Международные программы исследования мозга. Новые исследования в области мозга! Ученые нашли разгадку чудесных исцелений Подтвержденные иследования о работе мозга

Член-корреспондент РАН С. МЕДВЕДЕВ (г. Санкт-Петербург).

Несмотря на все достижения современной науки, человеческий мозг остается самым загадочным объектом. С помощью сложнейшей тонкой аппаратуры ученые Института мозга человека Российской АН смогли "проникнуть" в глубины мозга, не нарушая его работы, и выяснить, каким образом происходит запоминание информации, обработка речи, как формируются эмоции. Эти исследования помогают не только разобраться в том, как выполняет мозг свои важнейшие психические функции, но и разработать методы лечения тех людей, у которых они нарушены. Об этих и других работах Института мозга человека рассказывает его директор С. В. Медведев.

Интересные результаты дает такой эксперимент. Испытуемому рассказывают одновременно две разные истории: в левое ухо одну, в правое - другую.

Исследования, проведенные в последние годы в Институте мозга человека Российской академии наук, позволили определить, какие области мозга отвечают за осмысление различных особенностей воспринимаемой человеком речи.

Мозг против мозга - кто кого?

Проблема исследования мозга человека, соотношения мозга и психики - одна из самых захватывающих задач, которые когда-либо возникали в науке. Впервые поставлена цель познать нечто, равное по сложности самому инструменту познания. Ведь все, что до сих пор исследовалось - и атом, и галактика, и мозг животного - было проще, чем мозг человека. С философской точки зрения неизвестно, возможно ли в принципе решение этой задачи. Ведь, кроме приборов и методов, главным средством познания мозга остается опять-таки наш человеческий мозг. Обычно прибор, который изучает какое-то явление или объект, сложнее этого объекта, в этом же случае мы пытаемся действовать на равных - мозг против мозга.

Грандиозность задачи привлекала многие великие умы: о принципах работы мозга высказывались и Гиппократ, и Аристотель, и Декарт и многие другие.

В прошлом веке были обнаружены зоны мозга, отвечающие за речь, - по имени открывателей их называют области Брока и Вернике. Однако настоящее научное исследование мозга началось с работ нашего гениального соотечественника И. М. Сеченова. Далее - В. М. Бехтерев, И. П. Павлов... Здесь я остановлюсь в перечислении имен, так как выдающихся исследователей мозга в двадцатом веке много, и слишком велика опасность кого-нибудь пропустить (особенно из ныне здравствующих, не дай Бог). Были сделаны великие открытия, но возможности методик того времени для изучения человеческих функций весьма ограничены: психологические тесты, клинические наблюдения и начиная с тридцатых годов электроэнцефалограмма. Это все равно, что пытаться узнать, как работает телевизор, по гудению ламп и трансформаторов или по температуре футляра, либо попробовать понять роль составляющих его блоков, исходя из того, что произойдет с телевизором, если этот блок разбить.

Однако устройство мозга, его морфологию изучили уже довольно хорошо. А вот представления о функционировании отдельных нервных клеток были очень отрывочными. Таким образом, не хватало полноты знаний о кирпичиках, составляющих мозг, и необходимых инструментов для их исследования.

Два прорыва в исследованиях мозга человека

Реально первый прорыв в познании мозга человека был связан с применением метода долгосрочных и краткосрочных имплантированных электродов для диагностики и лечения больных. В то же время ученые начали понимать, как работает отдельный нейрон, как происходит передача информации от нейрона к нейрону и по нерву. В нашей стране первыми в условиях непосредственного контакта с мозгом человека стали работать академик Н. П. Бехтерева и ее сотрудники.

Так были получены данные о жизни отдельных зон мозга, о соотношении его важнейших разделов - коры и подкорки и многие другие. Однако мозг состоит из десятков миллиардов нейронов, а с помощью электродов можно наблюдать лишь за десятками, да и то в поле зрения исследователей часто попадают не те клетки, которые нужны для исследования, а те, что оказались рядом с лечебным электродом.

Тем временем в мире совершалась техническая революция. Новые вычислительные возможности позволили вывести на новый уровень исследование высших функций мозга с помощью электроэнцефалографии и вызванных потенциалов. Возникли и новые методы, позволяющие "заглянуть внутрь" мозга: магнитоэнцефалография, функциональная магниторезонансная томография и позитронно-эмиссионная томография. Все это создало фундамент для нового прорыва. Он действительно произошел в середине восьмидесятых годов.

В это время научный интерес и возможность его удовлетворения совпали. Видимо, поэтому Конгресс США объявил девяностые годы десятилетием изучения человеческого мозга. Эта инициатива быстро стала международной. Сейчас во всем мире над исследова нием человеческого мозга трудятся сотни лучших лабораторий.

Надо сказать, что у нас в то время в верхних эшелонах власти было много умных и болеющих за державу людей. Поэтому и в нашей стране поняли необходимость исследования мозга человека и предложили мне на базе коллектива, созданного и руководимого академиком Бехтеревой, организовать научный центр по исследованию мозга - Институт мозга человека РАН.

Главное направление деятельности института: фундаментальные исследования организации мозга человека и его сложных психических функций - речи, эмоций, внимания, памяти. Но не только. Одновременно ученые должны вести поиск методов лечения тех больных, у которых эти важные функции нарушены. Соединение фундаментальных исследований и практической работы с больными было одним из основных принципов деятельности института, разработанных его научным руководителем Натальей Петровной Бехтеревой.

Недопустимо ставить эксперименты на человеке. Поэтому большая часть исследований мозга проводится на животных. Однако есть явления, которые могут быть изучены только на человеке. Например, сейчас молодой сотрудник моей лаборатории защищает диссертацию об обработке речи, ее орфографии и синтаксиса в различных структурах мозга. Согласитесь, что это трудно исследовать на крысе. Институт специально ориентирован на исследование того, что нельзя изучать на животных. Мы проводим психофизиологические исследования на добровольцах с применением так называемой неинвазивной техники, не "залезая" внутрь мозга и не причиняя человеку особенных неудобств. Так осуществляются, например, томографические обследования или картирование мозга с помощью электроэнцефалографии.

Но бывает, что болезнь или несчастный случай "ставят эксперимент" на человеческом мозге - например, у больного нарушается речь или память. В этой ситуации можно и нужно исследовать те области мозга, работа которых нарушена. Или, наоборот, у пациента утерян или поврежден кусочек мозга, и ученым предоставляется возможность изучить, какие свои "обязанности" мозг не может выполнять с таким нарушением.

Но просто наблюдать за такими пациентами, мягко говоря, неэтично, и в нашем институте не только исследуют больных с различными повреждениями мозга, но и помогают им, в том числе и с помощью новейших, разработанных нашими сотрудниками методов лечения. Для этой цели при институте существует клиника на 160 коек. Две задачи - исследование и лечение - неразрывно связаны в работе наших сотрудников.

У нас прекрасные высококвалифицированниые доктора и медсестры. Без этого нельзя - ведь мы на переднем крае науки, и нужна высочайшая квалификация, чтобы реализовать новые методики. Практически каждая лаборатория института замкнута на отделения клиники, и это залог непрерывного появления новых подходов. Кроме стандартных методов лечения у нас проводят хирургическое лечение эпилепсии и паркинсонизма, психохирургические операции, лечение мозговой ткани магнитостимуляцией, лечение афазии с помощью электростимуляции, а также многое другое. В клинике лежат тяжелые больные, и бывает удается помочь им в случаях, считавшихся безнадежными. Конечно, это возможно не всегда. Вообще, когда слышишь какие-либо безграничные гарантии в лечении людей, это вызывает очень серьезные сомнения.

Будни и звездные часы лабораторий

В каждой лаборатории есть свои достижения. Например, лаборатория, которой руководит профессор В. А. Илюхина, ведет разработки в области нейрофизиологии функциональных состояний головного мозга.

Что это такое? Попробую объяснить на простом примере. Каждый знает, что одна и та же фраза иногда воспринимается человеком диаметрально противоположно в зависимости от того, в каком состоянии он находится: болен или здоров, возбужден или спокоен. Это похоже на то, как одна и та же нота, извлекаемая, например, из органа, имеет разный тембр в зависимости от регистра. Наш мозг и организм - сложнейшая многорегистровая система, где роль регистра играет состояние человека. Можно сказать, что весь спектр взаимоотношений человека с окружающей средой определяется его функциональным состоянием. Оно определяет и возможность "срыва" оператора за пультом управления сложнейшей машиной, и реакцию больного на принимаемое лекарство.

В лаборатории профессора Илюхиной исследуют функциональные состояния, а также то, какими параметрами они определяются, как эти параметры и сами состояния зависят от регуляторных систем организма, как внешние и внутренние воздействия изменяют состояния, иногда вызывая болезнь, и как в свою очередь состояния мозга и организма влияют на течение заболевания и действие лекарственных средств. С помощью полученных результатов можно сделать правильный выбор между альтернативными путями лечения. Проводится и определение приспособительных возможностей человека: насколько он будет устойчив при каком-либо лечебном воздействии, стрессе.

Очень важной задачей занимается лаборатория нейроиммунологии. Нарушения иммунорегуля ции часто приводят к возникновению тяжелых заболеваний головного мозга. Это состояние надо диагносцировать и подобрать лечение - иммунокоррекцию. Типичный пример нейроиммун ного заболевания - рассеянный склероз, изучением которого в институте занимается лаборатория под руководством профессора И. Д. Столярова. Не так давно он вошел в совет Европейского комитета, занимающегося исследованием и лечением рассеянного склероза.

В двадцатом веке человек начал активно изменять окружающий его мир, празднуя победу над природой, но оказалось, что праздновать рано: при этом обостряются проблемы, созданные самим человеком, так называемые техногенные. Мы живем под воздействием магнитных полей, при свете мигающих газосветных ламп, часами смотрим на дисплей компьютера, говорим по мобильному телефону... Все это далеко не безразлично для организма человека: например, хорошо известно, что мигающий свет способен вызвать эпилептический припадок. Можно устранить вред, наносимый при этом мозгу, очень простыми мерами - закрыть один глаз. Чтобы резко снизить "поражающее действие" радиотелефона (кстати, оно еще точно не доказано), можно просто изменить его конструкцию так, чтобы антенна была направлена вниз и мозг не облучался. Этими исследованиями занимается лаборатория под руководством доктора медицинских наук Е. Б. Лыскова. Например, он и его сотрудники показали, что воздействие переменного магнитного поля отрицательно сказывается на процессе обучения.

На уровне клеток работа мозга связана с химическими превращениями различных веществ, поэтому для нас важны результаты, полученные в лаборатории молекулярной нейробиологии, руководимой профессором С. А. Дамбиновой. Сотрудники этой лаборатории разрабатывают новые методы диагностики заболеваний мозга, проводят поиск химических веществ белковой природы, которые способны нормализовать нарушения в ткани мозга при паркинсонизме, эпилепсии, наркотической и алкогольной зависимости. Оказалось, что употребление наркотиков и алкоголя приводит к разрушению нервных клеток. Их фрагменты, попадая в кровь, побуждают иммунную систему вырабатывать так называемые "аутоантитела". "Аутоантитела" остаются в крови еще долгое время, даже у людей, переставших употреблять наркотики. Это своеобразная память организма, хранящая информацию об употреблении наркотиков. Если измерить в крови человека количество аутоантител к специфическим фрагментам нервных клеток, можно поставить диагноз "наркомания" даже через несколько лет после того, как человек перестал употреблять наркотики.

Можно ли "перевоспитать" нервные клетки?

Одно из самых современных направлений в работе института - стереотаксис. Это медицинская технология, обеспечивающая возможность малотравматичного, щадящего, прицельного доступа к глубоким структурам головного мозга и дозированное воздействие на них. Это нейрохирургия будущего. Вместо "открытых" нейрохирургических вмешательств, когда, чтобы достичь мозга, делают большую трепанацию, предлагаются малотравматичные, щадящие воздействия на головной мозг.

В развитых странах, прежде всего в США, клинический стереотаксис занял достойное место в нейрохирургии. В США в этой сфере сегодня работают около 300 нейрохирургов - членов Американского стереотаксического общества. Основа стереотаксиса - математика и точные приборы, обеспечивающие прицельное погружение в мозг тонких инструментов. Они позволяют "заглянуть" в мозг живого человека. При этом используется позитронно-эмиссионная томография, магниторезонансная томография, компьютерная рентгеновская томография. "Стереотаксис - мерило методической зрелости нейрохирургии" - мнение ныне покойного нейрохирурга Л. В. Абракова. Для стереотаксического метода лечения очень важно знание роли отдельных "точек" в мозге человека, понимание их взаимодействия, знание того, где и что именно нужно изменить в мозге для лечения той или иной болезни.

В институте существует лаборатория стереотаксических методов, которой руководит доктор медицинских наук, лауреат Государственной премии СССР А. Д. Аничков. По существу, это ведущий стереотаксический центр России. Здесь родилось самое современное направление - компьютерный стереотакcис с программно-математическим обеспечением, которое осуществляется на электронной вычислительной машине. До наших разработок стереотаксические расчеты проводились нейрохирургами вручную во время операции, сейчас же у нас разработаны десятки стереотаксических приборов; некоторые прошли клиническую апробацию и способны решать самые сложные задачи. Совместно с коллегами из ЦНИИ "Электроприбор" создана и впервые в России серийно выпускается компьютеризированная стереотаксическая система, которая по ряду основных показателей превосходит аналогичные зарубежные образцы. Как выразился неизвестный автор, "наконец, робкие лучи цивилизации осветили наши темные пещеры".

В нашем институте стереотаксис применяется при лечении больных, страдающих двигательными нарушениями (паркинсонизмом, болезнью Паркинсона, хореей Гентингтона и другими), эпилепсией, неукротимыми болями (в частности, фантомно-болевым синдромом), некоторыми психическими нарушениями. Кроме того, стереотаксис используется для уточнения диагноза и лечения некоторых опухолей головного мозга, для лечения гематом, абсцессов, кист мозга. Стереотаксические вмешательства (как и все остальные нейрохирургические вмешательства) предлагаются больному только в том случае, если исчерпаны все возможности медикаментозного лечения и само заболевание угрожает здоровью пациента или лишает его трудоспособности, делает асоциальным. Все операции производятся только при согласии больного и его родственников, после консилиума специалистов разного профиля.

Существуют два вида стереотаксиса. Первый, нефункциональный, применяется тогда, когда в глубине мозга имеется какое-то органическое поражение, например опухоль. Если ее удалять с помощью обычной техники, придется затронуть здоровые, выполняющие важные функции структуры мозга и больному случайно может быть нанесен вред, иногда даже несовместимый с жизнью. Предположим, что опухоль хорошо видна с помощью магниторезонансного и позитронно-эмиссионного томографов. Тогда можно рассчитать ее координаты и ввести с помощью малотравматичного тонкого щупа радиоактивные вещества, которые выжгут опухоль и за короткое время распадутся. Повреждения при проходе сквозь мозговую ткань минимальны, а опухоль будет уничтожена. Мы провели уже несколько таких операций, бывшие пациенты живут до сих пор, хотя при традиционных методах лечения у них не было никакой надежды.

Суть этого метода в том, что мы устраняем "дефект", который четко видим. Главная задача - решить, как до него добраться, какой путь выбрать, чтобы не задеть важные зоны, какой метод устранения "дефекта" выбрать.

Принципиально другая ситуация при "функциональном" стереотаксисе, который тоже применяется при лечении психических заболеваний. Причина болезни часто заключается в том, что одна маленькая группа нервных клеток или несколько таких групп работают неправильно. Они либо не выделяют необходимые вещества, либо выделяют их слишком много. Клетки могут быть патологически возбуждены, и тогда стимулируют "нехорошую" активность других, здоровых клеток. Эти "сбившиеся с пути" клетки надо найти и либо уничтожить, либо изолировать, либо "перевоспитать" с помощью электростимуляции. В такой ситуации нельзя "увидеть" пораженный участок. Мы должны его вычислить чисто теоретически, как астрономы вычислили орбиту Нептуна.

Именно здесь для нас особенно важны фундаментальные знания о принципах работы мозга, о взаимодействии его участков, о функциональной роли каждого участка мозга. Мы используем результаты стереотаксической неврологии - нового направления, разработанного в институте покойным профессором В. М. Смирновым. Стереотаксическая неврология - это "высший пилотаж", однако именно на этом пути нужно искать возможность лечения многих тяжелых заболеваний, в том числе и психических.

Результаты наших исследований и данные других лабораторий указывают на то, что практически любая, даже очень сложная психическая деятельность мозга обеспечивается распределенной в пространстве и изменчивой во времени системой, состоящей из звеньев различной степени жесткости. Понятно, что вмешиваться в работу такой системы очень трудно. Тем не менее сейчас мы это умеем: например, можем создать новый центр речи взамен разрушенного при травме.

При этом происходит своеобразное "перевоспитание" нервных клеток. Дело в том, что существуют нервные клетки, которые от рождения готовы к своей работе, но есть и другие, которые "воспитываются" в процессе развития человека. Научаясь выполнять одни задачи, они забывают другие, но не навсегда. Даже пройдя "специализацию", они в принципе способны взять на себя выполнение каких-то других задач, могут работать и по-другому. Поэтому можно попытаться заставить их взять на себя работу утраченных нервных клеток, заменить их.

Нейроны мозга работают как команда корабля: один хорошо умеет вести судно по курсу, другой - стрелять, третий - готовить пищу. Но ведь и стрелка можно научить готовить борщ, а кока - наводить орудие. Нужно только объяснить им, как это делается. В принципе это естественный механизм: если травма мозга произошла у ребенка, у него нервные клетки самопроизвольно "переучиваются". У взрослых же для "переучивания" клеток нужно применять специальные методы.

Этим и занимаются исследователи - пытаются стимулировать одни нервные клетки выполнять работу других, которые уже нельзя восстановить. В этом направлении уже получены хорошие результаты: например, некоторых пациентов с нарушением области Брока, отвечающей за формирование речи, удалось обучить говорить заново.

Другой пример - лечебное воздействие психохирургических операций, направленных на "выключение" структур области мозга, называемой лимбической системой. При разных болезнях в разных зонах мозга возникает поток патологических импульсов, которые циркулируют по нервным путям. Эти импульсы появляются в результате повышенной активности зон мозга, и такой механизм приводит к целому ряду хронических заболеваний нервной системы, таких, как паркинсонизм, эпилепсия, навязчивые состояния. Пути, по которым проходит циркуляция патологических импульсов, надо найти и максимально щадяще "выключить".

В последние годы проведены многие сотни (особенно в США) стереотаксических психохирургических вмешательств для лечения больных, страдающих некоторыми психическими нарушениями (прежде всего, навязчивыми состояниями), у которых оказались неэффективными нехирургические методы лечения. По мнению некоторых наркологов, наркоманию тоже можно рассматривать как разновидность такого рода расстройства, поэтому в случае неэффективности медикаментозного лечения может быть рекомендовано стереотаксическое вмешательство.

Детектор ошибок

Очень важное направление работы института - исследование высших функций мозга: внимания, памяти, мышления, речи, эмоций. Этими проблемами занимаются несколько лабораторий, в том числе та, которой руковожу я, лаборатория академика Н. П. Бехтеревой, лаборатория доктора биологических наук Ю. Д. Кропотова.

Присущие только человеку функции мозга исследуются с помощью различных подходов: используется "обычная" электроэнцефалограмма, но на новом уровне картирования мозга, изучение вызванных потенциалов, регистрация этих процессов совместно с импульсной активностью нейронов при непосредственном контакте с мозговой тканью - для этого применяются имплантированные электроды и техника позитронно-эмиссионной томографии.

Работы академика Н. П. Бехтеревой в этой области достаточно широко освещались в научной и научно-популярной печати. Она начала планомерное исследование психических процессов в мозге еще тогда, когда большинство ученых считали это практически непознаваемым, делом далекого будущего. Как хорошо, что хотя бы в науке истина не зависит от позиции большинства. Многие из тех, кто отрицал возможность таких исследований, теперь считают их приоритетными.

В рамках этой статьи можно упомянуть только о самых интересных результатах, например о детекторе ошибок. Каждый из нас сталкивался с его работой. Представьте, что вы вышли из дому и уже на улице вас начинает терзать странное чувство - что-то не так. Вы возвращаетесь - так и есть, забыли выключить свет в ванной. То есть, вы забыли выполнить обычное, стереотипное действие - щелкнуть выключателем, и этот пропуск автоматически включил контрольный механизм в мозге. Этот механизм в середине шестидесятых был открыт Н. П. Бехтеревой и ее сотрудниками. Несмотря на то, что результаты были опубликованы в научных журналах, в том числе и зарубежных, сейчас они "переоткрыты" на Западе людьми, знающими работы наших ученых, но не гнушающимися прямым заимствованием у них. Исчезновение великой державы привело и к тому, что в науке стало больше случаев прямого плагиата.

Детекция ошибок может стать и болезнью, когда этот механизм работает больше, чем нужно, и человеку все время кажется, что он что-то забыл.

В общих чертах нам сегодня ясен и процесс запуска эмоций на уровне мозга. Почему один человек с ними справляется, а другой - "западает", не может вырваться из замкнутого круга однотипных переживаний? Оказалось, что у "стабильного" человека изменения обмена веществ в мозге, связанные, например, с горем, обязательно компенсируются направленными в другую сторону изменениями обмена веществ в других структурах. У "нестабильного" же человека эта компенсация нарушена.

Кто отвечает за грамматику?

Очень важное направление работы - так называемое микрокартирование мозга. В наших совместных исследованиях обнаружены даже такие механизмы, как детектор грамматической правильности осмысленной фразы. Например, "голубая лента" и "голубой лента". Смысл понятен в обоих случаях. Но есть одна "маленькая, но гордая" группа нейронов, которая "взвивается", когда грамматика нарушена, и сигнализирует об этом мозгу. Зачем это нужно? Вероятно, затем, что понимание речи часто идет в первую очередь за счет анализа грамматики (вспомним "глокую куздру" академика Щербы). Если с грамматикой что-то не так, поступает сигнал - надо проводить добавочный анализ.

Найдены микроучастки мозга, которые отвечают за счет, за различение конкретных и абстрактных слов. Показаны различия в работе нейронов при восприятии слова родного языка (чашка), квазислова родного языка (чохна) и слова иностранного (вахт - время по-азербайджански).

В этой деятельности по-разному участвуют нейроны коры и глубоких структур мозга. В глубоких структурах в основном наблюдается увеличение частоты электрических разрядов, не очень "привязанное" к какой-то определенной зоне. Эти нейроны как бы любую задачу решают всем миром. Совершенно другая картина в коре головного мозга. Один нейрон словно говорит: "А ну-ка, ребята, помолчите, это мое дело, и я буду выполнять его сам". И действительно, у всех нейронов, кроме некоторых, понижается частота импульсации, а у "избранников" повышается.

Благодаря технике позитронно-эмиссионной томографии (или сокращенно ПЭТ) стало возможно детальное изучение одновременно всех областей мозга, отвечающих за сложные "человеческие" функции. Суть метода состоит в том, что малое количество изотопа вводят в вещество, участвующее в химических превращениях внутри клеток мозга, а затем наблюдают, как меняется распределение этого вещества в интересующей нас области мозга. Если к этой области усиливается приток глюкозы с радиоактивной меткой - значит, увеличился обмен веществ, что говорит об усиленной работе нервных клеток на этом участке мозга.

А теперь представьте, что человек выполняет какое-то сложное задание, требующее от него знания правил орфографии или логического мышления. При этом у него наиболее активно работают нервные клетки в области мозга, "ответственной" именно за эти навыки. Усиление работы нервных клеток можно зарегистрировать с помощью ПЭТ по увеличению кровотока в активизированной зоне. Таким образом удалось определить, какие области мозга "отвечают" за синтаксис, орфографию, смысл речи и за решение других задач. Например, известны зоны, которые активизируются при предъявлении слов, неважно, надо их читать или нет. Есть и зоны, которые активизируются, чтобы "ничего не делать", когда, например, человек слушает рассказ, но не слышит его, следя за чем-то другим.

Что такое внимание?

Не менее важно понять, как "работает" внимание у человека. Этой проблемой в нашем институте занимается и моя лаборатория, и лаборатория Ю. Д. Кропотова. Исследования ведутся совместно с коллективом ученых под руководством финского профессора Р. Наатанена, который открыл так называемый механизм непроизвольного внимания. Чтобы понять, о чем идет речь, представьте ситуацию: охотник крадется по лесу, выслеживая добычу. Но он и сам является добычей для хищного зверя, которого не замечает, потому что настроен только на поиск оленя или зайца. И вдруг случайный треск в кустах, может быть, и не очень заметный на фоне птичьего щебета и шума ручья, мгновенно переключает его внимание, подает сигнал: "Рядом опасность". Механизм непроизвольного внимания сформировался у человека в глубокой древности, как охранный механизм, но работает и сейчас: например, водитель ведет машину, слушает радио, слышит крики детей, играющих на улице, воспринимает все звуки окружающего мира, внимание его рассеянно, и вдруг тихий стук мотора мгновенно переключает его внимание на машину - он осознает, что с двигателем что-то не в порядке (кстати, это явление похоже на детектор ошибок).

Такой переключатель внимания работает у каждого человека. Мы обнаружили зоны, которые активизируются на ПЭТ при работе этого механизма, а Ю. Д. Кропотов исследовал его с помощью метода имплантированных электродов. Иногда в самой сложной научной работе бывают смешные эпизоды. Так было, когда мы в спешке закончили эту работу перед очень важным и престижным симпозиумом. Ю. Д. Кропотов и я поехали на симпозиум делать доклады, и только там с удивлением и "чувством глубокого удовлетворения" неожиданно выяснили, что активизация нейронов происходит в одних и тех же зонах. Да, иногда двоим сидящим рядом надо поехать в другую страну, чтобы поговорить.

Если механизмы непроизвольного внимания нарушаются, то можно говорить о болезни. В лаборатории Кропотова изучают детей с так называемым дефицитом внимания и гиперактивностью. Это трудные дети, чаще мальчики, которые не могут сосредоточиться на уроке, их часто ругают дома и в школе, а на самом деле их нужно лечить, потому что у них нарушены некоторые определенные механизмы работы мозга. Еще недавно это явление не рассматривалось как болезнь и лучшим методом борьбы с ним считались "силовые" методы. Мы сейчас можем не только определить это заболевание, но и предложить методы лечения детей с дефицитом внимания.

Однако хочется огорчить некоторых молодых читателей. Далеко не каждая шалость связана с этим заболеванием, и тогда... "силовые" методы оправданы.

Кроме непроизвольного внимания есть еще и селективное. Это так называемое "внимание на приеме", когда все вокруг говорят разом, а вы следите только за собеседником, не обращая внимания на неинтересную вам болтовню соседа справа. Во время эксперимента испытуемому рассказывают истории: в одно ухо - одну, в другое - другую. Мы следим за реакцией на историю то в правом ухе, то в левом и видим на экране, как радикально меняется активизация областей мозга. При этом активизация нервных клеток на историю в правом ухе значительно меньше - потому, что большинство людей берут телефонную трубку в правую руку и прикладывают ее к правому уху. Им следить за историей в правом ухе проще, нужно меньше напрягаться, мозг возбуждается меньше.

Тайны мозга еще ждут своего часа

Мы часто забываем очевидное: человек - это не только мозг, но еще и тело. Нельзя понять работу мозга, не рассматривая все богатство взаимодействия мозговых систем с различными системами организма. Иногда это очевидно - например, выброс в кровь адреналина заставляет мозг перейти на новый режим работы. В здоровом теле - здоровый дух - это именно о взаимодействии тела и мозга. Однако далеко не все здесь понятно. Изучение этого взаимодействия еще ждет своих исследователей.

Сегодня можно сказать, что мы хорошо представляем, как работает одна нервная клетка. Многие белые пятна исчезли и на карте мозга, определены области, отвечающие за психические функции. Но между клеткой и областью мозга находится еще один, очень важный уровень - совокупность нервных клеток, ансамбль нейронов. Здесь пока еще много неясного. С помощью ПЭТ мы можем проследить, какие области мозга "включаются" при выполнении тех или иных задач, а вот что происходит внутри этих областей, какие сигналы посылают друг другу нервные клетки, в какой последовательности, как они взаимодействуют между собой - об этом мы пока знаем мало. Хотя определенный прогресс есть и в этом направлении.

Раньше считали, что мозг поделен на четко разграниченные участки, каждый из которых "отвечает" за свою функцию: это зона сгибания мизинца, а это зона любви к родителям. Эти выводы основывались на простых наблюдениях: если данный участок поврежден, то и функция его нарушена. Со временем стало ясно, что все более сложно: нейроны внутри разных зон взаимодействуют между собой весьма сложным путем и нельзя осуществлять везде четкую "привязку" функции к области мозга в том, что касается обеспечения высших функций. Можно только сказать, что эта область имеет отношение к речи, к памяти, к эмоциям. А сказать, что этот нейронный ансамбль мозга (не кусочек, а широко раскинутая сеть) и только он отвечает за восприятие букв, а этот - слов и предложений, пока нельзя. Это задача будущего.

Работа мозга по обеспечению высших видов психической деятельности похожа на вспышку салюта: мы видим сначала множество огней, а потом они начинают гаснуть и снова загораться, перемигиваясь между собою, какие-то кусочки остаются темными, другие вспыхивают. Также и сигнал возбуждения посылается в определенную область мозга, но деятельность нервных клеток внутри нее подчиняется своим особым ритмам, своей иерархии. В связи с этими особенностями разрушение одних нервных клеток может оказаться невосполнимой потерей для мозга, а другие вполне могут заменить соседние "переучившиеся" нейроны. Каждый нейрон может рассматриваться только внутри всего скопления нервных клеток. По-моему, сейчас основная задача - расшифровка нервного кода, то есть понимание того, как конкретно обеспечиваются высшие функции мозга. Скорее всего, это можно будет сделать через исследование взаимодействия элементов мозга, через понимание того, как отдельные нейроны объединяются в структуру, а структура - в систему и в целостный мозг. Это главная задача следующего века. Хотя кое-что еще осталось и на долю двадцатого.

Словарик

Афазия - расстройство речи в результате повреждения речевых зон мозга или нервных путей, ведущих к ним.

Магнитоэнцефалография - регистрация магнитного поля, возбуждаемого электрическими источниками в мозге.

Магниторезонансная томография - томографическое исследование мозга, основанное на явлении ядерного магнитного резонанса.

Позитрон-эмиссионная томография - высокоэффективный способ слежения за чрезвычайно малыми концентрациями ультракороткоживущих радионуклидов, которыми помечены физиологически значимые соединения в мозге. Используется для изучения обмена веществ, участвующих в реализации функций мозга.

Человечество начало исследовать мозг и задумываться о его назначении задолго до появления науки в современном виде. Археологические находки говорят, что в 3000-2000 годах до нашей эры люди уже активно практиковали трепанации черепа — по всей видимости, как способ профилактики головных болей, эпилепсии и расстройств психики. Древнегреческие врачи и анатомы Герофил и Эрасистрат не только называли мозг центром нервной системы, но и считали, что интеллект «зарождается» в мозжечке. В Средние века итальянский хирург Мондино де Луцци предположил, что мозг состоит из трех отделов — или «пузырьков»: передний отвечает за чувства, средний — за воображение, а в заднем хранятся воспоминания.

Вклад в этот процесс вносили не только ученые. В 1848 году американский строитель Финеас Гейдж, работая на прокладке железной дороги, получил страшную травму: металлический штырь вошел в его череп под глазницей, а вышел — на границе лобной и теменной костей. Однако мужчина относительно благополучно прожил потом больше десяти лет. Правда, знакомые утверждали, что в результате инцидента он изменился — например, стал как будто более вспыльчивым. И хотя в этой истории есть немало белых пятен, она в свое время вызвала бурную дискуссию о функциях различных зон мозга.

В наши дни изучение мозга — вотчина не одной, а множества отраслей наук. Нейробиология занимается вопросами, связанными с работой рецепторов. Нейрофизиология — особенностями протекания физиологических процессов в мозге. Психофизиология — соотношением мозга и психики. Нейрофармакология — влиянием лекарственных средств на нервную систему, в том числе на мозг. Существует даже относительно молодое направление — нейроэкономика: она изучает процессы выбора и принятия решений. Более фундаментальные когнитивные нейронауки сосредоточены на исследовании разных типов восприятия, сложных мыслительных процессов и связанных с ними феноменов, которые касаются речи, слушания музыки, просмотра фильмов и т.д.

Зачем это делается?

Логично предположить, что любой орган человеческого тела исследуют в первую очередь для того, чтобы научиться его эффективно лечить в случае необходимости. Но мозг — система слишком сложная и интересная, чтобы ограничиваться утилитарным подходом. В университетах мира существуют сотни лабораторий, которые изучают совершенно разные аспекты мозговой деятельности. Одни фокусируются на конкретных типах расстройств психики — например, на шизофрении. Другие — на сне. Третьи — на эмоциях. Четвертые хотят выяснить, что происходит с мозгом, когда человек испытывает стресс или употребляет алкоголь: этим занимается в том числе лаборатория психофизиологии Института психологии РАН.

akindo / gettyimages.com

Результатом таких исследований далеко не всегда становится метод решения какой-то конкретной проблемы, связанной с мозговой деятельностью. Нейроученые нередко получают информацию, которая главным образом помогает нам лучше понять специфику отношений между людьми и выяснить, к примеру, по каким признакам мы ранжируем окружающих на «своих» и «чужих» . Что делать с этим знанием дальше, как его применить на практике — хороший вопрос.

С другой стороны, опыты со «стандартным» человеческим мозгом и натуралистическими (естественными) стимулами дают ученым шанс разобраться, почему у кого-то мозг работает иначе. В финском Университете Аалто ставят эксперименты с участием людей с синдромом Аспергера. Как правило, эта особенность развития сильно затрагивает эмоциональные функции, способность к социальному взаимодействию. Опыты показывают, что у «обычного» человека, когда он смотрит, как общаются другие люди, наблюдается высокий уровень синхронизации в сенсорных зонах мозга, в зонах, участвующих в обработке социальной информации и процессах формирования эмоций. А у человека с синдромом Аспергера такая синхронизация выражена значительно меньше. Ученые надеются со временем разобраться, как помочь адаптироваться в социуме тем, кому изначально это сделать сложнее.

Есть лаборатории, которые занимаются одновременно и прикладными, и фундаментальными исследованиями. В 2012 году ученые из Еврейского университета в Иерусалиме создали устройство, позволяющее незрячим людям «видеть» с помощью слуха. Оно состояло из очков и небольшой камеры, которая фиксировала визуальную информацию, а специальная программа преобразовывала ее в звуковые сигналы. Таким образом человек, лишенный зрения, мог распознать находящиеся поблизости бытовые предметы, других людей и даже крупные буквы. При этом разработчики устройства обнаружили, что в мозге того, кто учится «видеть» с помощью слуха, активируются те же потоки, что и у того, кто видит традиционным способом — глазами. Таким образом научный мир столкнулся с принципиально важной, основополагающей проблемой: действительно ли зрительная кора головного мозга отвечает именно за зрение в привычном понимании? И что такое вообще — зрение?

Также предполагается, что одним из результатов скрупулезного, разностороннего изучения мозга станет возможность создания искусственного интеллекта. В 2005 году стартовал знаменитый многомиллиардный проект Blue Brain Project, целью которого было сделать компьютерную модель человеческого мозга и смоделировать сознание. Пока воз и ныне там, а многие представители научного мира настроены достаточно скептично — хотя бы потому, что мы не знаем точно, что такое сознание. К тому же существует и технические ограничения: для того, чтобы имитировать мозг кошки на самом базовом уровне, понадобился один из самых больших суперкомпьютеров в мире. Человеческий мозг, разумеется, устроен намного сложнее.

Методы и эксперименты

Существующие на сегодняшний день методы исследования мозга можно ранжировать, опираясь на два критерия. Первый — частота снятия информации: она варьируется от миллисекунды до нескольких секунд. Второй — пространственное разрешение: насколько детально мы можем рассмотреть сам мозг. Так, электроэнцефалография способна собирать данные с очень большой частотой. Зато фМРТ (функциональная магнитно-резонансная томография) позволяет охватывать квадратные миллиметры мозга, а это довольно много, поскольку в одном квадратном миллиметре — около 100 000 нейронов.


akindo / gettyimages.com

Также существуют магнитная энцефалография, позитронно-эмиссионная томография, транскраниальная магнитная стимуляция. Методы обычно совершенствуются в сторону неинвазивности: нам хочется как можно больше узнать о мозге живого человека с минимальными последствиями для его здоровья и психологического состояния. При этом именно с появлением фМРТ ученые стали исследовать буквально все подряд аспекты мозговой деятельности. Мы можем взять практически любой тип поведения и быть уверенными в том, что в мире обязательно найдется лаборатория, которая изучает его с помощью фМРТ.

Разобраться, как ученые это делают, можно на примере самого базового эксперимента. Допустим, мы хотим узнать, различается ли мозговая активность человека, когда он смотрит на лица других людей и на дома. Отбирается множество картинок с изображением самых разных домов и самых разных лиц. Они перемешиваются, а их порядок — рандомизируется. Необходимо, чтобы в последовательности не было никаких закономерностей: если, к примеру, после трех домов всегда будет появляться лицо, встанет вопрос о достоверности результатов эксперимента.

Прежде чем поместить испытуемого в сканер фМРТ, с него нужно снять все металлические украшения и предупредить, что лучше не складывать руки в кольцо. Во время сканирования происходит быстрое изменение магнитного поля, что, согласно законам физики, индуцирует электрический ток в замкнутой петле. Ощущения — не смертельно неприятные, но те, кто пробовал, повторять обычно не хотят. В течение тридцати-сорока минут человек лежит в сканере и смотрит на появляющиеся на экране изображения домов и лиц. Важно, чтобы в процессе он не заснул: проходить через такие эксперименты часто довольно скучно. Зато они предполагают награду — допустим, пару бесплатных билетов в кино.

На этом более или менее интересная часть заканчивается и начинается сложная и неблагодарная: ученому предстоит обработать полученную информацию разными статистическими методами, чтобы результат можно было оформить в статью и опубликовать ее в научном журнале. Главный подвох здесь заключается в том, что существует несколько десятков тысяч способов скомбинировать разные ступени преобразования данных, поэтому добиться ложноположительного результата не так уж и сложно.


akindo / gettyimages.com

В 2009 году в Сан-Франциско провели опыт, ставший впоследствии легендарным. Ученые положили в сканер фМРТ мертвого атлантического лосося и показали ему фотографии людей в различных социальных ситуациях. При подсчете данных выяснилось, что мозг лосося не просто реагирует на стимулы: рыба испытывала эмоции. Разумеется, на самом деле мертвый лосось не способен на эмпатию, но за счет погрешности — или так называемого статистического шума, возникающего при анализе собранных с помощью фМРТ данных, мы можем получить значимый эффект. Кто ищет — тот всегда найдет.

До недавнего времени проблема усугублялась еще и тем, что в западные журналы брали статьи, описывающие в основном только положительные результаты экспериментов. Если гипотеза лаборатории не подтверждалась, полученные данные фактически летели в мусорное ведро. Теперь представим: сто лабораторий поставили одинаковый эксперимент. Чисто статистически у пяти из них вполне могут получиться позитивные результаты. Статья, написанная представителями такой лаборатории, будет опубликована, даже если в 95 оставшихся опыты показали отрицательный результат. Для борьбы с такими искажениями в наши дни появилась важная опция: теперь исследование можно перерегистрировать с гарантией публикации вне зависимости от результата — главное, чтобы все было выполнено четко по плану.

Специфика работы ученого заключается в том, что он должен знать очень много — пусть даже только в рамках своей области. Однако чем больше ты знаешь, тем больше сомневаешься. И тем выше вероятность, что рано или поздно ты столкнешься с чем-то, что в корне противоречит твоим убеждениям. Поэтому, общаясь со СМИ, ученые почти никогда не используют слово «однозначно». Вместо этого они говорят: «скорее всего», «вероятно», «мы можем предположить».

Для журналистов и читателей такие формулировки звучат, мягко говоря, не очень заманчиво. Психика человека устроена так, что ему хочется точно знать, из чего сделано его тело — в том числе мозг. Вероятности его либо не интересуют, либо вызывают тревогу. Более того, многие люди в принципе не читают новости дальше заголовка. В результате информация о последних научных исследованиях часто доходит до нас в искаженном виде — в том числе потому, что СМИ стремятся собрать больше просмотров, но опасаются отпугнуть аудиторию слишком расплывчатыми формулировками.

В 2007 году по российским СМИ прокатилась волна заметок об ученых лондонского University College, установивших, что алкоголь улучшает работу мозга. При ближайшем рассмотрении оказывалось, что, поскольку алкоголь улучшает приток крови к мозгу, что, в свою очередь, действительно коррелирует с улучшением умственных способностей, положительный эффект, может, и будет, но негативные последствия от чрезмерного употребления алкоголя его явно перевесят.

Еще несколько лет назад в западной прессе широко освещался проект No More Woof, создатели которого предлагали использовать инструмент на основе электроэнцефалографии, чтобы считывать мысли собак и «переводить» их на человеческий язык. Но, во-первых, ЭЭГ — далеко не самый точный метод сбора данных. Во-вторых, откуда мы можем знать, каким образом мысли собак должны передаваться с помощью английской речи? В-третьих, нет исследований, которые бы доказывали, что все животные, включая человека и собаку, говорят на разных диалектах одного глобального языка. Но СМИ скандировали: ура, мы наконец-то научимся понимать наших Шариков и Бобиков!


akindo / gettyimages.com

Во-первых , не ленитесь прочитать не только заголовок, но и весь текст.

Во-вторых , опасайтесь категоричных утверждений. Допустим, если в материале говорится, будто ученые нашли в мозге «зону любви», учитывайте, что один из современных трендов — исследовать мозг не как конструктор, составленный из полностью автономных элементов, а как сложную сеть (complex network). Да и «любовь» — понятие слишком неоднозначное, чтобы вывести для него какое-то универсальное определение.

В-третьих , обращайте внимание на источник. Журналисты часто ссылаются не на исходную статью в научном журнале, а на публикацию на другом новостном интернет-портале или даже в блоге. Пытливому уму такая ссылка должна показаться неубедительной.

В-четвертых , задайте интернету вопрос: «Кто все эти люди?». Под лейблом «ученые» в СМИ могут появляться как подлинные сотрудники известных лабораторий, так и энтузиасты-любители, собирающие деньги на свое «революционное» открытие с помощью краудфандинговых платформ.

В-пятых , найдите оригинал. Из абстракта (краткого изложения сути статьи) часто бывает понятно, что именно ученые доказали и какими методами. Да, подписка на очень многие журналы — платная. Но есть сайты PubMed и Google Scholar, позволяющие выполнять поиск по текстам научных публикаций.

Вопреки стереотипам наука не может дать нам стопроцентной гарантии чего бы то ни было. Не может жирной, нестираемой линией отделить истину от всего остального. Но она может максимально приблизиться к истине за счет множества повторяющихся, проведенных в разных частях земного шара экспериментов, результаты которых постепенно будут сходиться в одной точке. Примерно. С определенной вероятностью.

Психология – одна из древнейших наук в современной системе научного знания. Она возникла как результат осознания человеком самого себя. Само название этой науки – психология (psyche – душа, logos – учение) указывает, что основное ее предназначение – познание своей души и ее проявлений – воли, восприятия, внимания, памяти и т.д. Нейрофизиология – специальный раздел физиологии, изучающий деятельность нервной системы, возникла намного позже. Практически до второй половины XIX века нейрофизиология развивалась как экспериментальная наука, базирующаяся на изучении животных. Действительно, «низшие» (базовые) проявления деятельности нервной системы одинаковы у животных и человека. К таким функциям нервной системы относятся проведение возбуждения по нервному волокну, переход возбуждения с одной нервной клетки на другую (например, нервную, мышечную, железистую), простые рефлексы (например, сгибания или разгибания конечности), восприятие относительно простых световых, звуковых, тактильных и других раздражителей и многие другие. Только в конце XIX столетия ученые перешли к исследованию некоторых сложных функций дыхания, поддержания в организме постоянства состава крови, тканевой жидкости и некоторых других. При проведении всех этих исследований ученые не находили существенных различий в функционировании нервной системы как в целом, так и ее частей у человека и животных, даже очень примитивных. Например, на заре современной экспериментальной физиологии излюбленным объектом была лягушка. Только с открытием новых методов исследования (в первую очередь электрических проявлений деятельности нервной системы) наступил новый этап в изучении функций головного мозга, когда стало возможным исследовать эти функции, не разрушая мозг, не вмешиваясь в его функционирование, и вместе с тем изучать высшие проявления его деятельности – восприятие сигналов, функции памяти, сознания и многие другие.

Как уже указывалось, психология как наука намного старше, чем физиология, и на протяжении многих веков психологи в своих исследованиях обходились без знаний физиологии. Конечно, это связано прежде всего с тем, что знания, которыми располагала физиология 50–100 лет тому назад, касались только процессов функционирования органов нашего тела (почек, сердца, желудка и др.), но не головного мозга. Представления ученых древности о функционировании головного мозга ограничивались только внешними наблюдениями: они считали, что в головном мозге – три желудочка, и в каждый из них древние врачи «помещали» одну из психических функций (рис. 1).

Перелом в понимании функций головного мозга наступил в XVIII столетии, когда стали изготавливать очень сложные часовые механизмы. Например, музыкальные шкатулки исполняли музыку, куклы танцевали, играли на музыкальных инструментах. Все это приводило ученых к мысли, что наш головной мозг чем-то очень похож на такой механизм. Только в XIX веке окончательно было установлено, что функции головного мозга осуществляются по рефлекторному (reflecto – отражаю) принципу. Однако первые представления о рефлекторном принципе действия нервной системы человека были сформулированы еще в XVIII столетии философом и математиком Рене Декартом. Он полагал, что нервы представляют собой полые трубки, по которым от головного мозга, вместилища души, передаются животные духи к мышцам. На рис. 2 видно, что мальчик обжег ногу, и этот стимул запустил всю цепь реакций: вначале «животный дух» направляется к головному мозгу, отражается от него и по соответствующим нервам (трубкам) направляется к мышцам, раздувая их. Здесь без труда можно увидеть простую аналогию с гидравлическими машинами, которые во времена Р. Декарта были вершиной достижения инженерной мысли. Проведение аналогии между действием искусственных механизмов и деятельностью головного мозга – излюбленный прием при описании функций мозга. Например, наш великий соотечественник И. П. Павлов сравнивал функцию коры больших полушарий головного мозга с телефонным узлом, на котором барышня-телефонистка соединяет абонентов между собой. В наше время головной мозг и его деятельность чаще всего сравнивают с мощным компьютером. Однако любая аналогия весьма условна. Не вызывает сомнений, что головной мозг действительно выполняет огромный объем вычислений, но принцип его деятельности отличен от принципов действия компьютера. Но вернемся к вопросу: зачем психологу знать физиологию головного мозга?




Вспомним идею рефлекса, высказанную еще в XVIII веке Р. Декартом. Собственно зерном этой идеи было признание того, что реакции живых организмов обусловлены внешними раздражениями благодаря деятельности головного мозга, а не «по воле Божьей». В России эта идея была с воодушевлением воспринята научной и литературной общественностью. Вершиной этого был выход в свет знаменитого труда Ивана Михайловича Сеченова «Рефлексы головного мозга» (1863), оставившего глубокий след в мировой культуре. Свидетельством служит тот факт, что в 1965 г., когда исполнилось столетие со дня выхода этой книги в свет, в Москве под патронажем ЮНЕСКО прошла международная конференция, на которой присутствовали многие ведущие нейрофизиологи мира. И. М. Сеченов впервые полно и убедительно доказал, что психическая деятельность человека должна стать объектом изучения физиологами.

И. П. Павлов развил эту мысль в виде «учения о физиологии условных рефлексов».

Ему принадлежит заслуга в создании метода экспериментального исследования «высшего этажа» головного мозга коры – больших полушарий. Этот метод назван «методом условных рефлексов». Он установил фундаментальную закономерность: предъявление животному (И. П. Павлов проводил исследования на собаках, но это верно и для человека) двух стимулов – вначале условного (например, звук зуммера), а затем безусловного (например, подкармливание собаки кусочками мяса). После некоторого числа сочетаний это приводит к тому, что при действии только звука зуммера (условного сигнала) у собаки развивается пищевая реакция (выделяется слюна, собака облизывается, скулит, смотрит в сторону миски), т.е. образовался пищевой условный рефлекс (рис. 3). Собственно этот прием при дрессировке был давно известен, но И. П. Павлов сделал его мощным инструментом научного исследования функций головного мозга.




Физиологические исследования в сочетании с изучением анатомии и морфологии головного мозга привели к однозначному заключению – именно головной мозг является инструментом нашего сознания, мышления, восприятия, памяти и других психических функций.

Основная трудность исследования заключается в том, что психические функции чрезвычайно сложны. Психологи исследуют эти функции своими методами (например, при помощи специальных тестов изучают эмоциональную устойчивость человека, уровень умственного развития и другие свойства психики). Характеристики психики исследуются психологом без «привязки» к мозговым структурам, т.е. психолога интересуют вопросы организации самой психической функции, но не то, как работают отдельные части головного мозга при осуществлении этой функции. Только относительно недавно, несколько десятилетий назад, появились технические возможности для исследования методами физиологии (регистрация биоэлектрической активности головного мозга, исследование распределения тока крови и др., подробнее см. далее) некоторых характеристик психических функций – восприятия, внимания, памяти, сознания и др. Совокупность новых подходов к исследованию головного мозга человека, сфера научных интересов физиологов в области психологии и привели к появлению в пограничной области этих наук новой науки – психофизиологии. Это обусловило взаимопроникновение двух областей знаний – психологии и физиологии. Поэтому физиологу, который исследует функции головного мозга человека, необходимы знания психологии и применение этих знаний в своей практической работе. Но и психолог не может обойтись без регистрации и исследования объективных процессов головного мозга с помощью электроэнцефалограмм, вызванных потенциалов, томографических исследований и пр. Какие же подходы к исследованию физиологии головного мозга человека привели ученых к современной сумме знаний?

Успехи в исследовании мозга человека в настоящее время

В биологии существует принцип, который может быть сформулирован как принцип единства структуры и функции. Например, функция сердца (проталкивать кровь по сосудам нашего организма) полностью определяется строением и желудочков сердца, и клапанов, и прочего. Этот же принцип соблюдается и для головного мозга. Поэтому вопросы морфологии и анатомии головного мозга всегда считались очень важными при изучении деятельности этого сложнейшего органа.

Анатомия и морфология головного мозга – древняя наука. В названиях структур головного мозга сохранены имена древних анатомов – Виллизия, Сильвия, Роланда и многих других. Головной мозг человека состоит из больших полушарий – высшего центра его психической деятельности (см. приложение 1). Это самая большая часть нашего головного мозга. Промежуточный мозг состоит из двух неравноценных частей: таламуса, который является своеобразным распределителем (коллектором) сигналов, направляющихся к областям коры, в том числе сигналов от органов зрения, слуха и др., и гипоталамуса (расположенного под таламусом), который «заведует» в нашем организме вегетативными (обеспечивающими «растительную» жизнь нашего организма) функциями. Благодаря гипоталамусу происходят рост и созревание (в том числе половое) нашего организма, поддерживается постоянство внутренней среды, например поддержание температуры тела, выведение из организма шлаков, потребление пищи и воды и многие другие процессы.

Наконец, заднюю часть головного мозга занимает мозговой ствол, который, в свою очередь, состоит из ряда отделов: среднего мозга, моста и продолговатого мозга. Эти структуры принимают участие в осуществлении сложнейших функций организма – поддержании уровня кровяного давления, дыхании, установке взора, регулировании цикла сон–бодрствование, в проявлении ориентировочных реакций и многих других. Из мозгового ствола выходят 10 пар черепных нервов, благодаря деятельности которых осуществляется множество функций: регуляции функций сердца и дыхания, деятельность лицевой мускулатуры, восприятие сигналов из внешнего мира и внутренней среды. Всю сердцевину мозгового ствола занимает ретикулярная (сетчатая) формация. Деятельность этой структуры определяет цикл сон–бодрствование, нарушение ее целостности приводит к грубым нарушениям сознания, которое врачи называют комой. Над мостом находится мозжечок, или малый мозг.

Мозжечок у человека (в дословном переводе мозжечок это – малый мозг) состоит из полушарий и соединяющего их червя. Функции мозжечка многообразны, его поражение вызывает расстройства в регуляции движений: человек неспособен совершать правильную последовательность движений отдельных частей своего тела, при ходьбе не успевает перемещать центр тяжести, походка становится неуверенной, он может упасть на ровном месте. Самой каудальной (от cauda – хвост, задний отдел) частью ЦНС (центральной нервной системы) является спинной мозг.

Спинной мозг человека состоит более чем из трех десятков сегментов и заключен в позвоночник. Каждому сегменту примерно соответствует позвонок. Основная функция спинного мозга – передача к частям тела сигналов от вышележащих отделов центральной нервной системы, а также направление сигналов от соответствующих частей тела к вышележащим отделам мозга. Спинной мозг способен также к довольно сложной самостоятельной деятельности. На уровне спинного мозга осуществляются весьма сложные вегетативные рефлексы, определяющие мочеиспускание, дефекацию, потоотделение, покраснение кожи и многие другие. На уровне отдельных сегментов спинного мозга могут осуществляться рефлексы, участвующие в управлении движениями, например коленный, ахиллов и др. Спинной мозг дает начало вегетативной нервной автономной системе, деятельность которой весьма важна для защиты организма от неблагоприятных воздействий – холода, перегрева, кровопотери и т.п.

Методы исследования головного мозга человека постоянно совершенствуются. Так, современные методы томографии позволяют увидеть строение головного мозга человека, не повреждая его. На рис. 4 показан принцип одного из таких исследований – методом магнитно-резонансной томографии. Головной мозг облучают электромагнитным полем, применяя для этого специальный магнит. Под действием магнитного поля диполи жидкостей мозга (например, молекулы воды) принимают его направление. После снятия внешнего магнитного поля диполи возвращаются в исходное состояние, при этом возникает магнитный сигнал, который улавливается специальными датчиками. Затем это эхо обрабатывается с помощью мощного компьютера и методами компьютерной графики отображается на экране монитора. Благодаря тому что внешнее магнитное поле, создаваемое внешним магнитом, можно сделать плоским, таким полем как своеобразным «хирургическим ножом» можно «резать» головной мозг на отдельные слои. На экране монитора ученые наблюдают серию последовательных «срезов» головного мозга, не нанося ему никакого вреда. Этот метод позволяет исследовать, например, злокачественные образования головного мозга (рис. 5).






Еще более высоким разрешением обладает метод позитронно-эмиссионной томографии (ПЭТ). Исследование основано на введении в мозговой кровоток позитрон-излучающего короткоживущего изотопа. Данные о распределении радиоактивности в мозге собираются компьютером в течение определенного времени сканирования и затем реконструируются в трехмерный образ. Метод позволяет наблюдать в головном мозге очаги возбуждения, например, при продумывании отдельных слов, при их проговаривании вслух, что свидетельствует о его высоких разрешающих возможностях. Вместе с тем многие физиологические процессы в головном мозге человека протекают значительно быстрее тех возможностей, которыми обладает томографический метод. В исследованиях ученых немаловажное значение имеет финансовый фактор, т.е. стоимость исследования. К сожалению, томографические методы очень дороги: одно исследование мозга больного человека может стоить сотни долларов.

В распоряжении физиологов имеются также различные электрофизиологические методы исследования. Они также совершенно не опасны для мозга человека и позволяют наблюдать течение физиологических процессов в диапазоне от долей миллисекунды (1 мс = 1/1000 с) до нескольких часов. Если томография – продукт научной мысли XX века, то электрофизиология имеет глубокие исторические корни.

В XVIII столетии итальянский врач Луиджи Гальвани заметил, что отпрепарированные лапки лягушки (сейчас мы называем такой препарат нервно-мышечным) сокращаются при соприкосновении с металлом. История сохранила нам легенду: молодая красивая жена Гальвани заболела чахоткой. Согласно предписаниям медицины того времени больной требовалось усиленное питание бульоном из лягушачьих лапок. Для этой цели заботливый муж заготовил много таких лапок и развесил их на веревке на балконе. Они раскачивались под легким ветром и изредка прикасались к медным перилам балкона. Каждое такое соприкосновение приводило к сокращению лапки. Гальвани обнародовал свое замечательное открытие, назвав его биоэлектричеством. Нам известно также имя его замечательного оппонента и соотечественника физика – А. Вольта, который представил доказательства, что ток возникает на границе двух металлов (например, цинка и меди), помещенных в раствор соли. Таким образом, Вольта утверждал, что биоэлектричества не существует, и как физик привел простое физическое доказательство. Однако Гальвани доказал, что лапка лягушки может сокращаться и без соприкосновения с металлом. Он придумал опыт, который до сих пор выполняют в физиологическом практикуме студенты – медики и биологи. Опыт состоит в следующем. Если две отпрепарированные лягушачьи лапки положить рядом, затем икроножную мышцу одной лапки рассечь скальпелем и на место разреза пинцетом быстро набросить нерв от неповрежденного нервно-мышечного препарата, то его икроножная мышца в этот момент сократится. Как часто бывает в научных спорах, оба ученых оказались правы: Вольта изобрел устройство для производства электрического тока, которое вначале было названо вольтовым столбом, а в наше время называют гальваническим элементом, но имя Вольта осталось в науке как наименование единицы электрического напряжения – вольт.

Пропустим значительный отрезок истории и обратимся к XIX столетию. К этому времени уже появились первые физические приборы (струнные гальванометры), которые позволяли исследовать слабые электрические потенциалы от биологических объектов. В Манчестере (Англия) Г. Катон впервые поместил электроды (металлические проволочки) на затылочные доли головного мозга собаки и зарегистрировал колебания электрического потенциала при освещении светом ее глаз. Подобные колебания электрического потенциала сейчас называют вызванными потенциалами и широко используют при исследовании мозга человека. Это открытие прославило имя Катона и дошло до нашего времени, но современники замечательного ученого глубоко чтили его как мэра Манчестера, а не как ученого.

В России подобные исследования проводил И. М. Сеченов: ему впервые удалось зарегистрировать биоэлектрические колебания от продолговатого мозга лягушки. Другой наш соотечественник, профессор Казанского университета И. Правдич-Неминский изучал биоэлектрические колебания мозга собаки при различных состояниях животного – в покое и при возбуждении. Собственно, это были первые электроэнцефалограммы. Однако мировое признание получили исследования, проведенные в начале XX века шведским исследователем Г. Бергером. Используя уже значительно более совершенные приборы, он зарегистрировал биоэлектрические потенциалы головного мозга человека, которые теперь называют электроэнцефалограммой. В этих исследованиях впервые был зарегистрирован основной ритм биотоков мозга человека – синусоидальные колебания с частотой 8–12 Гц, который получил название альфа-ритма. Это можно считать началом современной эры исследования физиологии головного мозга человека (рис. 6).




Современные методы клинической и экспериментальной электроэнцефалографии сделали значительный шаг вперед благодаря применению компьютеров. Обычно на поверхность скальпа при клиническом обследовании больного накладывают несколько десятков чашечковых электродов. Далее эти электроды соединяют с многоканальным усилителем. Современные усилители очень чувствительны и позволяют записывать электрические колебания от мозга амплитудой всего в несколько микровольт (1 мкВ = 1/1000000 В). Далее достаточно мощный компьютер обрабатывает ЭЭГ по каждому каналу. Психофизиолога или врача, в зависимости от того, исследуется мозг здорового человека или больного, интересуют многие характеристики ЭЭГ, которые отражают те или иные стороны деятельности мозга, например ритмы ЭЭГ (альфа, бета, тета и др.), характеризующие уровень активности мозга. В качестве примера можно привести применение этого метода в анестезиологии. В настоящее время во всех хирургических клиниках мира во время операций под наркозом наряду с электрокардиограммой регистрируется и ЭЭГ, ритмы которой могут очень точно указывать глубину наркоза и контролировать деятельность мозга. Ниже мы столкнемся с применением метода ЭЭГ и в других случаях.

Нейробиологический подход к исследованию нервной системы человека

В теоретических исследованиях физиологии головного мозга человека огромную роль играет изучение центральной нервной системы животных. Эта область знаний получила название нейробиологии. Дело в том, что мозг современного человека является продуктом длительной эволюции жизни на Земле. На пути этой эволюции, которая на Земле началась примерно 3–4 млрд лет тому назад и продолжается в наше время, Природой перебирались многие варианты устройства центральной нервной системы и ее элементов. Например, нейроны, их отростки, процессы, протекающие в нейронах, остаются неизменными как у примитивных животных (например, членистоногих, рыб, амфибий, рептилий и др.), так и у человека. Это означает, что Природа остановилась на удачном образце своего творения и не изменяла его на протяжении сотен миллионов лет. Так произошло со многими структурами головного мозга. Исключение представляют большие полушария головного мозга. Они уникальны в мозге человека. Поэтому нейробиолог, имея в своем распоряжении огромное число объектов исследования, всегда может изучать тот или иной вопрос физиологии головного мозга человека на более простых, дешевых и доступных объектах. Такими объектами могут быть беспозвоночные животные. На рис. 7 схематично показан один из классических объектов современной нейрофизиологии – головоногий моллюск кальмар и нервное волокно (так называемый гигантский аксон), на котором были выполнены классические исследования по физиологии возбудимых мембран.




В последние годы для этих целей все шире применяют прижизненные срезы головного мозга новорожденных крысят и морских свинок и даже культуру нервной ткани, выращенную в лаборатории. Какие же вопросы способна решить нейробиология своими методами? Прежде всего – исследование механизмов функционирования отдельных нервных клеток и их отростков. Например, у головоногих моллюсков (кальмара, каракатицы) имеются очень толстые, гигантские аксоны (диаметром 500–1000 мкм), по которым из головного ганглия передается возбуждение на мускулатуру мантии (см. рис. 7). Молекулярные механизмы возбуждения исследуются на этом объекте. У многих моллюсков в нервных ганглиях, заменяющих у них головной мозг, есть очень большие нейроны – диаметром до 1000 мкм. Эти нейроны являются излюбленными объектами при изучении работы ионных каналов, открытие и закрытие которых управляется химическими веществами. Ряд вопросов передачи возбуждения от одного нейрона другому исследуется на нервно-мышечном соединении – синапсе (синапс в переводе с греческого означает контакт); эти синапсы по размерам в сотни раз больше подобных синапсов в головном мозге млекопитающих. Здесь протекают весьма сложные и до конца не изученные процессы. Например, нервный импульс в синапсе приводит к выбросу химического вещества, вследствие действия которого возбуждение передается на другой нейрон. Исследование этих процессов и их понимание лежат в основе целой современной индустрии производства лекарственных средств и других препаратов. Список вопросов, которые может решать современная нейробиология, бесконечно велик. Некоторые примеры мы рассмотрим далее.

Для регистрации биоэлектрической активности нейронов и их отростков применяют специальные приемы, которые называются микроэлектродной техникой. Микроэлектродная техника в зависимости от задач исследования имеет много особенностей. Обычно применяют два типа микроэлектродов – металлические и стеклянные. Металлические микроэлектроды часто изготавливают из вольфрамовой проволоки диаметром 0,3–1 мм. На первом этапе нарезают заготовки длиной по 10–20 см (это определяется глубиной, на которую будет погружен микроэлектрод в мозг исследуемого животного). Один конец заготовки электролитическим методом затачивают до диаметра 1–10 мкм. После тщательной промывки поверхности в специальных растворах ее покрывают лаком для электрической изоляции. Самый кончик электрода остается неизолированным (иногда через такой микроэлектрод пропускают слабый толчок тока, чтобы дополнительно разрушить изоляцию на самом кончике).

Для регистрации активности одиночных нейронов микроэлектрод закрепляют в специальном манипуляторе, который позволяет продвигать его в мозге животного с высокой точностью (рис. 8). В зависимости от задач исследования манипулятор может крепиться на черепе животного или отдельно. В первом случае это очень миниатюрные устройства, которые получили название микроманипуляторов. Характер регистрируемой биоэлектрической активности определяется диаметром кончика микроэлектрода. Например, при диаметре кончика микроэлектрода не более 5 мкм можно зарегистрировать потенциалы действия одиночных нейронов (в этих случаях кончик микроэлектрода должен приблизиться к исследуемому нейрону на расстояние около 100 мкм). При диаметре кончика микроэлектрода больше 10 мкм одновременно регистрируется активность десятков, а иногда сотен нейронов (мультиплай-активность).





Другой широко распространенный тип микроэлектродов изготавливают из стеклянных капилляров (трубочек). Для этой цели используются капилляры диаметром 1–3 мм. Далее на специальном устройстве, так называемой кузнице микроэлектродов, выполняют следующую операцию: капилляр в средней части разогревают до температуры плавления стекла и разрывают. В зависимости от параметров этой процедуры (температуры нагрева, величины зоны нагрева, скорости и силы разрыва и пр.) получают микропипетки с диаметром кончика до долей микрометра. На следующем этапе микропипетку заполняют раствором соли (например, 2М КС1) и получают микроэлектрод. Кончик такого микроэлектрода можно вводить внутрь нейрона (в тело или даже в его отростки), не сильно повреждая его мембрану и сохраняя его жизнедеятельность. Примеры внутриклеточной регистрации активности нейронов приведены в гл. 2.

Еще одно направление исследования головного мозга человека возникло в годы Второй мировой войны – это нейропсихология. Одним из основоположников этого подхода был профессор Московского университета Александр Романович Лурия. Метод представляет собой сочетание приемов психологического обследования с физиологическим исследованием человека с поврежденным головным мозгом. Результаты, полученные в таких исследованиях, будут многократно цитироваться далее.

Методы исследования головного мозга человека не исчерпываются описанными выше. Во введении автор скорее стремился показать современные возможности исследования головного мозга здорового и больного человека, а не описать все современные методы исследования. Эти методы возникли не на пустом месте – одни из них имеют уже многовековую историю, другие стали возможными только в век современных вычислительных стредств. При чтении книги читатель столкнется с другими методами иследования, суть которых будет разъясняться по ходу описания.


Вопросы

1. Зачем психологу нужно знать физиологию головного мозга человека?

2. Каковы современные методы исследования физиологии головного мозга?

3. Чем оправданы исследования на нервной системе животных?


Литература

Ярошевский М. Г. История психологии. М.: Мысль, 1985.

Шеперд Г. Нейробиология. М.: Мир, 1987. Т. 1, 2.

Лурия А. Р. Этапы пройденного пути (научная автобиография). М.: Изд-во Моск. ун-та, 1982.

КНИГА К ДЕСЯТИЛЕТИЮ ИНСТИТУТА МОЗГА ЧЕЛОВЕКА

Медведев Святослав Всеволодович
Институт мозга человека РАН

Проблема исследования мозга человека, проблема соотношения мозга и психи ки одна из самых захватывающих задач, которые ставились в науке. Поставлена цель познать нечто, равное по сложности самому инструменту познания. Ведь все, что до сих пор исследовалось: и атом, и галактика, и мозг животного - было проще мозга человека. С философской точки зрения неизвестно, возможно ли в принципе решение этой задачи. Есть ли у нас вообще принципиальная возможность исследовать этот мозг, понять до конца, что в нем происходит. Ведь главное средство познания - не приборы и не методы, им остается опять-таки наш человеческий мозг. Обычно мозг+прибор, который изучает какое-то явление или объект, сложнее этого объекта, в данном случае мы пытаемся действовать на равных - мозг против самого себя.

Именно грандиозность задачи привлекала великие умы. Свои представления о принципах работы мозга высказывали и Гиппократ, и Аристотель, и Декарт, и многие другие. В прошлом веке на основе клинико-анатомических сопоставлений были обнаружены области мозга, отвечающие за речь (Брока и Вернике). Однако настоящее научное исследование мозга началось в работах нашего гениального соотечественника И.М.Сеченова. Далее В.М.Бехтерев, И.П.Павлов. . . Здесь я остановлюсь в перечислении имен, так как выдающихся исследователей мозга в двадцатом веке было много и слишком велика опасность кого-нибудь (особенно из ныне здравствующих, не дай Бог) пропустить. Были сделаны великие открытия. Однако основной сложностью в исследовании именно мозга человека оставалась крайняя бедность методических подходов: психологические тесты, клинические наблюдения, и начиная с тридцатых годов, электроэнцефалограмма. По сути, это либо парадигма черного ящика, либо попытка узнать, как работает телевизор по гудению ламп и трансформаторов и по температуре футляра, либо, наконец, функциональная роль блока исследовалась на основе того, что происходит с устройством, если этот блок разбить. При этом, однако, следует заметить, что морфология мозга была уже исследована довольно хорошо.

Существовала и другая сложность - неразвитость представлений о функционировании отдельных нервных клеток. Таким образом, не было полноты знаний о кирпичиках и не было необходимых инструментов исследования целого. В известной мере можно сказать, что теор етические представления были развиты существенно полнее, чем экспериментальный базис. С тех пор поистине гигантские успехи были достигнуты трудами Экклса и П.Г.Костюка в понимании механизмов функционирования нервной клетки. Стало существенно понятнее, как устроен нейрон . Однако вопрос о том, как функционирует сообщество нервных клеток, при этом автоматически не решался.

Реально первый прорыв в изучении функционирования мозга человека (по определению академика Н.П.Бехтеревой) был связан с исследованиями в условиях прямого многоточечного контакта с мозгом человека при применении метода долгосрочных и краткосрочных имплантированных электродов для диагностики и лечения больных. По времени развертывание этого метода совпало с началом понимания того, как работает отдельный нейрон , как происходит передача информации от нейрон а к нейрон у и по нерву. Впервые в нашей стране в условиях непосредственного контакта с мозгом человека стала работать академик Н.П.Бехтерева и ее сотрудники.

Результаты, полученные при этом первом прорыве, позволили получить важнейшую информацию о механизмах работы мозга по обеспечению высших видов деятельности. Получены данные о жизни отдельных зон мозга, о соотношении коры и подкорки, о компенсаторных возможностях мозга и многое другое. Однако и здесь была проблема: мозг состоит из десятков миллиардов нейрон ов, а с помощью электродов можно было наблюдать за десятками, и то не всегда теми, которые нужны для исследования, а теми, рядом с которыми оказался лечебный электрод.

В семидесятые годы в связи с резким усовершенствованием элементной базы электроники в мире совершилась техническая революция. Появились персональные компьтеры. Появились методические возможности еще более полно исследовать внутренний мир нервной клетки, и, что очень важно для нас, появились новые методы интроскопии. Это магнитоэнцефалография, функциональная магнито-резонансная томография и позитронно-эмиссионная томография. Новые вычислительные возможности практически реанимировали исследования мозгового обеспечения высших функций с помощью электроэнцефалографии и вызванных потенциал ов. Таким образом, новые технологические возможности построили фундамент для нового прорыва. Реально это произошло в середине восьмидесятых годов.

Таким образом, научный интерес и возможность его удовлетворения наконец совпали. Видимо, поэтому Конгресс США объявил девяностые годы декадой изучения человеческого мозга. Эта инициатива быстро стала международной. Сейчас во всем мире над исследованием человеческого мозга трудятся сотни лучших лабораторий.

Надо сказать, что у нас в то время (здесь не проведение сравнения, а констатация) в верхних эшелонах власти было много умных и болеющих за державу людей. Профессионалов, думающих и о благе страны. Поэтому и у нас поняли необходимость исследования мозга человека и предложили на базе коллектива, созданного и руководимого академиком Н.П.Бехтеревой, организовать Институт мозга человека РАН как научный и практический центр по исследованию именно человеческого мозга и созданию на этой основе новых методов лечения его заболеваний.

Что отличает ИМЧ РАН от других физиологических и медицинских институтов сходного профиля?

Мы исследуем прежде всего именно то, что делает человека человеком. Наш институт специально ориентирован на исследование того, что нельзя изучать на животных. Традиционно большая часть исследований мозга проводится на животных, однако данные, полученные на кроликах или крысах, не всегда дают адекватн ое представление о работе мозга человека. Есть явления, которые могут быть изучены только на человеке. Например, одна из тем, разрабатываемых в лаборатории позитронно-эмиссионной томографии, это исследование мозговой организации обработки речи, ее орфографии и синтаксиса. Согласитесь, что это трудно исследовать на крысе. Мы проводим психофизиологические исследования на добровольцах с применением т.н. неинвазивной техники. Проще говоря, не «залезая» внутрь мозга и не причиняя особенных неудобств: например, томографические обследования или картирование мозга с помощью электроэнцефалографических методик.

Но бывает, что болезнь или несчастный случай “ставят эксперимент” на человеческом мозге: например, у больного нарушается речь или память. В этой ситуации можно исследовать те области мозга, работа которых оказалась нарушена. Или наоборот, у пациента утерян или поврежден кусочек мозга, и ученым предоставляется уникальная возможность изучить, какие свои “обязанности” мозг не может выполнять с таким нарушением. Эта методолог ия появилась еще в незапамятные времена, расцвела во второй половине XIX века и успешно используется по сей день. Недопустимо ставить эксперименты на человеке, но болезнь - это как бы эксперимент, поставленный самой природой, и в процессе ее лечения получается неоценимая информация о механизмах работы мозга.

Главные направления деятельности института - фундаментальные исследования организации мозга человека и его сложных психи ческих функций: речи, эмоций, внимания, памяти, творчества. У здоровых испытуемых и у больных. Одновременно ученые должны вести поиск методов лечения тех больных, у которых эти важные функции мозга нарушены. Именно поэтому одним из главных направлений нашей работы является оптимизация диагностики и лечения болезней мозга. Для этой цели при институте существует клиника на 160 коек. Две задачи - исследование и лечение - неразрывно связаны в работе наших сотрудников. Соединение фундаментальных исследований и практической работы с больными было одним из основных принципов работы института, разработанных его научным руководителем Натальей Петровной Бехтеревой.

Именно наличие клиники во многом определяет возможности фундаментальных и прикладных исследований ИМЧ. Поэтому прежде всего несколько слов о ней. У нас прекрасные высококвалифицированные доктора и медсестры. Без этого нельзя: ведь мы на переднем крае, и нужна высочайшая квалификация, чтобы выполнять нерутинное, новое. У нас выполняются практически все стандартные манипуляции и наряду с ними и хирургическое лечение эпилепсии и паркинсонизма, проводятся психохирургические операции, в том числе и хирургическое лечение обусловленного героином обсессивно-компульсивного синдрома, знаменитая «пересадка мозга», точнее имплантация фетальной мозговой ткани, лечение магнитости-муляцией мозга, лечение афазии с помощью электростимуляции и многое другое. Накоплен десятилетний опыт клинических обследований с помощью позитронно-эмиссионной томографии. На рисунках приведена малая толика того, что может диагносцировать этот метод томографии. У нас лежат тяжелые больные, и мы стараемся помочь с помощью вышеперечисленных методов даже тогда, когда все остальные попытки были неудачны. Конечно, это удается не всегда. Но безграничных гарантий в лечении людей дать невозможно, а если кто-то дает их, это всегда вызывает очень серьезные сомнения.

Последствия острого нарушения мозгового кровообращения.
Зона, лишенная кровотока, типичной конусообразной формы (красные стрелки), характерной для последствий острого нарушения мозгового кровообращения. Впереди от нее зона снижения кровотока (белая стрелка).

Височная эпилепсия.
Выраженное снижение уровня потребления глюкозы (красные стрелки) в коре левой височной доли, где расположен очаг эпилепсии.

Дифференциальный диагноз опухолей головного мозга.
В зоне поражения (красные стрелки) не накапливается радиофармпрепарат, что исключает опухоль головного мозга.

Злокачественная опухоль головного мозга.
Очерченный очаг резко повышенного неоднородного накопления 11 С-метионина в злокачественной опухоли левой височной доли (красные стрелки), которая неотчетливо контурировалась на магнитно-резонансных томограммах.

Практически каждая лаборатория института замкнута на отделения клиники, и это залог непрерывного появления новых методик и подходов в лечении.

Своего рода неизбежное для нашего Института мозга человека направление - исследование высших функций мозга: внимания, памяти, мышлени я, речи, эмоций, творчества. Этими проблемами занимаются несколько лабораторий, в том числе та, которой руковожу я, лаборатория академика Н.П. Бехтеревой, лаборатория доктора биологических наук лауреата Государственной премии СССР Ю.Д.Кропотова. Эти фундаментальные исследования - одна из основных теор етических линий ИМЧ. Присущие только человеку или особенно ярко проявляющиеся у человека функции мозга исследуются с помощью различных подходов: «обычная» электроэнцефалограмма, но на новом уровне картирования мозга, вызванные потенциал ы также на новом уровне, регистрация этих процессов совместно с импульсной активностью нейрон ов при непосредственном контакте с мозговой тканью в условиях лечебно-диагностического применения имплантированных электродов и, наконец, техника позитронно-эмиссионной томографии.

Работы академика Н.П.Бехтеревой в этой области достаточно широко освещались в научной и научно-популярной печати. Она начала планомерное исследование мозгового обеспечения психи ческих явлений еще тогда, когда подавляющее большинство ученых считало это практически невозможным, то есть «можно, конечно», но только в принципе, в далеком будущем, на другой технике. Как хорошо, что хотя бы в науке истина не зависит от позиции большинства, которое, кстати, теперь говорит, что эти исследования необходимы, приоритетны и т.д.!

Хотел бы отметить некоторые интересные результаты, не наиважнейшие, а те, о которых хочется упомянуть в рамках статьи. Детектор ошибок. Каждый из нас сталкивался с его работой. Вы уходите из дома, и уже на улице Вас начинает терзать странное чувство: «Что то не так.» Вы возвращаетесь - так и есть, забыли выключить свет в ванной. То есть вы пропустили стереотипное действие, и в мозге сразу включается контрольный механизм. Этот механизм был найден в середине шестидесятых, описан Н.П.Бехтеревой и сотрудниками в литературе, в том числе и западной. В начале девяностых была обнаружена детекция ошибок не только в глубоких структурах, но и в коре. В исследованиях нейрон ных механизмов детекции ошибок в процессе мыслительной деятельности статистически достоверно подтверждено отличие реакции ограниченного количества нейрон ных популяций теменной коры правого полушария (поле 7) и роландовой борозды (поле 1- 4) в виде фазического увеличения частоты разрядов только в пробах с ошибочным выполнением задачи. В верхнетеменной коре обнаружены две нейрон ные популяции, в которых селективные реакции на ошибочное выполнение теста наблюдали только во время извлечения из краткосрочной памяти. В одной нейрон ной популяции, в перироландовой коре, такого рода реакции обнаружены только во время запоминания, а в другой, в теменно-височной области, эти реакции обнаруживались и во время запоминания, и во время извлечения из краткосрочной памяти при ошибочном выполнении теста.

В исследованиях мозга человека посредством интрацеребральных электродов были достоверно обнаружены популяции нейрон ов, избирательно реагирующие на ошибочную классификацию предъявляемых образов - «детект оры ошибок». На представленных постстимульных гистограммах (паттернах текущей частоты) разрядов можно видеть достоверные различия в поведении такой нейрон ной популяции (граница putamen и globus pallidum) при различной реакции на стимулы. М1 - правильная класификация; М2 - отсутствие классификации (неопознание); М3 - ошибочная классификация.

По оси ординат гистограмм - относительные отклонения от средней частоты разрядов в фоне. По оси абсцисс - время (бины размечены точками на нижележащей линии, каждая точка - 100мс). Зеленый пунктир - моменты предъявления изображения, сигнала начала ответа, сигнала окончания ответа испытуемого. Красные линии - индикаторы статистически значим ого различия частоты нейрон ных разрядов в соответствующих бинах: под гистограммами - от частоты в фоне; на линиях, отмеченных М12, М13, М23, - между соответствующими типами реакций. Длина красной линии соответствует уровню достоверности.

Сейчас детект ор ошибок «вновь открыт» на Западе людьми, знающими работы наших ученых, но не гнушающимися прямым, скажем, заимствованием у «those russians». Он даже назван был именно так, как в работах Н.П.Бехтеревой. Вообще, кстати, исчезновение великой державы, мягко говоря, изменило отношение к нам. Случаев прямого плагиата стало больше.

Исследование по так называемому микрокартированию мозга. В наших исследованиях были обнаружены микрокорреляты различных видов деятельности. Микро- здесь значит на уровне отдельных групп клеток. Мы нашли даже такие неожиданные механизмы, как детект ор грамматической правильности осмысл енной фразы. Например, «голубая лента» и «голубой лента». Смысл понятен в обоих случаях. Но есть одна маленькая, но гордая группа нейрон ов, которая «взвивается», когда грамматика нарушена и сигнализирует об этом мозгу. Зачем это нужно? Вероятно, затем, что понимание речи часто идет именно при анализе грамматики (вспомним «глокую куздру» академика Щербы), и, если с грамматикой что-то не так, надо проводить добавочный анализ.

При микрокартировании мозга человека посредством интрацеребральных электродов были обнаружены корреляты различных видов деятельности на уровне отдельных групп клеток (микрокорреляты).

На постстимульных гистограммах (паттернах текущей частоты) разрядов в этом случае видно достоверные различия в поведении нейрон ной популяции в поле 1-4 коры левого полушария у одного из пациентов при сравнении реакции на грамматически правильную и грамматически неправильную фразу (разность 1-2).

По оси ординат гистограмм - относительные отклонения от средней частоты разрядов в фоне. По оси абсцисс - время (бины размечены точками на нижележащей линии, каждая точка - 100мс). Зеленый пунктир - моменты предъявления изображения, сигнала начала ответа, сигнала окончания ответа испытуемого. Красные линии - индикаторы статистически значим ого различия частоты нейрон ных разрядов в соответствующих бинах: под гистограммами - от частоты в фоне; на линиях, отмеченных 1-2, 1-3, 1-4, 2-3, 2-4, 3- 4, - между соответствующими типами реакций. Длина красной линии соответствует уровню достоверности.

Найдены корелляты разницы между конкретными и абстрактными словами, счета. В дополнение к широко распространен-ной точке зрения о локализации центров счета и арифметических операций в коре головного мозга человека показано, что определенные нейрон ные популяции в подкорковых структурах играют важную роль в мозговых механизмах обеспечения процессов переработки цифр. При этом в подкорковых структурах так же, как и в коре головного мозга человека, существуют нейрон ные популяции, селектив-но обеспечивающие различные этапы процессов переработки цифр: такие как восприятие физических характеристик предъявляемой информации, собственно операции счета и арифметические операции, называние цифр, подготовка будущего моторного ответа. Полученные данные подтверждают теор ию мозгового обеспечения психи ческой деятельности корково-подкорковой системой со звеньями различной степени жесткости.

Показаны различия в работе нейрон ов при восприятии слова родного языка (чашка), квазислова родного языка (чохна) и слова иностранного (вахт - время по азербайджански). Это означает, что нейрон ная популяция (совместно со всем мозгом, конечно) практически мгновенно анализирует фонетическую(?) сруктуру слова и относит ее к типам: понимаю, не понимаю, но что-то знакомое и явно не понимаю.

Обнаружено различное вовлечение в обеспечение деятельнос-ти нейрон ов коры и глубоких структур. В глубоких структурах в основном наблюдается увеличение частоты разрядов не очень специфичное относительно зоны. Как если бы каждую задачу решают всем миром. Совершенно другая картина в коре. Высокая локальная специфичность ответов. Нейрон говорит: «А ну-ка, ребята, помолчите, это мое дело, и я буду его решать сам». И действительно, все нейрон ы, кроме некоторых, понижают частоту импульсации, а только избранные мозгом для данной деятельности ее повышают.

Применение методов регистрации взаимодополняющих физиологических показателей при одинаковой структуре теста позволяет видеть локализацию, временную структуру и характеристики пространственного взаимодействия процессов развития эмоциональных реакций в мозге человека.

Слева вверху - вызванные потенциал ы (ВП) в тестах с предъявлением положительных и отрицательных оценок деятельности в различных структурах височной доли мозга человека, зарегистрированные посредством интрацеребральных электродов.

Усредненные потенциал ы семи пациентов. Красная линия – средние ВП на предъявление оценок "5". Голубая линия – средние ВП на предъявление оценок "2". Заштрихованные области – области статистически достоверных различий между ВП на предъявление положительных и отрицательных оценок.
Наиболее ранние достоверные различия в реакции на эмоционально положительные и эмоционально отрицательные стимулы обнаруживаются в височной коре и миндалине.
Справа вверху - пространственные различия возрастания локального мозгового кровотока при выполнении серии проб, в которых испытуемые получали 90% положительных оценок и серии проб, где испытуемые получали 90% отрицательных оценок.

Одним из основных направлений работы лаборатории является исследование механизмов мозгового обеспечения эмоций. С помощью анализа вызванных потенциал ов, зарегистрированных из имплантированных электродов и со скальпа, с помощью анализа результатов ПЭТ показано участие ряда образований коры и подкорки в обеспечении запуска эмоций, развития положительных и отрицательных эмоций. На рисунке продемонстрирована сложная система связей между корковыми структурами, возникающая при обеспечении эмоций.

В настоящее время под руководством Н.П.Бехтеревой организованы исследования мозгового обеспечения творчества, то есть деятельности, результатом которой не являются механические или заранее запрограммированные действия с информацией, предъяв-ляемой в задании. Поясним на примере задания, похожего на то, которое нами реально использовалось в исследовании. Если испытуе-мому предъявить слова: “я, вечер, выходить, сад, дышать, свежий, воздух” и попросить составить из них рассказ, то его содержание очевидно. А если то же задание, но слова: “я, вечер, экзистециализм, электрон, утка, радар, балет, кабан?” Попробуйте связать их в историю. В настоящее время нельзя еще говорить о законченности этого исследования, но можно сказать, что удалось обнаружить корреляты творческой деятельности и в ЭЭГ, и в мозговом кровотоке, исследуе-мом с помощью ПЭТ. А ведь это значит, что удалось подсмотреть организацию, может быть, самой человеческой из известных деятельностей.

Исследование мозговой организации творческого мышлени я.

При сравнении физиологических процессов мозга, зарегистрированных в процессе составления испытуемыми рассказа из слов разных семантических полей (задание с выраженными элементами творчества) и в процессе восстановления связного текста с изменением словоформ (такие элементы отсутствуют), выявлены достоверные локализованные различия.
В левой части представлены различия характеристик межзональных связей ЭЭГ по оценкам межзональных кросскорреляционных функций.

Средние данные по группе испытуемых. Связи отображены линиями, соединяющими места размещения соответствующих электродов. Красный цвет соответствует усилению связей, голубой - уменьшению. Толщина линий отражает уровень статистической достоверности различий связей.
Достоверные различия обнаруживаются главным образом в межполушарных связях. Наиболее выражен эффект творческих элементов задания в возрастании связей левой передневисочной зоны, охватывая и другие зоны передней доли мозга. При этом связи передневисочной и переднелобной зон правого полушария усиливаются с передними зонами коры и ослабляются с задними. Ослабляются также связи теменных и затылочных структур коры между собой.
В правой части показаны различия в возрастании локального мозгового кровотока при выполнении таких же заданий испытуемыми.
Средние данные по группе испытуемых. Сверху - левое полушарие, Внизу - правое.

Электродное картрирование активности мозга хорошо демонстрирует, что одно из полушарий у человека вовсе не молчит, как утверждают некоторые "ученые"-мист ики, а активно наравне с противоположным.

Вообще, благодаря технике позитронно-эмиссионнной томографии (или сокращенно ПЭТ), стало возможно детальное изучение одновремено всех областей мозга, отвечающих за сложные “человеческие” функции мозга. Суть метода состоит в том, что малое количество изотопа вводят в вещество, участвующее в химических превращениях внутри клеток мозга, а затем наблюдают, как меняется распределение этого вещества в интересующей нас области мозга. Если к этой области усиливается приток глюкозы с радиоактивной меткой - значит, увеличился обмен веществ, что говорит об усиленной работе нервных клеток на этом участке мозга.

А теперь представьте, что человек выполняет какое-то сложное задание, требующее от него знания правил орфографии или логического мышлени я. При этом у него наиболее активно работают нервные клетки в области мозга, “ответственной” именно за эти навыки. Усиление работы нервных клеток можно зарегистрировать с помощью ПЭТ косвенно, по увеличению локального кровотока в активированной зоне. (Более ста лет назад было показано, что усиленная работа нервных клеток приводит к увеличению локального мозгового кровотока в этой области.)

Таким образом, удалось определить, какие области мозга “отвечают” за синтаксис, орфографию, смысл речи и за решение других задач. Мы предъявляем испытуемым различным образом организованные задания, при выполнении которых необходимо «задействовать» определенные свойства речи. Например, отдельные слова, предложения, связный текст. Сравнивая ПЭТ изображения, получаемые при этой деятельности, мы можем определить, где в мозге происходит обработка отдельного слова, где синтаксиса, а где смысл а текста. Видны зоны, активирующиеся при предъявлении слов, неважно, надо ли было их читать или нет. Зоны, отвечающие за смысл текста, и другие. Интересно, и это будет рассмотрено ниже, что удалось обнаружить зоны, активирующиеся, чтобы «ничего не делать».

В исследованиях мозговых механизмов восприятия речи по результатам ПЭТ исследования с использованием локального кровотока обнаружено, что при чтении текста основные изменения происходят в области левой височной доли (38, 22, 43, 41, 42, 40 и 38 поля), 3, 4, 6, 44, 45, и 46 полей и справа в области 22, 41, 42, 38, 1, 3, и 6 полей. Сопоставление с данными других исследователей позволяет соотносить некоторые из этих результатов с процессами запоминания, чтения слов, понимания смысл а. Появилась возможность выделить области, связанные с восприятием смысл а и запоминанием текста, от областей, которые связаны с обработкой отдельных слов. Эти результаты коррелируют с полученными ранее с помощью анализа нейрон ной активности. Были также подтверждены результаты, полученные при исследовании нейрон ной активности, о вовлечении в обеспечение речи, наряду с классическими зонами, участков мозга, расположенных в других областях. При исследовании мозгового обеспечения речи картированы области коры мозга человека, участвующие в обеспечении различных стадий анализа орфографиче-ских и синтаксических характеристик. Показано, что медиальная экстрастриарная кора вовлечена в обработку орфографической струк-туры слов; значительная часть левой верхневисочной коры (зона Вернике) наиболее вероятно участвует в произвольном семантическом анализе, и менее вероятно - обработке синтаксической структуры; нижняя лобная кора левого полушария является звеном системы вербального семантического анализа, ее возможное участие в синтаксической обработке ограничено обработкой словоформ и функциональных слов, но не порядка их следования в предложении; в определение синтаксической структуры фразы на основе анализа порядка следования слов вовлечена передняя часть верхневисочной коры. На основе анализа мозгового кровотока удалось показать, что, когда человеку предъявляется связный текст даже без необходимости его читать,- задание было считать появления определенной буквы - мозг тем не менее существенно, более интенсивно вовлекается в обработку лингвистических характеристик стимулов, что выражается в активации определенных зон, чем при предъявлении с тем же заданием тех же слов, но несвязанных, перемешанных в случайном порядке.

Мозговая система непроизвольной синтаксической обработки.

Проекции на латерал ьные поверхности полушарий мозга областей активации (p < 0,01), полученных в условиях поиска буквы в связном тексте, предъявляемого бегущей строкой, в сравнении с аналогичной задачей при предъявлении синтаксически

Активация мозга в условиях обработки текста.

Области локального повышения функциональной активности нервной ткани, полученные в условиях задачи на понимание читаемого текста, по сравнению с задачей поиска буквы в бессмысл енной буквенной последовательности. Показаны проекции зон значим ых (p < 0,0001) активаций на три ортогональных плоскости (вид справа, сзади и сверху, соответственно, в верхнем ряду справа и слева, в нижнем ряду - слева). Внизу справа показаны проекции кортикальных латерал ьных активций в левом полушарии на реконструированную поверхность левого полушария «стандартного» мозга.

Активации мозга в покое.


Области повышенной функциональной активности (p < 0,0001) в состоянии спокойного бодрствования с закрытыми глазами по сравнению с прослушиванием связного текста. Для примера показаны два горизонтальных ПЭТ- «среза» на уровнях, обозначенных красными линиями на схеме «стандартного» мозга в стереотаксической системе координат.

Очень важна проблема мозгового обеспечения внимания у человека. Ею в нашем институте занимается и моя лаборатория, и лаборатория Ю.Д.Кропотова. Исследования ведутся совместно с коллективом ученых под руководством финского профессора Р.Наатанена, который открыл электрофизиологические корреляты так называемого механизма непроизвольного внимания. Чтобы понять, о чем идет речь, представьте ситуацию: охотник крадется по лесу, выслеживая добычу. Но он и сам является добычей для хищного зверя, которого не замечает, потому что настроен только на поиск оленя или зайца. И вдруг случайный треск в кустах, может быть, и не очень заметный среди птичьего щебета и шума ручья, мгновенно переключает его внимание, подает сигнал: “рядом опасность”. Механизм непроизвольного внимания сформировался у человека в глубокой древности как охранный механизм, но работает и сейчас: например, человек ведет машину, слушает радио, слышит крики детей, играющих на улице, воспринимает все звуки окружающего мира, внимание его рассеянно, и вдруг тихий стук мотора мгновенно переключает его внимание на машину - он осознает, что с двигателем что-то не в порядке (кстати, это принципиально схожее с детект ором ошибок явление). Такой переключатель внимания работает у каждого человека. Нами обнаружены ПЭТ корелляты этого механизма, а Ю.Д.Кропотовым - электрофизиологические корелляты у больных с имплантированными электродами. Смешное. Мы закончили эту работу перед очень важным и престижным симпозиумом. В спешке. Поехали туда, и там, где у нас двоих были доклады, мы с удивлением и «чувством глубокого удовлетворения» неожиданно заметили, что активация в одних и тех же зонах. Да, иногда двоим сидящим рядом надо поехать в другую страну, чтобы поговорить.

Что же мы получили? Исследованы ПЭТ корреляты неосознанного внимания, т.н. феномена негативности рассогласования - непроизвольное переключение внимания к девиантным акустическим стимулам. Проведены иследования негативности рассогласования при предъявлении как простых слуховых стимулов (тонов), так и более сложных: аккордов и фонем. При всех этих видах стимулов обнаружены сходные корреляты негативности рассогласования. Первый паттерн активаций расположен в верхневисочных отделах (слуховой коре) обоих полушарий, что указывает на реакцию на изменение тональности, даже незначительную, причем более выраженная активация височной коры имеет место, когда девиантные стимулы перемешаны со стандартными, чем при предъявлении только девиантных стимулов. Более выраженная активация присутствовала в правом полушарии, что соотвествует предшествующим электрофизиологическим данным. Второй паттерн - активации лобной доли, причем они присутствовали как при стимуляции только девиантными, так при сочетании стандартных и девиантных стимулов. В лобной доле имелись фокусы префронтальной активации, что тоже соотвествует предшествующим электрофизиологическим данным, а также в области средней и верхней лобной извилин. Также отмечались активации передних отделов поясной извилины и билатерал ьные активации задних теменных областей (правосторонняя теменная активация была описана при магнитоэнцефалографии). Активации лобной доли, скорее всего, лежат в основе сознательной уверенности субъекта в изменении стимула, который уже был неосознанно выделен слуховой корой обоих полушарий. Такая роль лобной доли как структуры, обеспечивающей переключение внимания, подтверждается выраженными паттернами активаций, которые вызываются девиантными тонами, когда их предъявляют в чистом виде с относительно длинными, нерегулярными интервалами, что известно из предыдущих исследований. Активации передних отделов поясной извилины и теменной коры могут включаться в мозговые механизмы переключения внимания. Дополнительно была выявлена активация коры островка Рейли, что не было известно по предыдущим электро- и магнитоэнцефалографическим исследованиям, но подобные активации были получены и по результатам прямой регистрации через вживленные электроды вызванных потенциал ов с этих структур в лаборатории программирования действий ИМЧ РАН. Роль этой структуры в обеспечении процессов внимания в настоящее время неизвестна и подлежит дальнейшему изучению. Таким образом, были выявлены паттерны мозговых активаций, проливающие свет на механизмы, с помощью которых девиантные слуховые стимулы вызывают непроизвольное переключение внимания.

Если механизмы внимания нарушаются, то можно говорить о болезни. В лаборатории Ю.Д. Кропотова изучают детей с так называемым дефицитом внимания и гиперактивностью. Это трудные дети, чаще мальчики, которые не могут сосредоточиться на уроке, их часто ругают дома и в школе, а на самом деле их нужно лечить, потому что у них нарушены некоторые определенные механизмы работы мозга. Еще недавно это явление не рассматривалось как болезнь, и лучшим методом борьбы с ним считались «силовые» методы. Мы сейчас можем не только определить наличие этого заболевания, но и предложить лечение таких трудных детей.

Синдром дефицита внимания характеризуется тремя компонентами: 1) невнимательностью - невозможностью в течение длительного времени концентрироваться на одном каком-либо деле; 2) импульсивностью - невозможностью задержать ответную реакцию на изменения в окружающей среде с целью более внимательного анализа этих изменений; 3) патологической отвлекаемостью - чрезмерной ориентировочной реакцией на любой внешний раздражитель, не имеющий отношения к заданию. Очень часто эти нарушения сопровождаются гиперактивностью, т.е. таким состоянием, когда общая двигательная и речевая активность значительно превышает таковую в норме. Он отмечается у 5-10% школьников. Это нарушение поведения не позволяет детям, страдающим этим заболеванием, адаптироваться в школе и семье, оно вызывает негативные реакции у родителей, учителей и даже сверстников, влечет за собой плохую успеваемость и очень часто в конечном счете приводит к алкоголизму, наркомании и другим антисоциальным проявлениям. Именно из-за этих последствий, синдром дефицита внимания находится под пристальным вниманием у медиков, учителей и ученых в США, Японии и западной Европе. В этих странах значительные средства из бюджета и частного капитала тратятся на профилактику, диагностику и лечение этого заболевания. Начиная с 1995 года лаборатория нейробиологии программирования действий Института мозга человека РАН включила в план своей научной работы исследования электрофизиологических коррелят дефицита внимания с целью использования их для объективной диагностики этого заболевания.

Однако хочется огорчить некоторый молодых читателей. Далеко не каждая шалость связана с этим заболеванием, и тогда. . . «силовые»методы оправданы.

Человек, живя в сложном и постоянно меняющемся мире, обладает огромным репертуаром программ действий, которые он способен выполнять в различных ситуациях. Эти действия охватывают простые и сложные перцептивные функции (такие как оценка цвета или формы зрительного изображения), различные мыслительные операции (такие как арифметический счет или игра в шахматы), целенаправленные двигательные акты (такие как поворот головы в нужном направлении и передвижение шахматной фигурки). В каждый момент времени человек выбирает (селектирует) из всего этого огромного набора программ действий только те, которые наиболее адекватн ы в данной ситуации. Мозговые процессы, ответственные за этот выбор, обычно объединяются под названием процессы управления (в широком смысл е) или селективное внимание и двигательная установка (в узком смысл е). В исследованиях лаборатории Кропотова показано, что механизмы центрального контроля разделяются на процессы вовлечения в необходимое действие (инициация, селекция сенсорно-двигательно-когнитивного акта) и процессы подавления ненужного действия. Эти два механизма связаны с прямым и обратным путями в цепях, соединяющих кору, базальные ганглии, таламус и кору в сложную петлю обратной связи. Показано, что процессы вовлечения и подавления обнаруживаются в положительных компонентах вызванных потенциал ов, регистрируемых с поверхности кожи головы, причем у детей с синдромом нарушения внимания и гиперактивностью компоненты вовлечения и подавления значим о уменьшены по амплитуде. На основе результатов этих исследований можно предположить, что у детей с синдромом дефицита внимания и гиперактивностью механизмы вовлечения и подавления действий нарушены вследствие гипофункции базальных ганглий.

Почему это важно сейчас? Потому, что появился объективный критерий для диагностики этого синдрома и контроля за его лечением. Как оказалось в ходе мночисленных исследований, в некоторых случаях лечить надо не детей (у них-то как раз все в порядке с мозгом), а их родителей, которые предъявляют слишком высокие требования к своим чадам. Применение нового метода диагностики позволило не только правильно поставить диагноз, но и проследить, насколько тот или иной метод эффективен для лечения заболевания.

Кроме того в лаборатории предложен новый метод лечения, основанный на феномене биологической обратной связи, когда рассогласование между теми биопотенциал ами, которые должны быть в норме, и теми, которые реально есть, выводится в той или иной форме на монитор, и пациент пытается «тренировать» свой мозг так, чтобы максимально приблизиться к норме. Как ни странно это описание звучит, но этот метод приносит неплохие результаты и, что особенно важно, в отличие от медикаментозной терапии абсолютно безвреден. В лаборатории Ю.Д. Кропотова также пытаются найти другие эффективные методы лечения. Используются методы активизации метаболической активности мозга: метод микрополяризации и электростимуляции мозга через накожные электроды, а также методы фитотерапии.

Прямые и непрямые пути в корково-подкорково-корковых взаимодействиях (слева), перестимульные гистограммы (PSTH) и таламические вызванные потенциал ы (ERPs) в ответ на стимулы, требующие вовлечения в действие (GO) и подавление подготовленного действия (NOGO) (справа).

“Включение” прямого пути приводит к активизации таламических нейрон ов и позитивной волне в вызванных потенциал ах.
“Включение” непрямого пути приводит к торможению таламических неронов и негативной волне в вызванных потенциал ах.
AC - ассоциативная кора,
Cd - хвостатое ядро,
GPi и GPe - внутренний и внешний членики бледного шара,
Th - таламус.

Проведенные психофизиологические исследования с регистрацией вызванных потенциал ов мозга показали наличие нескольких подгрупп больных с поставленным диагнозом нарушения внимания, относящихся к нарушению различных функций внимания у человека, причем каждая из этих подгрупп требует своих адекватн ых методов лечения. То, что может давать хорошие результаты у детей с доминирующим нарушением процессов вовлечения в деятельность, не работает у детей с доминирующим нарушением процессов торможения и наоборот. Вот почему важно наличие целого спектра методик лечения синдрома нарушения внимания. Вылечивая таких детей, мы вносим свой вклад в дело профилактики наркомании и алкоголизма, поскольку именно эти дети входят в группу риска по этим порокам. Как показывает зарубежная статистика, вероятность стать наркоманом или алкоголиком у таких детей на порядок выше, чем у нормальных детишек. Дети без “тормозов” легко вовлекаются в преступные компании, начинают стимулировать себя наркотиками и алкоголем. Заметим в скобках, что на западе для лечения детей с нарушением внимания используются психостимуляторы (такие как Ритлин), механизм действия которых сходен с действием кокаина. Поэтому в США в шутку говорят о двух наркомафиях: колумбийской и фармацевтической. Мы в России в нашем Институте пытаемся найти другие альтернативные способы лечения. И нам это удается!

Кроме непроизвольного внимания есть еще и селективное. Так называемое внимание на коктейль приеме. Все говорят разом, а вы следите только за собеседником, подавляя неинтересную вам болтовню соседа справа. Похожая ситуация изображена на рисунке. В оба уха расказывают истории. Разные. В первом случае следим за историей в правом ухе, а во втром - в левом. Видно, как меняется активация областей мозга. Заметим, кстати, что активация на историю в правое ухо значительно меньше. Почему? А потому, что большинство людей берут телефон в правую руку и прикладывают его к правому уху. Поэтому следить за историей в правом ухе проще.

Латерализация мозгового обеспечения селективного внимания.

Слева внимание на левое ухо, справа естественно на правое. Видно, что активированы различные зоны.

Сравнение слухового и зрительного селективного внимания.

В задании на левостороннее слуховое селективное внимание по сравнению со зрительным вниманием при дихотическом прослушивании и одновременном зрительном предъявлении различных текстов также определяется активация слуховой коры противоположного полушария, что, как и на предыдущем рисунке, отражает селективную настройку слуховой коры, не зависящую от вида и сложности предъявляемых стимулов. Процесс же подавления обработки иррелевантных, но значим ых зрительных стимулов при слуховом внимании вызывает выраженные активации зрительной коры (затылок).

Показано, что слуховое селективное внимание при бинауральной стимуляции избирательно активирует области височной коры, специфичные для слухового предъявления сигналов. Эти результаты согласуются с мировыми данными, подтверждая, что и степень выраженности этой полушарной латерал изации также зависит от направления внимания. Наши данные указывают, что этот эффект латерал изации (односторонности) сконцентрирован в первичной слуховой коре, причем селективное внимание к латерал изованным звукам усиливает активность слуховой коры преимущественно в первичных слуховых зонах контрлатерал ьно направлению подачи стимулов. То есть слуховая кора селективно настраивается в соответствии с направлением внимания, что обычно не определяется при экстракраниальной регистрации электрической или магнитной активности мозга. Наиболее вероятно, что имеющая место полушарная латерал изация активации слуховой коры, ассоциирующаяся с пространственно сфокусированным слуховым вниманием, вызвана подготовительной настройкой на внимание левой и правой слуховой коры в соотвествии с направлением внимания, предшествующей предъявлению стимулов и происходящей при фокусировке пространственого внимания. Префронтальная кора представляется вовлеченной в контроль за вниманием, т.к. в ряде работ в ней было выявлено усиление локального мозгового кровотока и усиление электрической активности. В наших исследованиях усиление префронтальной активности, особенно в ее дорзолатерал ьном отделе, ассоциируется с контролем настройки внимания правой и левой слуховой коры, причем большая выраженность активаций в лобной области при слуховом по сравнению со зрительным селективным вниманием вызвана, скорее всего, большим когнитивным усилием для выполнения слуховой дискриминации, когда внимание должно было быть направлено на один из двух конкурирующих потоков стимулов, тогда как выполнение задания на зрительное внимание не требовало внутримодального селективного внимания. Таким образом, было показано: слуховая кора селективно настраивается в соотвествии с направлением внимания. Эта настройка контролируется префронтальным исполнительным механизмом, что проявляется усилением префронтальной активности при слуховом селективном внимании.

А что будет, если еще и на мониторе третий текст, а следить нужно за слуховым или за текстом на мониторе. Мы упоминали о зонах, активированных, чтобы не делать что-то. Вспомните знаменитое «не думай о белой обезьяне». Оказалось, что если предъявлять одновременно три рассказа: один в одно ухо, один в другое и один на мониторе, и просить следить за одним (селективное внимание), то появляющиеся активации не так просто объяснить. Казалось бы, при внимании к зрительно предъявляемому рассказу должны сильнее активироваться затылочные (зрительные) отделы коры, а при внимании к рассказу, предъявляемому в ухо, височная (слуховая) кора. Так нет! При слуховом внимании активированы область клина и предклинья, то есть ассоциативная зрительная кора. Почему? Мы еще точно не можем ответить, но очень вероятным представляется, что значим ая и адекватн ая, зрительно предъявляемая информация все равно анализируется мозгом и она проходит различные структуры, сравнивается с содержимым памяти и возвращается обратно в область клина с вердиктом: «Да, это осмысл енная и значим ая информация, и она означает то-то и то-то”. Но задание-то другое, эта информация не просто не нужна, наоборот, она вредна, она мешает. И наблюдаемая активация и отражает работу в «нештатном» режиме, когда “нельзя думать о белой обезьяне”.

Другое исследование на ПЭТ, имеющее выход в клинику. Есть такое понятие как тревожность. В общем из названия можно понять, что это такое. Каждый человек характеризуется в какой-то момент определенным ее уровнем, определяемым с помощью специального и довольно простого опросника. Условно можно разбить опрашиваемых на три группы: высокий уровень, средний и низкий. Какими структурами мозга определяется этот уровень? Оказалось, что не одной структурой, а целым набором. Именно их согласованное состояние и определяет уровень тревожности. При этом логично было бы предположить, что чем выше тревожность, тем больше (или меньше) активация структуры. Оказалось, что все сложнее и интереснее. Действительно, в одной области уровень активации линейно коррелирует с уровнем тревожности. Зато в парагиппокампальной извилине слева активация минимальна при среднем уровне тревожности, а при его повышении или понижении она возрастает. Таким образом, налицо система из большого числа структур, причем каждое звено играет свою особую роль.

Отдельно хочу сказать о методе электрической стимуляции при восстановлении зрения и слуха. Это, казалось бы, невозможное при почти полной атрофии зрительного или слухового нерва - после серии стимуляций человек начинает видеть или слышать. Теоретическое обоснование этого явления еще далеко от полного понимания, однако показано, что при электростимуляции глаза происходят сложные перестройки в электрической активности всего мозга, то есть включаются сложные компенсаторные процессы, и выделяются различные биологически активные вещества, которые резко стимулируют восстановление поврежденных нервов.

Динамика полей зрения в ходе курса лечения.

Расширение полей зрения после курса импульсных модулирующих электрических воздействий на афферентные входы зрительной системы.

Картирование спектральной мощности электроэнцефалограммы до (А) и после (В) лечения.

Появление регулярного альфа-ритма в задних отделах мозга у больного с положительной клинической динамикой зрительных функций.

Здесь хочу рассказать о методе лечения, который называется фантастически: пересадка мозга. Эта операция впервые в нашей стране была сделана в ИМЧ. Суть ее схематически заключается в том, что в мозг пересаживается участок мозга человеческого эмбриона и начинает продуцировать вещества, недостаток которых приводит к болезни, например болезни Паркинсона. Этот чужой кусочек мозга может прижиться потому, что в мозге нет реакции отторжения. Однако оказалось, что не только такая прицельная пересадка мозга, когда чужие клетки берутся из определенных структур мозга эмбриона (полученного при легальном аборте) и вводятся в определенные структуры мозга реципиента, оказывает лечебный эффект. Если «просто» взять и подсадить нервную ткань эмбриона в брюшную стенку, он, конечно, не приживется, однако содержащиеся в нем активные вещества оказывают чрезвычайно стимулирующее действие на организм человека, и такое лечение помогает при эпилепсии, коматозном состоянии и т.п.

Эта задача связана с тем, что мозг человека находится в его теле. Нельзя понять его работу, не рассматривая все богатство взаимодействия мозговых систем с различными системами всего организма. Иногда это очевидно: выброс в кровь адреналина заставляет мозг перейти на новый режим работы. В здоровом теле - здоровый дух - это именно о взаимодействии тела и мозга. Однако далеко не все здесь понятно. Это взаимодействие, безусловно, важно исследовать.

Сегодня можно сказать, что многое известно о том, как работает одна нервная клетка, многие белые пятна насыщены смысл ом на карте мозга, определены области, отвечающие за многие психи ческие функции. Но между клеткой и областью мозга находится еще один, очень важный уровень - совокупность нервных клеток, ансамбль нейрон ов. Здесь пока еще много неясного. С помощью ПЭТ мы можем проследить, какие области мозга “включаются” при выполнении тех или иных задач, а вот что происходит внутри этих областей, какие сигналы посылают друг другу нервные клетки, в какой последовательности, как они взаимодействуют между собой, об этом мы пока знаем мало. Хотя определенный прогресс есть и в этом направлении. Здесь микрокартирование позволило расшифровать, какие физиологические процессы происходят в нижне-задних отделах лобной доли, по ПЭТ данным связанным с обеспечением семантики.

Раньше считали, что мозг поделен на четко разграниченные участки, каждый из которых “отвечает” за свою функцию, - это зона сгибания мизинца, а это зона любви к родителям. Эти выводы основывались на простых наблюдениях: если данный участок поврежден, то нарушена и связанная с ним функция. Со временем стало ясно, что все более сложно: нейрон ы внутри разных зон взаимодействуют между собой весьма сложным путем, и нельзя осуществлять везде четкую “привязку” функции к области мозга в том, что касается обеспечения высших функций. Можно только сказать, что эта область имеет отношение к речи, к памяти, к эмоциям. А сказать, что этот нейрон ный ансамбль мозга (не кусочек, а сеть, распределенная), и только он отвечает за восприятие букв, и в нем происходит то и то (определенно на уровне клеток), а этот - слов и предложений, задача будущего.

Обеспечение мозгом высших видов деятельности похоже на вспышку салюта: мы видим сначала множество огней, а потом они начинают гаснуть и снова загораться, перемигиваясь между собою, какие-то кусочки остаются темными, другие вспыхивают. Так же и сигнал возбуждения посылается в определенную область мозга, но деятельность нервных клеток внутри нее подчиняется своим особым ритмам, своей иерархии. В связи с этими особенностями разрушение одних нервных клеток может оказаться невосполнимой потерей для мозга, а другие вполне могут заменить соседние, “переучившиеся” нейрон ы. Каждый нейрон должен рассматриваться обязательно внутри всего скопления нервных клеток. Сейчас основная задача - расшифровка нервного кода, то есть понимание того, как конкретно обеспечиваются высшие функции. Скорее всего это можно будет сделать через исследование кооперативных эффектов в мозге, взаимодействия его элементов. Исследование того, как отдельные нейрон ы объединяются в структуру, а структура в систему и в целостный мозг. Это главная задача следующего века.

Лаборатория функциональных состояний, которой руководит профессор, лауреат Государственной премии СССР В.А.Илюхина, ведет разработки в области нейрофизиологии функциональных состояний головного мозга. Что это такое? Каждый знает, что одно и то же воздействие, одна и та же фраза иногда диаметрально противоположно воспринимается человеком в зависимости от того, что называется текущим функциональным состоянием мозга и организма. Это похоже на то, как одна и та же нота, извлекаемая из органа, имеет разный тембр в зависимости от регистра. Наш мозг и организм - сложнейшая многорегистровая система, где роль регистра играет состояние. Практически можно сказать, что весь спектр взаимоотношений человека с окружающей средой во многом определяется его функциональным состоянием. Это касается и того, возможен ли «срыв» человека-оператора за пультом управления сложнейшей машиной и особенностей реакции больного на принимаемое лекарство.

Задачей лаборатории и является исследование функциональных состояний, того, какими параметрами они определяются, как эти параметры и сами состояния зависят от состояния регуляторных систем организма, как внешние и внутренние воздействия изменяют состояния, иногда вызывая болезнь, и как в свою очередь состояния мозга и организма влияют на течение заболевания и действие лекарственных средств. Показано, что, как и реакция целостного организма, реакции отдельных структур модулируются, зависят от их состояния или, по терминологии автора, от уровня относительно стабильного функционирования (УОСФ). На основе этих исследований сформулированы представления о иерархическом принципе организации мозговых систем и о роли сверхмедленных процессов как управляющих состоянием мозговых структур. Обнаружено, что пространственное распределение УОСФ на больших территориях мозга и удержание относительной устойчивости состояния мозга обусловлено реципрокным уравновешиванием уровней относительно стабильного функционирования зон мозговых структур. Этот феномен работает таким образом, чтобы сохранить без существенных изменений текущее состояние структуры и ряда функционально связанных структур при возможности его локальных изменений в отдельных зонах. В количественном выражении УОСФ определяется по знаку, величине, времени устойчивости значений одного из видов сверхмед-ленных физиологических процессов - устойчивого потенциал а милливольтового диапазона (омега-потенциал а). В условиях длительных многодневных и многомесячных исследований было обнаружено, что УОСФ определяет амплитудно-временные характеристики спонтанной мультиклеточной импульсной активности нейрон ов (мощность импульсного потока), тип ЭСКоГ или ЭКоГ, амплитудно-временные характеристики сверхмедленных колебаний потенциал ов в диапазоне от 0,05 до 0,5 колебаний в секунду (дзета-, тау-, эпсилон-волны), регистрируемых одновременно в тех же зонах мозговых структур. Спонтанное или вызванное изменение состояния и физиологической активности зон мозговых образований отражалось в вариативности разных видов нейродинамики, что позволяло наблюдать сложноорганизованные пространственно-временные преобразования параллельно протекающих с разными скоростями нейрофизиологических процессов, их соподчиненность и относительную независимость, то есть реально наблюдать динамическую работу этой сложной иерархической системы.

При выполнении экстренных стереотипных видов деятель-ности (активация внимания, готовность к действию, мобилизация краткосрочной памяти) мозговые системы их обеспечения формируют-ся из потенциал ьно физиологически активных звеньев, т.е. готовых в конкретных условиях проявить эту активность. При этом, в зависимости от структуры деятельности, физиологическая активность звеньев систем развертывается в определенной временной последова-тельности с возможным появлением реакции сначала в динамике импульсной активности нейрон ов и ранних фазах вызванных потенциал ов (ВП). Далее, отставлено во времени (латентный период - десятки и сотни мсек) могут возникать изменения поздних компонен-тов ВП, слабых по интенсивности (амплитудой десятки мкВ) сверхмедленных физиологических процессов секундного диапазона (СNV, типовые фазические изменения дзета-волн). Обнаружено, что звенья системы обеспечения экстренных стереотипных видов деятельности сохраняют физиологическую активность до тех пор, пока в связи с экзогенным или эндогенным воздействием не изменится их текущее состояние (УОСФ). Следует подчеркнуть, что изменение УОСФ зон мозговых структур в этих условиях влечет за собой исчезновение физиологической активности одних звеньев и, наоборот, проявлением физиологической активности других.

Реципрокность изменений в различных зонах и перераспределение их активации, по-видимому, является одним их базовых свойств мозга, определяющих его устойчивость и богатство возможностей и защитные функции. Особенно ярко это проявилось в исследованиях мозгового обеспечения эмоций, проведенных под руководством Н.П.Бехтеревой в восьмидесятые годы. Было обнаружено, что у эмоционально сбалансированного человека при развитии какой либо эмоции определенные сдвиги сверхмедленных физиологических процессов, определяемые по величине и знаку омега-потенциал а в одних структурах, обычно сопровождаются противоположными по знаку изменениями этого показателя в других структурах. Этот механизм предотвращает запредельное развитие какой-то эмоции, сохраняет человека эмоционально уравновешенным и сбалансированным. При его нарушении развиваются тяжелые эмоциональные расстройства именно потому, что не работает механизм, позволяющий сдержать чрезмерное развитие определенной эмоции. В исследованиях импульсной активности (Медведев, Кроль) было показано, что даже при выполнении чрезвычайно монотонной деятельности при попытке полностью стабилизировать работу мозга происходят эндогенные самопроизвольные перестройки в работе его структур. Другими словами, даже при выполнении монотонной стереотипной психи ческой деятельности система ее обеспечения непрерывно реорганизуется. Таким образом, можно сказать, что для выполнения задачи формируется как бы временный трудовой коллектив, который все время меняется, и все его члены, во-первых, тренированы для выполнения различных задач, а, во-вторых, регулярно имеют возможность передохнуть.

При учете особенностей состояний мозга и организма можно правильно делать выбор между альтернативными путями лечения. Интересно определение адаптационных возможностей человека: можно предсказать, насколько устойчив будет данный индивидуум при каком-либо воздействии, стрессе. Оказалось, что некоторые, даже молодые люди, уже исчерпали свои адаптиционные возможности и даже умеренные нагрузки могут вызвать у них патологическую реакцию. Можно выявлять таких людей и вовремя оказывать им корректирующее лечение.

Актуальной задачей занимается лаборатория нейроиммунологии (профессор, д.м.н. И.Д.Столяров). Сейчас известно, что многие нервные болезни связаны с неправильной работой иммунной системы. Нарушения иммунорегуляции часто приводят к возникновению тяжелых заболеваний головного мозга. Нервная и иммунная системы осуществляют свои защитные функции, находясь в тесном взаимодействии. Их объединяют общие принципы организации, общие молекулы-посредники, значим ые для организма в целом регуляторные функции. Обнаруженные закономерности нейроиммунной реакции на чужеродный стимул позволили использовать полученные данные для диагностики и лечения ряда заболеваний головного мозга. Клиницисты и раньше отмечали, что, с одной стороны, разрушение или недоразвитие мозговых стуктур сопровождается иммунодефицитом, с другой стороны, первичные и вторичные иммунодефициты ведут к функциональным нарушениям или заболеваниям головного мозга. В развитии многих хронических болезней нервной системы гораздо большее значение, чем предполагалось, имеют инфекционно-вирусные и далее - иммунопатологические механизмы.

Рассеянный склероз - тяжелое хроническое заболевание головного и спинного мозга, поражающее сравнительно молодых людей 20 - 40 лет. Неясность многих вопросов возникновения и механизмов развития заболевания, трудности диагностики на ранних стадиях развития, разнообразие клинических вариантов течения с быстрой инвалидизацией, отсутствие эффективных методов лечения вывели изучение рассеянного склероза в круг наиболее актуальных задач современной медицины. В лаборатории нейроиммунологии Института мозга человека РАН разработан новый подход, позволяющий одновременно с использованием специфичных иммунологических методов оценки поражения клеток центральной нервной системы применять магнитно-резонансную и позитронно-эмиссионную томографию для визуализации патологического процесса. Принципиальная новизна состоит в том, что данный подход позволяет одновременно оценивать как системные аутоиммунные нарушения при рассеянном склерозе, так и локальные функциональные и морфологические изменения в центральной нервной системе. Комплексное нейроиммунологическое, инструментальное, клиническое обследование пациентов с рассеянным склерозом позволило установить важную роль поражений коры и подкорковых структур в механизмах развития этого заболевания.

Если раньше диагноз «рассеянный склероз» звучал как приговор, то в настоящее время применение современных генноинженерных иммунокорригирующих препаратов позволяет значительно улучшить качество жизни пациента, длительное время сохранять трудоспособность. Для повышения эффективности применения этих препаратов в лаборатории нейроиммунологии были разработаны иммунологические критерии оценки эффективности иммунокорригирующих и генноинженерных лекарственных средств у пациентов с рассеянным склерозом.

Иммунологические механизмы играют роль не только при рассеянном склерозе. Разрушение части мозговой ткани при инсультах также вызывает иммунологические сдвиги. Причем вызванные вторичным иммунодефицитом инфекционные осложнения являются одним из тяжелых, нередко заканчивающимся смертью пациента от этих осложнений инсульта. Исследованиями сотрудников лаборатории нейроиммунологии было показано, что сторона поражения головного мозга при церебральных ишемиях в эксперименте и клинике может определять особенность изменения иммунологической реактивности. А в рамках комплексного развития новых методов лечения и реабилитации постинсультных больных впервые доказано, что применяющиеся теперешними сотрудниками ИМЧ с 1972 года электрические стимуляции структур коры головного мозга при подострых ишемических инсультах сопровождаются нормализацией иммунологических показателей. Своевременно проведенная иммунокорригирующая терапия позволяет существенно снизить тяжесть осложнений или вообще их избежать. Не так давно руководитель этой лаборатории вошел в совет Европейского комитета, занимающегося исследованием и лечением рассеянного склероза.

Вторая половина девятнадцатого и большая часть двадцатого века имели девизом победу над природой. И действительно, человек праздновал одну за другой победу над природой. Он покорял реки и побеждал болезни. Но оказалось, что это были не подчинения природы, а тактическое отступление для перегруппировки ее сил. Сейчас можно привести много примеров, так сказать успешных контратак природы. Это и СПИД, и гепатит С, и многое другое. Природа ответила в частности и тем, что сейчас особенно обострились проблемы, созданные самим человеком, так называемые техногенные. Мы живем в сильных магнитных полях (трамвай, метро, линии электропередач и т.п.), при свете газосветных ламп - мигание 50 герц, часами смотрим на дисплей компьютера - те же герцы, говорим по мобильному телефону и далее. . . Все это далеко не безразлично для человека, и повышенная утомляемость еще не самое страшное. Этими исследованиями занимается лаборатория под руководством д.м.н. Е.Б.Лыскова.

Мы уже не можем жить без телефона, телевизора, без электрического тока и прочих достижений цивилизации. Поэтому необходимы исследования того, как мирно сосуществовать с ними. Например, хорошо известно, что мигающий свет способен вызвать даже эпилептический припадок. Однако удивительно, как самые простые меры могут резко снизить опасность. Противодействие - закройте один глаз, и генерализации не произойдет. Чтобы резко снизить «поражающее действие» радиотелефона - кстати, оно еще точно не доказано, можно просто изменить конструкцию так, чтобы направить антену вниз, и мозг не будет облучаться. Например, в лаборатории показано, что воздействие переменного магнитного поля отрицательно сказывается на обучении. Однако не любого поля, а обладающего определеной частотой и амплитудой. Поэтому именно этих параметров надо стараться избегать. Монитор с частотой развертки 50-60 гц оказывает вредное влияние, особенно если вы сидите близко к нему. Однако, если частоту сделать хотя бы 80 гц, то вредное действие резко уменьшится. Сейчас уже научились выявлять людей группы риска - повышенно чувствительных к техногенным воздействиям. Тем самым объясняя, казалось бы, беспричинные, нервные расстройства. Эта работа проводится в рамках очень тесного международного сотрудничества.

Исследования мозга существенно затруднены сложностью прямого доступа к нему.

При обычной полостной операции рассекается кожа, и практически сразу хирург имеет доступ к интересующему его органу. По окончании операции кожу зашивают и через две - три недели остается только рубец. Мозг закрыт черепом, и для доступа к нему хирургу приходится проводить трепанацию черепа, то есть разрушать какую-то его, иногда не малую, часть. Но это еще не самое страшное. Если поражение находится в глубине мозга, то необходимо до него дойти, раздвигая (и иногда разрушая «по дороге») другие области мозга. Это резко увеличивает травматичность операции и иногда делает ее невозможной, так как этот попутный ущерб может вызвать худшие последствия, чем сама болезнь.

Разрешить это противоречие возможно с применением стереотаксической техники. Стереотаксис - наукоемкая медицинская технология, обеспечивающая возможность малотравматичного, щадящего, прицельного доступа к глубоким структурам головного мозга и дозированное воздействие на них. Стереотаксис вомногом - нейрохирургия будущего, он способен заменить целый ряд “открытых” нейрохирургических вмешательств с широкими костно-пластическими трепанациями на малотравматичные щадящие воздействия.
Современная нейрохирургия использует проверенные временем методики точной локализации поражения в мозге и сегодня это, в первую очередь, осуществляется методами магниторезонансной томографии, разрешение которой перекрывает потребности для определения места хирургического вмешательства. В типичных условиях современной клиники http://госпиталь.укр/нейрохирургия выполняется практически весь спектр нейрохирургической помощи, включая самые современные методы локализации места воздействия.

Суть стереотаксиса: очень точно знать, где в мозге находится структура (мишень), на которую необходимо воздействовать - коагулировать, заморозить, эвакуировать, стимулировать, и через маленькое отверстие в черепе - около сантиметра - ввести тонкий, около двух миллиметров в диаметре, инструмент, который чаще не прокалывает, а как бы раздвигает ткань мозга с минимальным травматическим воздействием. На конце этого инструмента размещен эффектор , который и производит необходимое воздействие. При этом еще исключительно важно точно попасть инструментом в структуру-мишень.

В развитых странах, прежде всего в США, клинический стереотаксис занял достойное место в нейрохирургии. В настоящее время в США насчитывается около 300 нейрохирургов-стереотаксистов, членов Американского стереотаксического общества. Основа стереотаксиса - математика и точные приборы, обеспечивающие прицельное погружение в мозг тонких инструментов. Важную роль в стереотаксисе играют современные методы и приборы интроскопии, которые позволяют “заглянуть” в мозг живого человека. Как указывалось выше, это - позитронно-эмиссионная томография, магнито-резонансная томография, компьютерная рентгеновская томография. “Стереотаксис- мерило методической зрелости нейрохирургии” - мнение ныне покойного нейрохирурга Л.В.Абракова. И, наконец, очень важно для стереотаксического метода лечения знание роли отдельных ядер, «точек» в мозге человека, понимание их взаимодействия, т.е. знание того, где и что именно нужно сделать в мозге для лечения той или иной болезни.

Лаборатория стереотаксических методов Института мозга человека РАН под руководством д.м.н. лауреата Государственной премии СССР А.Д.Аничкова - ведущий стереотаксический центр России. Здесь родилось самое современное направление стереотаксиса - компьютерный стереотакcис с программно-математическим обеспечением, реализуемым на ЭВМ (до этих разработок стереотакси-ческие расчеты проводились нейрохирургами во время операции, или же больной в травматичной раме должен был непосредственно перед операцией подвергаться интроскопии (МРТ или КТ)). Здесь же разработаны десятки стереотаксических приборов, некоторые из которых прошли клиническую апробацию и с помощью которых решались самые сложные задачи стереотаксического наведения. Совместно с коллегами из ЦНИИ “Электроприбор” создана и впер-вые в России серийно выпускается компьютеризированная стереотак-сическая система, которая по ряду основных показателей превосходит аналогичные зарубежные образцы. “Наконец робкие лучи цивилизации осветили наши темные пещеры”, - неизвестный автор.

В нашем Институте стереотаксис применяется при лечении больных, страдающих двигательными нарушениями (болезнью Паркинсона, хореей Гентингтона, другими гемигиперкинезами и др.), эпилепсией, неукротимыми болями (в частности фантомно-болевым синдромом), некоторыми психи ческими нарушениями. Кроме того, стереотаксис может применяться и применяется для уточненной диагностики и лечения некоторых опухолей головного мозга, лечения гематом, абсцессов, кист мозга. Важно подчеркнуть, что стереотаксические вмешательства (как и все остальные нейрохирургические вмешательства) предлагаются больному только в том случае, если исчерпаны все возможности нехирургического (медикаментозного) лечения, и само заболевание представляет для пациента опасность (или лишает его трудоспособности, десоциализирует его). Естественно, что все операции производятся в клинике ИМЧ только при согласии больного и его родственников, после консилиума специалистов разного профиля.

Можно говорить о двух видах стереотаксиса. Первый, нефункциональный, применяется тогда, когда в глубине мозга имеется какое-то органическое поражение. Например, опухоль. При попытке ее удаления с помощью обычной техники придется проходить через здоровые, выполняющие важные функции структуры, и больному может быть нанесен вред, иногда даже несовместимый с жизнью. Однако эта опухоль хорошо видна с помощью современных средств интровидения: магниторезонансного и позитронно-эмиссионного томографов. Можно рассчитать ее координаты и разрушить ее, или, например (еще один метод, развиваемый в ИМЧ), ввести с помощью малотравматичного тонкого щупа радиоактивные источники, которые выжгут опухоль и за это же время распадутся. Повреждения при проходе сквозь мозговую ткань минимальны, будет уничтожена только опухоль, причем иногда очень сложной формы, очень агрессивная, и уничтожена радикально. Мы провели ряд таких операций несколько лет назад, и до сих пор живут больные, у которых при традиционных методах лечения не было никакой надежды.

Суть этого метода в том, что мы устраняем «дефект», который четко виден. Задача состоит в том, как до него добраться, какой путь выбрать, чтбы не задеть важные зоны, какой адекватн ый метод устранения «дефекта» выбрать: имплантацию источников, термокоагуляцию или криодеструкцию, но суть одна: мы устраняем то, что четко видим.

Принципиально другая ситуация при «функциональном» стереотаксисе, который применяется при лечении ряда заболеваний, описанных выше. Причина болезни часто заключается в том, что одна маленькая группа клеток или несколько групп, расположенных близко или далеко друг от друга, работают неправильно. Они либо не выделяют необходимые вещества, либо выделяют их слишком много. Они могут быть патологически возбужденными и провоциро-вать здоровые клетки на «нехорошую» активность. Эти нехорошие клетки надо найти и либо уничтожить, либо изолировать, либо (что очень интересно) «перевоспитать» с помощью электростимуляции. Важно то, что здесь нельзя увидеть пораженный участок. Мы должны его вычислить, как Леверье вычислил орбиту Нептуна.

Именно здесь критически важны фундаментальные знания о принципах работы мозга, о взаимодействии его участков, о функциональной роли каждого участка мозга. Важно использовать результаты нового направления, разработанного участником нашей команды, покойным профессором В.М.Смирновым, - стерео-таксической неврологии. Это высший пилотаж. Однако именно на этом пути лежит возможность лечения многих тяжелых заболеваний, в том числе и психи ческих.

Результаты, в том числе, и наших исследований показали, что практически любая сколь-либо сложная деятельность, и особенно психи ческая, обеспечивается в мозге сложной, распределенной в пространстве и принципиально изменчивой во времени системой, состоящей из звеньев различной степени жесткости . Понятно, что вмешиваться в работу системы значительно сложнее. Тем не менее, сейчас в ряде случаев, о которых будет рассказано ниже, мы это умеем.

Есть нервные клетки, от рождения готовые к своей работе. Это, например, нейрон ы первичной зрительной коры. Другие воспиты-ваются по ходу онтогенез а и научаются чему-то. Как это происходит? Сначала в обеспечение новой деятельности вовлекается большая группа клеток. Потом по мере ее «стереотипизации» происходит минимизация территорий и количество нейрон ов, ее обеспечивающих, радикально уменьшается. Остальные клетки как бы забывают то, что они умели делать. Но, как нам удалось показать, не навсегда. Даже после этой специализации они в принципе способны взять на себя выполнение каких-то других задач, они не окончательно “забыли”, как можно работать по-другому. Поэтому можно попытаться заставить их взять на себя работу утраченных нервных клеток, заменить их.

Нейроны мозга работают как команда корабля: один хорошо умеет вести судно по курсу, другой - стрелять, третий - готовить пищу. Но ведь и стрелка можно научить готовить борщ, а кока - наводить орудие. Нужно только объяснить им, как это делается. В принципе это естественный механизм: если травма мозга произошла у ребенка, у него нервные клетки самопроизвольно “переучиваются”. У взрослых же для “переучивания” клеток нужно применять специальные методы.

На этом и основан метод лечения: с помощью точечной электрической или распределенной магнитной стимуляции обучают одни нервные клетки выполнять работу других, которые уже нельзя восстановить. Скорее всего электрическая стимуляция здесь резко и неспецифически активирует область мозга, повышая при этом уровень его пластичности. В этом направлении уже получены хорошие результаты: например, некоторых пациентов с травматическими поражениями областей Брока и Вернике, отвечающей за формирование речи, удалось обучить говорить и понимать речь заново.

Это было перевоспитание нейрон ов. Но ряд заболеваний мозга, в частности, приводящих к серьезным психи ческим расстройствам, таким как обсессивно-компульсивный синдром (навязчивые сосотояния), болезнь Жиля де ля Туретта, патологическая агрессивность, возникают из-за гиперактивности определенных структур мозга. Здесь задачей стереотаксической операции является устранение этого очага возбуждения. Это, в принципе, «своя» задача для функционального стереотаксиса. В отличие от метода электростимуляций он применяется тогда, когда имеется «плюс» явление (патологическое возбуждение, перепроизводство какого-либо вещества и связанные с этим гиперкинезы, эмоциональные возбуждения и т.п.) и его нужно уничтожить, и не применяется при «минус» явлениях, когда из-за гипоактивности какого-либо участка мозга возникает, например, плегия.

Рассмотрим это на примере, который сейчас стал очень злободневным: хирургическое лечение обусловленного потреблением наркотиков обсессивно-компульсивного синдрома. Одним из страшных свойств наркотика является привыкание к нему, привыкание настолько, что наркоман становится зависим от него, не может без него жить. Есть два типа зависимости: физическая и психологическая. Первый тип зависимости обусловлен встраиванием героина в механизм потребления энерги и клеткой мозга. Клетка привыкает питаться по облегченному (но не эффективному) варианту и не хочет возвращаться к старому и эффективному. Поэтому при прекращении приема наркотика происходит «ломка» - абстиненция, которая крайне мучительна и может кончиться даже смертью наркомана. Однако современная медицина научилась относительно легко и безболезненно справляться с этим, существуют различные, очень эффективные способы устранения физической зависимости, которые с успехом применяются во многих клиниках. Итак, наркоман «отмыт». Его организм более не нуждается в наркотиках. Но он помнит о том великолепном ощущении, которое он испытывал при их употреблении, и всеми фибрами своей души мечтает еще раз его испытать. Это не блажь, это тяжелое психи ческое заболевание: обсессивно-компульсивный синдром - и противиться этому влечению невозможно. На него не действуют разумные доводы. К сожалению, до сих пор эффективность лечения психологической зависимости от наркотика чрезвычайно низка и составляет от 3 до 8 процентов. Учитывая то, что средний срок жизни героинового наркомана четыре года, можно сказать, что больной обречен. В этом смысл е героин можно сравнить с злокачественной опухолью, и, как правило, можно говорить не об излечении, а о сроке выживания, отсрочке страшного конца.

В нашей клинике используется хирургический метод лечения героиново обусловленного обсессивно-компульсивного синдрома. Теоретическое объяснение и самого синдрома, и механизма действия предложенного метода лечения еще не может считаться полностью завершенным, поэтому ниже будет приведена одна из концепций, которую мы считаем наиболее вероятной. Естественно, что в данной статье, рассчитанной на массового читателя, она будет приведена в упрощенной форме, за что приношу свои извинения специалистам.

Патологическое влечение к наркотикам обусловлено запечатлеванием эмоциональной памяти о чувствах, испытанных после его приема. Это эмоциональное возбуждение настолько сильно, что заслоняет собой практически все. Вся жизнь наркомана подчинена идее достижения еще раз такого же состояния. Как и всем психологическим феноменам, этому соответствуют определенные нейрофизиологические процессы. Важнейшей системой, обеспечивающей эмоции, является лимбическая система. Схематически она может быть изображена в виде замкнутого круга, состоящего из различных мозговых структур, и эмоциональные феномены соответствуют определенной импульсации (активации или деактивации) нейрон ов этих структур. Согласно концепции, которой мы придерживаемся, навязчивое состояние проявляется в появлении в этом круге патологического гипервозбуждения, которое, циркулируя по кругу, по механизму положительной обратной связи выходит на уровень насыщения, подавляет любые другие эмоции и становится неуправляемым . (См. выше о сбалансированности эмоций.) Этот механизм одинаков для навязчивого состояния любой природы. Это то самое реверберирующее возбуждение, которое и определяет основную суть кратковременной памяти. Только обычно такие возбуждения гасятся во время сна, а навязчивое состоянии настолько сильно возбуждено и поддерживается какими-то внешними стимулами, что -нет. Оно продолжает быть активным и после сна, чем и проявляется как навязчивое, постоянное. Естественно напрашивается идея разорвать этот порочный круг. Поэтому еще в шестидесятые годы структуры лимбической системы были предложены в качестве структур-мишеней для операций по поводу обсессивно-компульсивного синдрома. В частности мишень, используемая нами при лечении наркоманов, была предложена в 1962 году. Однако недостаточный методический уровень, существовавший в то время, не позволил этой операции стать широко применяемой. Положение радикально изменилось при внедрении современного стереотаксиса, разработанного, в том числе, и в нашем институте. Оказалось возможным посредством малотравматичного доступа с помощью криозонда наружным диаметром 2.6 мм заморозить небольшой участок поясной извилины между передней и средней ее отделами и тем самым перерезать этот порочный круг. Сама операция предельно малотравматична, это как бы укол в мозг. Выбранный метод воздействия - замораживание выгодно отличается от термокоагуляции и других разрушающих ткань воздействий тем, что оставляет неповрежденными стенки артерий и артериол, тем самым минимизируя опасность кровотечения. Как правило, больной уже на опрерационном столе говорит, что его больше не тянет к наркотикам. Почему? Да потому, что несмотря на то, что он помнит о наркотиках, уже нет этой патологической гиперимпульсации, и эта память эмоционально не окрашена. Да. Он помнит, что кололся, но почему это так здорово, не помнит. Исчезает это сметающее все на своем пути эмоциональное возбуждение, и остается просто память. Интересно, что специально проведенные исследования показали, что профиль личности при этом не меняется, кроме, пожалуй, естественного расширения эмоциональной сферы. Естественно, он думал только о наркотике, а теперь заметил, что есть еще и красивые девушки.

Таков возможный механизм стереотаксического лечения навязчивых состояний разной природы. Это и фантомно болевой синдром, при лечении которого мы и обнаружили исчезновение тяги к наркотикам (больные для облегчения болей вынуждены были принимать наркотики), и другие.

Естественно, однако, что операция остается операцией. Она всегда потенциал ьно опасна, поэтому мы идем на нее только, когда исчерпаны все остальные методы консер-вативного лечения. Таким образом, механизмы лечебного воздействия психохирургических операций, направленных на выключение структур лимбической системы, можно объяснить частичным прерыванием патологической импульсации, которая циркулирует по нервным путям. Эта импульсация, которая является следствием гиперактивности (чрезмерной активности) разных (при разных болезнях) зон мозга, является механизмом, общим для целого ряда хронических заболеваний нервной системы, таких как эпилепсия, навязчивые состояния. Эти пути надо найти и максимально щадяще выключить. Стереотаксические психохирургические вмешательства (их проведено многие сотни и больше всего в США) - современный метод лечения больных, страдающих некоторыми психи ческими нарушениями (прежде всего - ОКР- обсессивно-компульсивные расстройства, т.е. навязчивые состояния), для которых оказались неэффективными нехирургические методы лечения.

На уровне клеток вся работа мозга связана с химическими превращениями различных веществ, поэтому для нас важны результаты, полученные в лаборатории молекулярной нейробиологии, руководимой профессором С.А.Дамбиновой. В лаборатории исследуют нейрохимические основы функциональной целостности мозга и организма с помощью современных молекулярных подходов. Другими словами, в лаборатории изучают молекулярные процессы, которые связаны с преобразованием простых химических сигналов в сложные интегративные, обеспечивающие функции целого организма. Рассмотрим, как это происходит.

Например, параллельно с физиологическими исследованиями деятельности мозга при двигательных нарушениях проводили изучение метаболизма нейромедиаторов (веществ, передающих информацию от нейрон а к нейрон у): глутамата, ГАМК, дофамина и серотонина. Было выявлено, что их клиническая динамика у больных паркинсонизмом стабилизировалась при положительном эффекте лечебных электрических стимуляций (ЛЭС). Однако компенсация дефицита дофамина и серотонина с помощью фармтерапии не давала ожидаемого эффекта у больных паркинсонизмом. Только после того, как впервые были обнаружены низкомолекулярные пептидные фракции, которые появлялись непосредственно после ЛЭС и сопровождали улучшение клинического состояния больных - снижение тремора, ригидности и появление положительных эмоциональных реакций, стала ясна их основополагающая роль в нейрохимии движения.

При дальнейшем изучении этих пептидных фракций были выделены и охарактеризованы пептиды тахикининовой группы или пептиды группы субстанции Р. Введение этих пептидов в спинномозговую жидкость больного с помощью разработанного нами совместно с нейрохирургами метода аутогемоликворотрансфузии повторило лечебный эффект ЛЭС и одновременное стимулирование положительных эмоций у больных паркинсонизмом.

Оказалось, что именно эти пептиды регулируют холинолити-ческие и дофаминергические пути и обладают свойствами, тормозящими гиперфункцию пролактина. Долгосрочные эффекты ЛЭС связаны, прежде всего, с нормализацией и компенсацией молекулярного дефицита в системе нейромедиаторы-нейропептиды-нейрогормоны в организации двигательных и тесно связанных с ними эмоциональных реакций. Особенно интересно, что подобные закономерности обнаружились позднее у больных героиновой наркоманией, у которых были выявлены существенные изменения содержания дофамина и серотонина в биологических жидкостях. Поэтому создание новых фармакологических средств на основе обнаруженных нейропептидов является весьма перспективным направлением в лечении паркинсонизма, наркомании и депрессивных состояний.

Для того, чтобы понять конкретные механизмы, лежащие в основе двигательных и эмоциональных функций мозга, необходимо было изучить следующий, по иерархии передачи сигнала, межклеточный нейрорецептор ный уровень.

Нейрорецептор ы - это макромолекулы на мембране нейрон а, мозаика которых определяет специфичность его функций, функции зоны или структуры мозга. Полирецептор ность структуры мозга отражает полифункциональность систем обеспечения разнообразной деятельности одних и тех же клеток и зон в нервной ткани.

Локализация мю- и дельта опиатных рецептор ов в структурах мозга.

Введение опиатов приводит к активации дофаминергических нейрон ов и выделению дофамина в вентральной тегментальной области и прилежащем ядре. Этот эффект опиатов опосредуется через ингибирование активности ГАМК-ергических нейрон ов.

Поэтому в лаборатории особое внимание уделено изучению структуры и функций нейрорецептор ов глутамата, опиатов и их метаболитов, которые участвуют в развитии ишемии мозга и судорожных реакций и появлении психи ческой и физической зависимости от психотропных средств. Предполагается, что именно эти возбуждающие рецептор ы мозга принимают первоочередное участие во взаимодействии и реорганизации систем обеспечения сложных функций мозга человека, связанных с движением и эмоциональным поведением.

Каким образом нейрорецептор ы работают в клетке, как они осуществляют взаимодействие внутри системы и их межсистемные связи, каковы их свойства в норме и патологии, составляет предмет глубоких нейрохимических исследований.

На основании многолетних исследований в лаборатории удалось установить, что рецептор ы глутамата и опиатов изменяют свои функции в ткани мозга при гипервозбуждении и способны изменять состояние целостного организма при стимуляции фармакологическими агонистами и антагонистами. Изучение молекулярных свойств этих рецептор ов обнаружило их сходство в динамике реорганизации разных функций в системе «мозг-организм», связанной с нарушением обмена в биологических жидкостях метаболитов рецептор ов (глутамата, аспартата, опиатов). Приведем следующие примеры участия опиатных рецептор ов в механизмах организации эмоциональных переживаний на экспериментальной модели самовведения героина у крыс. Были выявлены следующие закономерности:

Установлено, что вознаграждающие эффекты наркотиков (героина и морфина) опосредствованы через опиатные рецептор ы, располагающиеся в мезолимбической системе и регулирующие увеличение содержания дофамина в межклеточном пространстве.
-показано, что хроническая активация героином опиатных рецептор ов приводит к стимуляции дополнительных рецептор ов, которые требуют для выполнения своих функций новых порций наркотика и участвуют в формировании непреодолимого влечения к потреблению героина.
-выявлено, что на начальной стадии идет усиление экспрессии генов опиатных рецептор ов и существенная стимуляция деятельности мозга - активация поведенческих реакций, стимуляция эмоциональных переживаний (отсутствие страха, боли, эйфория).

С другой стороны, длительное и систематическое потребление героина нарушает стабильность в системе «мозг-организм» и постепенно приводит к разрушению избыточных, а затем и необходимых количеств нейрорецептор ов, которые отражают перестройку системы организации функций мозга и степень деструктивных процессов нервных клеток в его структурах. Организм реагирует на эти нарушения выработкой «аутоантител» к специфическим фрагментам опиатных рецептор ов, как «свидетелей» к «чужеродным» антигенам нервной ткани. Оказалось, что появление и количество аутоантител к отдельным фрагментам опиатных рецептор ов коррелирует со степенью выраженности симптомов наркотической зависимости. Поэтому по анализу крови на содержание аутоантител к нейрорецептор ам мозга стало возможным определять функциональное состояние мозга и организма животных и человека и был создан диагностический набор «Наркотест», позволяющий объективно оценивать степень зависимости от наркотика и проводить контроль за эффективностью лечения наркоманов.

Аналогичные закономерности были выявлены при изучении молекулярных механизмов развития эпилепсии и ишемических поражений мозга, которые позволили разработать оригинальные и объективные показатели оценки функции мозга (ПА-тест и CIS-тест) для ранней лабораторной диагностики пароксизмальной активности и церебральной ишемии у человека. Эти методы лабораторной диагностики уже применяются в некоторых научно-лечебных учреждениях страны и за рубежом.

Таким образом, фундаментальные исследования в области нейрохимии уже дают практические результаты для медицины. В этом случае нейрохимия выступает как молекулярный базовый «язык», позволяющий расшифровать сложные интегративные процессы в головном мозгу и организме при патологических состояниях у человека.

Следует отметить, что лаборатория молекулярной нейробиологии является одним из ведущих нейрохимических центров России и имеет свои исследовательские группы в Италии и США. В последений год меня, как и, наверное, многих, спрашивали о крупнейших достижениях уходящего века и о перспективах века грядущего. Можно спорить о конкретных достижениях, но в целом можно сказать, что ХХ век был веком технологии и физики. Однако последние годы ясно показали, что следующий век будет веком биологии, и можно ожидать, что понимание механизмов деятельности мозга и прежде всего кода нервной деятельности будет занимать приоритетные позиции. То, что я здесь рассказал вкратце об институте и о его лабораториях, гораздо полнее изложено в статьях, список которых прилагается.

1

В данной обзорной статье представлены научные достижения многих известных ученых по изучению мозга человека. Организм человека представляет собой слаженную работу мозга с другими органами и системами. Исследования функций мозга человека проводились такими известными учеными, как И.М. Сеченов, И.П. Павлов, Н.П. Бехтерева и многими другими. Ими были исследованы и показаны основополагающие представления о функциях мозга. Несмотря на множество проведенных исследований, человеческий мозг остается самым загадочным и малоизвестным науке органом. Он не так легко раскрывает свои тайны. Серое вещество мозга определяет уникальный, разнообразный внутренний мир с воспоминаниями, фантазией, эмоциями и желаниями. С развитием современных методов исследования в области нейрофизиологии, возможностью применения новейшей аппаратуры ученым удалось раскрыть некоторые тайны мозга.

нейрофизиология

медицина

сигнал возбуждения

1. Бехтерев В.М. Психика и жизнь // Книжный клуб Книговек. – 2015. – С. 220–221.

2. Бехтерева Н.П. Магия мозга и лабиринты жизни. – М., 2013. – C. 156–168.

3. Кобозев Н.И. Исследование в области термодинамики процессов информации и мышления. – М., 1971. – С. 58–59.

4. Сеченов И.М. Рефлексы головного мозга. – М.: АСТ, 2014. – С. 70–80.

5. Медведев С.В. Тайны мозга человека // Вестник РАН – 2005. – № 6.

6. Страук Б. Тайны мозга взрослого человека. Удивительные таланты и способности человека, достигшего середины жизни. – М.: Карьера Пресс, 2011.

7. Стюар-Гамильтон Я., Рудкевич Л.А. Психология старения // Питер, 2010. – С. 155–169.

С развитием новых методов в нейрофизиологии скрытые возможности мозга человека становятся объектом научных исследований. В.М. Бехтерев , Н.П. Бехтерева , Н.И. Кобозев и многие другие в своих исследованиях доказали, что физиологический мозг не способен полностью обеспечивать сознательные и тем более бессознательные функции из-за низкой скорости передачи электрических импульсов в межнейрональных синапсах. Известно, что в синапсах импульсы задерживаются на 0,2-0,5 миллисекунд, тогда как человеческая мысль возникает гораздо быстрее.

На данном этапе развития нейрофизиологии мы хорошо представляем, как работает одна нервная клетка. Основываясь на данных научных исследований академика П.К. Анохина, в возникновении временной связи при образовании условных рефлексов лежит сенсорно-биологическая конвергенция импульсов на каждой клетке коры. Метод ПЭТ дает возможность проследить, какие области функционируют при выполнении тех или иных психических функций, но все же недостаточно известным остается то, что происходит внутри этих областей, в какой последовательности и какие сигналы посылают друг другу нервные клетки и как они взаимодействуют между собой. На карте мозга, определены области, отвечающие за те или иные психические функции. Но между клеткой и областью мозга находится еще один, очень важный уровень - совокупность нервных клеток, так называемый ансамбль нейронов, функции которых представляют большой научный интерес.

В своей работе «Рефлексы головного мозга» И.М. Сеченов впервые утверждал, что в основе психических процессов лежит рефлекторный принцип деятельности. Он приводил утвердительные доказательства рефлекторной природы психической деятельности, то есть все переживания, мысли, чувства, возникают в результате воздействия на организм какого-либо физиологического раздражителя. И.П. Павлов создал свою теорию условных рефлексов, согласно которой горизонтальная корковая временная связь при образовании условных рефлексов основывается на свойствах нервных центров - иррадиации, доминантного возбуждения центров безусловных раздражителей и проторении пути. Много исследований было проведено В.М. Бехтеревым, который занимался строением мозга, связывал с ним его функции. Им предложен метод, позволяющий досконально изучить пути нервных волокон и клеток, по которым создан «атлас головного мозга». Настоящий прорыв в изучении мозга происходит тогда, когда удается войти в прямой контакт с клеткой мозга. Метод представляет собой непосредственное вживление в мозг электродов в диагностических и лечебных целях. Электроды вживляются в различные отделы мозга, при раздражении которых происходит повышение его активности, что позволяет детально изучить процессы, происходящие в нем.

Предполагалось, что мозг поделен на четко разграниченные участки, каждый из которых «отвечает» за свою определенную функцию. Например, это зона, отвечающая за сгибание мизинца, а это зона, ответственная за любовь. Эти выводы основывались на простых наблюдениях: если данный участок повреждался, то и соответственно функция его нарушалась.

В настоящее время становится ясным, что все не так просто: нейроны внутри разных зон взаимодействуют между собой весьма сложным путем, и нельзя осуществлять везде четкую «привязку» функции к области мозга в том, что касается обеспечения высших функций, то есть можно лишь сказать, что данная область имеет отношение к памяти, речи, эмоциям. Пока трудно объяснить, что этот нейронный ансамбль не кусочек мозга, а широко раскинутая сеть и только он отвечает за восприятие букв, а другой ансамбль - за восприятие слов и предложений. Сложная работа мозга по обеспечению высших видов психической деятельности похожа на вспышку салюта: мы видим сначала множество огней, а потом они начинают гаснуть и снова загораются, перемигиваясь между собою, какие-то кусочки остаются темными, другие вспыхивают. Таким же образом и сигнал возбуждения посылается в определенную область мозга, но деятельность нервных клеток внутри нее подчиняется своим особым ритмам, своей иерархии. Благодаря этим особенностям разрушение одних нервных клеток может оказаться невосполнимой потерей для мозга, а другие вполне могут заменить соседние «переучившиеся» нейроны, то есть проявляется свойство нервных центров - пластичность. К выполнению своей работы ряд нейронов готов с самого рождения, а есть нейроны, которые можно «воспитать» в процессе развития, поэтому можно попытаться заставить их взять на себя работу утраченных клеток.

Нейроны подкорковых глубоких структур мозга решают задачу всем миром, сообща. Тогда как нейроны коры, которые эту проблему решают самостоятельно, в действительности повышают ее активность, а частота импульсаций нейронов глубинных структур понижается. Высшие функции мозга обеспечиваются расшифровкой нервного кода, то есть пониманием того, как отдельные нейроны объединяются в структуры, а структура - в систему и в целостный мозг .

По мнению ученых, вокруг головного мозга было выявлено высокочастотное поле, отличающееся от общего биополя человека. Оно получило свое название - психополе. Психополе обеспечивает нормальное высокоскоростное протекание всех нейрофизиологических процессов. Определено, что это психополе настолько высокоэнергетично, что нуждается в особых носителях, которыми являются кристаллы эпифиза. Они дают возможность держать в белковом теле огромный энергоинформационный объем без денатурации белка.

В 60-х годах 20-го столетия профессор МГУ Н.И. Кобозев , исследуя феномен сознания, пришел к выводу, что материальная физиология мозга сама по себе не обеспечивает мышления и другие психические функции. Это возможно за счет внешних источников сверхлегких частиц-психонов, которые являются энергетической основой мыслительных и эмоциональных импульсов. В исследованиях был определен органоид, способный улавливать потоки психонов. Было установлено, что кристаллики эпифиза являются носителями голограмм, которые определяют пространственно-временное развертывание всех психогенетических программ, заложенных при рождении. Огромное количество информации о различных позитивных и негативных программах жизни человека хранится в кристалликах эпифиза. Силы психического и духовного воздействия на кристаллики эпифиза определяют, как и какие программы будут реализованы человеком в течение жизни. У многих людей этот процесс протекает неосознанно, и они не могут полностью реализовать свой энергоинформационный потенциал. И по этой причине даже гениальные люди реализуют свои задатки всего лишь на 5-7 процентов.

В критической ситуации, когда проблему надо решать немедленно, начинается активная выработка психической энергии огромной силы. И тогда совершается спонтанный неуправляемый психоэнергетический процесс воздействия на кристаллики эпифиза и в них активируется программа выхода из кризисной ситуации. Только выработка мощных высокодуховных энергий кратковременна, и когда кризис разрешается, забывается величайшие мгновения психоэнергетического напряжения. И не многие могут осознанно управлять психической энергией и решать с ее помощью различные проблемы .

Современная нейрофизиологическая наука уделяет особое внимание изучению психоэнергетических процессов в головном мозге. Есть множество институтов и лабораторий, разрабатывающих теоретические проблемы данного направления, разработки которых позволяют практической психологии заниматься проблемами активации резервов психики человека, опираясь не только на эмпирический опыт, но и на научные данные. Сложные нестандартные проблемы могут быть эффективно решены только при активации программ развития, в пробуждении скрытых резервов психики. Данный подход дает возможность проявить весь потенциал личности и предоставить эффективные способы его реализации.

В возрасте 40-70 лет мозг имеет свои особенности. Интеллектуальная «мощь» при здоровом образе жизни не падает с возрастом, а только возрастает. Максимальное проявление когнитивных функций находится в интервале 40-60 лет. С 50 лет человек при решении проблем использует одновременно не одно полушарие, как у молодых, а оба (мозговая амбидекстрия). Считается, что в среднем возрасте человек становится более устойчив к стрессам и может более эффективно работать в условиях сильной эмоциональной нагрузки. Нейроны головного мозга не отмирают как полагали до 30 %, а могут пропадать связи между ними в том случае, если человек не занимается серьезным умственным трудом. Количество миелина (белое вещество мозга) с возрастом в головном мозге возрастает, и достигает максимума после 60 лет, при этом значительно возрастает интуиция.

Мозг в 40-70 лет принято рассматривать не как зрелый, целостный и готовый к работе, а как находящийся на спаде и не вполне справляющийся со своими функциями. Ряд российских ученых-психологов пришел к такому же выводу: с возрастом мозг человека начинает работать эффективнее, чем в молодости.

Библиографическая ссылка

Жумакова Т.А., Рыспекова Ш.О., Жунистаев Д.Д., Чурукова Н.М., Исаева А.М., Алимкул И.О. ТАЙНЫ ЧЕЛОВЕЧЕСКОГО МОЗГА // Международный журнал прикладных и фундаментальных исследований. – 2017. – № 6-2. – С. 230-232;
URL: https://applied-research.ru/ru/article/view?id=11656 (дата обращения: 19.09.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»