительные в водном растворе. Галогены образуют одинарные связи с углеродом или азотом в где степень их окисления (СО) равна -1. Когда атом галогена замещён ковалентно-связанным атомом водорода в органическом соединении, префикс гало- может быть использован в общем смысле, или префиксы фтор-, хлор-, бром- , йод- - для конкретных галогенов. Галогенные элементы могут иметь перекрёстную связь с образованием двухатомных молекул с полярными ковалентными одинарными связями.

Хлор (Cl 2) стал первым галогеном, открытым в 1774 г., затем были открыты йод (I 2), бром (Br 2), фтор (F 2) и астат (At, обнаружен последним, в 1940 г.). Название «галоген» происходит от греческих корней hal- («соль») и -gen («образовывать»). Вместе эти слова означают «солеобразующий», подчёркивая тот факт, что галогены, вступая в реакцию с металлами, образуют соли. Галит - это название каменной соли, природного минерала, состоящего из хлорида натрия (NaCl). И, наконец, галогены используются в быту - фторид содержится в зубной пасте, хлор обеззараживает питьевую воду, а йод содействует выработке гормонов щитовидной железы.

Химические элементы

Фтор - элемент с атомным номером 9, обозначается символом F. Элементарный фтор впервые был обнаружен в 1886 г. путем выделения его из плавиковой кислоты. В свободном состоянии фтор существует в виде двухатомной молекулы (F 2) и является наиболее распространенным галогеном в земной коре. Фтор - наиболее электроотрицательный элемент в периодической таблице. При комнатной температуре является бледно-жёлтым газом. Фтор также имеет относительно небольшой атомный радиус. Его СО - -1, за исключением элементарного двухатомного состояния, в котором его степень окисления равна нулю. Фтор чрезвычайно химически активен и непосредственно взаимодействует со всеми элементами, кроме гелия (He), неона (Ne) и аргона (Ar). В растворе H 2 O, плавиковой кислоты (HF) является слабой кислотой. Хотя фтор сильно электроотрицателен, его электроотрицательность не определяет кислотность; HF является слабой кислотой в связи с тем, что ион фтора основной (рН> 7). Кроме того, фтор производит очень мощные окислители. Например, фтор может вступать в реакцию с инертным газом ксеноном и образует сильный окислитель дифторид ксенона (XeF 2). У фтора множество применений.

Хлор - элемент с атомным номером 17 и химическим символом Cl. Обнаружен в 1774 г. путём выделения его из соляной кислоты. В своём элементарном состоянии он образует двухатомную молекулу Cl 2 . Хлор имеет несколько СО: -1, +1, 3, 5 и 7. При комнатной температуре он является светло-зеленым газом. Так как связь, которая образуется между двумя атомами хлора, является слабой, молекула Cl 2 обладает очень высокой способностью вступать в соединения. Хлор реагирует с металлами с образованием солей, которые называются хлориды. Ионы хлора являются наиболее распространенными ионами, они содержатся в морской воде. Хлор также имеет два изотопа: 35 Cl и 37 Cl. Хлорид натрия является наиболее распространенным соединением из всех хлоридов.

Бром - химический элемент с атомным номером 35 и символом Br. Впервые был обнаружен в 1826 г. В элементарной форме бром является двухатомной молекулой Br 2 . При комнатной температуре представляет собой красновато-коричневую жидкость. Его СО - -1, + 1, 3, 4 и 5. Бром более активен, чем йод, но менее активен, чем хлор. Кроме того, бром имеет два изотопа: 79 Вг и 81 Вг. Бром встречается в бромида, растворённых в морской воде. За последние годы производство бромида в мире значительно увеличилось благодаря его доступности и продолжительному времени жизни. Как и другие галогены, бром является окислителем и очень токсичен.

Йод - химический элемент с атомным номером 53 и символом I. Йод имеет степени окисления: -1, +1, +5 и +7. Существует в виде двухатомной молекулы, I 2 . При комнатной температуре является твёрдым веществом фиолетового цвета. Йод имеет один стабильный изотоп - 127 I. Впервые обнаружен в 1811 г. с помощью морских водорослей и серной кислоты. В настоящее время ионы йода, могут быть выделены в морской воде. Несмотря на то что йод не очень хорошо растворим в воде, его растворимость может возрасти при использовании отдельных йодидов. Йод играет важную роль в организме, участвуя в выработке гормонов щитовидной железы.

Астат - радиоактивный элемент с атомным номером 85 и символом At. Его возможные степени окисления: -1, +1, 3, 5 и 7. Единственный галоген, не являющийся двухатомной молекулой. В нормальных условиях является металлическим твёрдым веществом чёрного цвета. Астат является очень редким элементом, поэтому о нём известно немного. Кроме того, астат имеет очень короткий период полураспада, не дольше нескольких часов. Получен в 1940 г. в результате синтеза. Полагают, что астат похож на йод. Отличается

В таблице ниже показано строение атомов галогенов, структура внешнего слоя электронов.

Подобное строение внешнего слоя электронов обусловливает то, что физические и химические свойства галогенов похожи. Вместе с тем при сопоставлении этих элементов наблюдаются и различия.

Периодические свойства в группе галогенов

Физические свойства простых веществ галогенов изменяются с повышением порядкового номера элемента. Для лучшего усвоения и большей наглядности мы предлагаем вам несколько таблиц.

Точки плавления и кипения в группе возрастают по мере роста размера молекулы (F

Таблица 1. Галогены. Физические свойства: точки плавления и кипения

Галоген

Т плавления (˚C)

Т кипения (˚C)

  • Атомный радиус увеличивается.

Размер ядра увеличивается (F < Cl < Br < I < At), так как увеличивается число протонов и нейтронов. Кроме того, с каждым периодом добавляется всё больше уровней энергии. Это приводит к большей орбитали, и, следовательно, к увеличению радиуса атома.

Таблица 2. Галогены. Физические свойства: атомные радиусы

Ковалентный радиус (пм)

Ионный (X -) радиус (пм)

  • Энергия ионизации уменьшается.

Если внешние валентные электроны не находятся вблизи ядра, то для их удаления от него не потребуется много энергии. Таким образом, энергия, необходимая для выталкивания внешнего электрона не столь высока в нижней части группы элементов, так как здесь больше энергетических уровней. Кроме того, высокая энергия ионизации заставляет элемент проявлять неметаллические качества. Йод и дисплей астат проявляют металлические свойства, потому что энергия ионизации снижается (At < I < Br < Cl < F).

Таблица 3. Галогены. Физические свойства: энергия ионизации

  • Электроотрицательность уменьшается.

Число валентных электронов в атоме возрастает с увеличением уровней энергии при прогрессивно более низких уровнях. Электроны прогрессивно дальше от ядра; Таким образом, ядро ​​и электроны не как притягиваются друг к другу. Увеличение экранирования наблюдается. Поэтому Электроотрицательность уменьшается с ростом периода (At < I < Br < Cl < F).

Таблица 4. Галогены. Физические свойства: электроотрицательность

  • Сродство к электрону уменьшается.

Так как размер атома увеличивается с увеличением периода, сродство к электрону, как правило, уменьшается (В < I < Br < F < Cl). Исключение - фтор, сродство которого меньше, чем у хлора. Это можно объяснить меньшим размером фтора по сравнению с хлором.

Таблица 5. Сродство галогенов к электрону

  • Реактивность элементов уменьшается.

Реакционная способность галогенов падает с ростом периода (At

Водород + галогены

Галогенид образуется, когда галоген реагирует с другим, менее электроотрицательным элементом с образованием бинарного соединения. Водород реагирует с галогенами, образуя галогениды вида НХ:

  • фтороводород HF;
  • хлороводород HCl;
  • бромоводород HBr;
  • иодоводород HI.

Галогениды водорода легко растворяются в воде с образованием галогенводородной (плавиковой, соляной, бромистоводородной, иодистоводородной) кислоты. Свойства этих кислот приведены ниже.

Кислоты образуются следующей реакцией: HX (aq) + H 2 O (l) → Х - (aq) + H 3 O + (aq).

Все галоидоводороды образуют сильные кислоты, за исключением HF.

Кислотность галогеноводородных кислот увеличивается: HF

Плавиковая кислота способна гравировать стекло и некоторые неорганические фториды длительное время.

Может показаться нелогичным, что HF является самой слабой галогенводородной кислотой, так как фтор обладает самой высокой электроотрицательностью. Тем не менее связь Н-F очень сильна, в результате чего кислота очень слабая. Сильная связь определяется короткой длиной связи и большой энергией диссоциации. Из всех галогенидов водорода HF имеет самую короткую длину связи и самую большую энергию диссоциации связи.

Галогенные оксокислоты

Галогенные оксокислоты представляют собой кислоты с атомами водорода, кислорода и галогена. Их кислотность может быть определена с помощью анализа структуры. Галогенные оксокислоты приведены ниже:

  • Хлорноватистая кислота HOCl.
  • Хлористая кислота HClO 2 .
  • Хлорноватая кислота HClO 3 .
  • Хлорная кислота HClO 4 .
  • Бромноватистая кислота HOBr.
  • Бромноватая кислота HBrO 3 .
  • Бромная кислота HBrO 4 .
  • Иодноватистая кислота HOI.
  • Йодноватая кислота HIO 3 .
  • Метайодная кислота HIO4, H5IO6.

В каждой из этих кислот протон связан с атомом кислорода, поэтому сравнение длин связей протонов здесь бесполезно. Доминирующую роль здесь играет электроотрицательность. Активность кислотны возрастает с увеличением числа атомов кислорода, связанный с центральным атомом.

Внешний вид и состояние вещества

Основные физические свойства галогенов кратко можно выразить в следующей таблице.

Состояние вещества (при комнатной температуре)

Галоген

Внешний вид

фиолетовый

красно-коричневый

газообразное

бледно-жёлто-коричневый

бледно-зелёный

Объяснение внешнего вида

Цвет галогенов является результатом поглощения видимого света молекулами, что вызывает возбуждение электронов. Фтор поглощает фиолетовый свет, и, следовательно, выглядит светло-жёлтым. Йод, наоборот, поглощает жёлтый свет и выглядит фиолетовым (жёлтый и фиолетовый - дополняющие цвета). Цвет галогенов становится темнее с ростом периода.

В закрытых ёмкостях жидкий бром и твёрдый йод находятся в равновесии со своими парами, которые можно наблюдать в виде цветного газа.

Хотя цвет астата неизвестен, предполагается, что он должен быть темнее йода (т. е. черным) в соответствии с наблюдаемой закономерностью.

Теперь, если вас попросят: «Охарактеризуйте физические свойства галогенов», вам будет что сказать.

Степень окисления галогенов в соединениях

Степень окисления часто используется вместо понятия "валентность галогенов". Как правило, степень окисления равна -1. Но если галоген связан с кислородом или другим галогеном, он может принимать другие состояния: СО кислорода -2 имеет приоритет. В случае двух различных атомов галогена, соединенных вместе, более электроотрицательный атом превалирует и принимает СО -1.

Например, в хлориде йода (ICl) хлор имеет СО -1, и йод +1. Хлор является более электроотрицательным, чем йод, поэтому его СО равна -1.

В бромной кислоте (HBrO 4) кислород обладает СО -8 (-2 х 4 атома = -8). Водород имеет общую степень окисления +1. Сложение этих значений даёт СО -7. Так как конечное СО соединения должно быть нулевым, то СО брома равна +7.

Третьим исключением из правила является степень окисления галогена в элементарной форме (X 2), где его СО равна нулю.

Галоген

СО в соединениях

1, +1, +3, +5, +7

1, +1, +3, +4, +5

1, +1, +3, +5, +7

Почему СО фтора всегда -1?

Электроотрицательность увеличивается с ростом периода. Поэтому фтор имеет самую высокую электроотрицательность из всех элементов, что подтверждается его положением в периодической таблице. Его электронная конфигурация 1s 2 2s 2 2p 5 . Если фтор получает еще один электрон, крайние р-орбитали полностью заполнены и составляют полный октет. Поскольку фтор имеет высокую электроотрицательность, он может легко отобрать электрон у соседнего атома. Фтор в этом случае изоэлектронен инертному газу (с восемью валентными электронами), все его внешние орбитали заполнены. В таком состоянии фтор гораздо более стабилен.

Получение и применение галогенов

В природе галогены находятся в состоянии анионов, поэтому свободные галогены получают методом окисления путём электролиза или с помощью окислителей. Например, хлор вырабатывается гидролизом раствора поваренной соли. Применение галогенов и их соединений многообразно.

  • Фтор . Несмотря на то что фтор очень реактивен, он используется во многих областях промышленности. Например, он является ключевым компонентов политетрафторэтилена (тефлона) и некоторых других фторполимеров. Хлорфторуглероды представляют собой органические которые ранее использовались в качестве хладагентов и пропеллентов в аэрозолях. Их применение прекратилось из-за возможного их воздействия на окружающую среду. Их заменили гидрохлорфторуглероды. Фтор добавляют в зубную пасту (SnF 2) и питьевую воду (NaF) для предотвращения разрушения зубов. Этот галоген содержится в глине, используемой для производства некоторых видов керамики (LiF), используется в ядерной энергетике (UF 6), для получения антибиотика фторхинолона, алюминия (Na 3 AlF 6), для изоляции высоковольтного оборудования (SF 6).
  • Хлор также нашёл разнообразное применение. Он используется для дезинфекции питьевой воды и плавательных бассейнов. (NaClO) является основным компонентом отбеливателей. Соляная кислота широко используется в промышленности и лабораториях. Хлор присутствует в поливинилхлориде (ПВХ) и других полимерах, которые используются для изоляции проводки, труб и электроники. Кроме того, хлор оказался полезен и в фармацевтической промышленности. Лекарственные средства, содержащие хлор, используются для лечения инфекций, аллергии и диабета. Нейтральная форма гидрохлорида - компонент многих препаратов. Хлор используется также для стерилизации больничного оборудования и дезинфекции. В сельском хозяйстве хлор является компонентом многих коммерческих пестицидов: ДДТ (дихлородифенилтрихлорэтан) использовался в качестве сельскохозяйственного инсектицида, но его использование было прекращено.

  • Бром , благодаря своей негорючести, применяется для подавления горения. Он также содержится в бромистом метиле, пестициде, используемом для хранения урожая и подавления бактерий. Однако чрезмерное использование было прекращено из-за его воздействия на озоновый слой. Бром применяют при производстве бензина, фотоплёнки, огнетушителей, лекарств для лечения пневмонии и болезни Альцгеймера.
  • Йод играет важную роль в надлежащем функционировании щитовидной железы. Если организм не получает достаточного количества йода, происходит увеличение щитовидной железы. Для профилактики зоба данный галоген добавляют в поваренную соль. Йод также используется в качестве антисептического средства. Йод содержится в растворах, используемых для очистки открытых ран, а также в дезинфицирующих спреях. Кроме того, йодид серебра имеет важное значение в фотографии.
  • Астат - радиоактивный и редкоземельный галоген, поэтому ещё нигде не используется. Тем не менее полагают, что этот элемент может помочь йоду в регуляции гормонов щитовидной железы.

Подгруппу галогенов составляют элементы фтор, хлор, бром и иод.

Электронные конфигурации внешнего валентного слоя галогенов относятся к типу соответственно у фтора, хлора, брома и иода). Такие электронные конфигурации обусловливают типичные окислительные свойства галогенов - способностью присоединять электроны обладают все галогены, хотя при переходе к иоду окислительная способность галогенов ослабляется.

При обычных условиях галогены существуют в виде простых веществ, состоящих из двухатомных молекул типа с ковалентными связями. Физические свойства галогенов существенно различаются: так, при нормальных условиях фтор - газ, который трудно сжижается, хлор - также газ, но сжижается легко, бром - жидкость, иод - твердое вещество.

Химические свойства галогенов.

В отличие от всех других галогенов фтор во всех своих соединениях проявляет только одну степень окисления 1- и не проявляет переменной валентности. Для других галогенов наиболее характерной степенью окисления также является 1-, однако благодаря наличию свободных -орбиталей на внешнем уровне они могут проявлять и другие нечетные степени окисления от до за счет частичного или полного распаривания валентных электронов.

Наибольшей активностью обладает фтор. Большинство металлов даже при комнатной температуре загорается в его атмосфере, выделяя большое количество теплоты, например:

Без нагревания фтор реагирует и со многими неметаллами (водородом - см. выше, ), выделяя при этом также большое количество теплоты:

При нагревании фтор окисляет все другие галогены по схеме:

где , причем в соединениях степени окисления хлора, брома и иода равны .

Наконец, при облучении фтор реагирует даже с инертными газами:

Взаимодействие фтора со сложными веществами также протекает очень энергично. Так, он окисляет воду, при этом реакция носит взрывной характер:

Свободный хлор также очень реакционноспособен, хотя его активность и меньше, чем у фтора. Он непосредственно реагирует со всеми простыми веществами, за исключением кислорода, азота и благородных газов, например:

Для этих реакций, как и для всех других, очень важны условия их протекания. Так, при комнатной температуре хлор с водородом не реагирует; при нагревании эта реакция протекает, но оказывается сильно обратимой, а при мощном облучении протекает необратимо (со взрывом) по цепному механизму.

Хлор вступает в реакции со многими сложными веществами, например замещения и присоединения с углеводородами:

Хлор способен при. нагревании вытеснять бром или иод из их соединений с водородом или металлами:

а также обратимо реагирует с водой:

Хлор, растворяясь в воде и частично реагируя с ней, как это показано выше, образует равновесную смесь веществ, называемую хлорной водой.

Заметим также, что хлор в левой части последнего уравнения имеет степень окисления 0. В результате реакции у одних атомов хлора степень окисления стала 1- (в ), у других (в хлорноватистой кислоте ). Такая реакция - пример реакции самоокисления-самовосстановления, или диспропорционирования.

Напомним, что хлор может таким же образом реагировать (диспропорционировать) с щелочами (см. раздел «Основания» в § 8).

Химическая активность брома меньше, чем фтора и хлора, но все же достаточно велика в связи с тем, что бром обычно используют в жидком состоянии и поэтому его исходные концентрации при прочих равных условиях больше, чем у хлора. Являясь более «мягким» реагентом, бром находит широкое применение в органической химии.

Отметим, что бром, так же, как и хлор, растворяется в воде, и, частично реагируя с ней, образует так называемую «бромную воду», тогда как иод практически в воде не растворим и не способен ее окислять даже при нагревании; по этой причине не существует «йодной воды».

Получение галогенов.

Наиболее распространенным технологическим методом получения фтора и хлора является электролиз расплавов их солей (см. § 7). Бром и иод в промышленности, как правило, получают химическим способом.

В лаборатории хлор получают действием различных окислителей на соляную кислоту, например:

Еще более эффективно окисление проводится перманганатом калия - см. раздел «Кислоты» в § 8.

Галогеноводороды и галогеноводородные кислоты.

Все галогеноводороды при обычных условиях газообразны. Химическая связь, осуществляемая в их молекулах, - ковалентная полярная, причем полярность связи в ряду падает. Прочность связи также уменьшается в этом ряду. Вследствие своей полярности, все галогеноводороды, в отличие от галогенов, хорошо растворимы в воде. Так, при комнатной температуре в 1 объеме воды можно растворить около 400 объемов объемов и около 400 объемов

При растворении галогеноводородов в воде происходит их диссоциация на ионы, и образуются растворы соответствующих галогеноводородных кислот. Причем при растворении и HCI диссоциируют почти полностью, поэтому образующиеся кислоты относятся к числу сильных. В отличие от них, фтороводородная (плавиковая) кислота является слабой. Это объясняется ассоциацией молекул HF вследствие возникновения между ними водородных связей. Таким образом, сила кислот уменьшается от HI к HF.

Поскольку отрицательные ионы галогеноводородных кислот могут проявлять только восстановительные свойства, то при взаимодействии этих кислот с металлами окисление последних может происходить только за счет ионов Поэтому кислоты реагируют только с металлами, стоящими в ряду напряжений левее водорода.

Все галогениды металлов, за исключением солей Ag и Pb, хорошо растворимы в воде. Малая растворимость галогенидов серебра позволяет использовать обменную реакцию типа

как качественную для обнаружения соответствующих ионов. В результате реакции AgCl выпадает в виде осадка белого цвета, AgBr - желтовато-белого, Agl - ярко-желтого цвета.

В отличие от других галогеноводородных кислот, плавиковая кислота взаимодействует с оксидом кремния (IV):

Так как оксид кремния входит в состав стекла, то плавиковая кислота разъедает стекло, и поэтому в лабораториях ее хранят в сосудах из полиэтилена или тефлона.

Все галогены, кроме фтора, могут образовывать соединения, в которых они обладают положительной степенью окисления. Наиболее важными из таких соединений являются кислородсодержащие кислоты галогенов типа и соответствующие им соли и ангидриды.