Применение критерия колмогорова. Критерий согласия колмогорова-смирнова - способ оценки распределения совокупности. Ограничения критерия Колмогорова-Смирнова

Критерий предназначен для сопоставления двух распределений: эмпирического с теоретическим , например, равномерным или нормальным; одного эмпирического распределения с другими эмпирическим распределением .

Критерий позволяет найти точку, в которой сумма накопленных расхождений между двумя распределениями является наибольшей, и оценить достоверность этого расхождения.

То есть сначала сопоставляются частоты по первому разряду, потом по сумме первого и второго разрядов, потом по сумме первого, второго и третьего разрядов и т. д. Таким образом, сопоставляются всякий раз накопленные к данному разряду частоты.

Если различия между двумя распределениями существенны, то в какой-то момент разность накопленных частот достигнет критического значения, что служит основанием признать различия статистически достоверными. В формулу критерия λ включается эта разность. Чем больше эмпирическое значение λ, тем более существенны различия.

Ограничения критерия Колмогорова-Смирнова

1. Критерий требует, чтобы выборка была достаточно большой. При сопоставлении двух эмпирических распределений необходимо, чтобы n 1,2 ≥ 50. Сопоставление эмпирического распределения с теоретическим иногда допускается при n ≥ 5 (Ван дер Варден Б.Л., 1960; Гублер Е.В., 1978).

2. Разряды должны быть упорядочены по нарастанию или убыванию какого-либо признака. Они обязательно должны отражать какое-то однонаправленное его изменение. Например, можно за разряды принять дни недели, 1-й, 2-й, 3-й месяцы после прохождения курса терапии, повышение температуры тела, усиление чувства недостаточности и т.д. В то же время, если взять разряды, которые случайно оказались выстроенными в данную последовательность, то и накопление частот будет отражать лишь этот элемент случайного соседства разрядов. Например, если шесть стимульных картин в методике Хекхаузена разным испытуемым предъявляются в разном порядке, невозможно говорить о накоплении реакций при переходе от картины №1 стандартного набора к картине №2 и т. д. Нельзя говорить об однонаправленном изменении признака при сопоставлении категорий «очередность рождения», «национальность», «специфика полученного образования»» и т.п. Эти данные представляют собой номинативные шкалы: в них нет никакого однозначного однонаправленного изменения признака.

Итак, невозможно накапливать частоты по разрядам, которые отличаются лишь качественно и не представляют собой шкалы порядка. Во всех тех случаях, когда разряды представляют собой не упорядоченные по возрастанию или убыванию какого-либо признака категории, следует .

Автоматический расчет критерия Колмогорова-Смирнова

Чтобы произвести расчет данных по критерию, необходимо:

Включить поддержку JavaScript;

Выбрать вид сопоставляемых распределений: «эмпирического с теоретическим» или «эмпирического с эмпирическим»;

Ввести данные разрядов (на увеличение или уменьшение), частоты. Данные необходимо вводить по одному числу на строку, без пробелов, пропусков и т.д., вводить только цифры;

Произвести расчет, нажав на кнопку «Шаг 2».

В случае некорректной работы скрипта (ошибок в расчетах и пр.), просим вас .

Данный критерий также позволяет оценить существенность различий между двумя выборками, в том числе возможно его применение для

Данный критерий также позволяет оценить существенность различий между двумя выборками, в том числе возможно его применение для сравнения эмпирического распределения с теоретическим.

Критерий позволяет найти точку, в которой сумма накопленных частот расхождений между двумя распределениями является наибольшей, и оценить достоверность этого расхождения. Нулевая гипотеза H 0 ={различия между двумя распределениями недостоверны (судя по точке максимального накопленного расхождения между ними)}.

Схематично алгоритм применения критерия Колмогорова-Смирнова можно представить следующим образом:

Проиллюстрируем использование критерия Колмогорова-Смирнова на примере.

При изучении творческой активности студентов были получены результаты для экспериментальных и контрольных групп (см. таблицу). Являются ли значимыми различия между контрольной и экспериментальной группами?

Уровень усвоения

Частота в экспериментальной группе

Частота в контрольной группе

Хороший

172 чел.

120 чел.

Приблизительный

36 чел.

49 чел.

Плохой

15 чел.

36 чел.

Объём выборки

n 1 =172+36+15=223

n 2 = 120+49+36=205

Вычисляем относительные частоты f , равные частному от деления частот на объём выборки, для двух имеющихся выборок.

В результате исходная таблица примет следующий вид:

Относительная частота экспериментальной группы (f эксп )

Относительная частота контрольной группы (f контр )

Модуль разности частот | f эксп – f контр |

172/223≈ 0.77

120/205≈ 0.59

0.18

36/223≈ 0.16

49/205≈ 0.24

0.08

15/223≈ 0.07

36/205≈ 0.17

Среди полученных модулей разностей относительных частот выбираем наибольший модуль, который обозначается d max . В рассматриваемом примере 0.18>0.1>0.08, поэтому d max =0.18.

Эмпирическое значение критерия λ эмп определяется с помощью формулы:

Чтобы сделать вывод о схожести по рассматриваемому критерию между двумя группами, сравним экспериментальное значение критерия с его критическим значением, определяемым по специальной таблице, исходя из уровня значимости . В качестве нулевой гипотезы примем утверждение о том, что сравниваемые группы незначительно отличаются друг от друга по уровню усвоения. При этом нулевую гипотезу следует принять в том случае, если наблюдаемое значение критерия не превосходит его критического значения.

Считая, что , по таблице определяем критическое значение критерия: λ кр (0,05)=1,36.

Таким образом, λ эмп =1,86>1,36= λ кр. Следовательно, нулевая гипотеза отвергается, и группы по рассмотренному признаку отличаются существенно.

Заметим, что объёмы рассматриваемых выборок должны быть достаточно большими: n 1 ≥50, n 2 ≥50.

Ранее рассматривались гипотезы, в которых закон распределения генеральной совокупности предполагался известным. Теперь займемся проверкой гипотез о предполагаемом законе неизвестного распределения, то есть будем проверять нулевую гипотезу о том, что генеральная совокупность распределена по некоторому известному закону. Обычно статистические критерии для проверки таких гипотез называются критериями согласия.

Критерием согласия называется критерий проверки гипотезы о предполагаемом законе неизвестного распределения. Это численная мера расхождения между эмпирическим и теоретическим распределением.

Основная задача. Дано эмпирическое распределение (выборка). Сделать предположение (выдвинуть гипотезу) о виде теоретического распределения и проверить выдвинутую гипотезу на заданном уровне значимости α.

Решение основной задачи состоит из двух частей:

1. Выдвижение гипотезы.

2. Проверка гипотезы на заданном уровне значимости.

Рассмотрим подробно эти части.

1. Выбор гипотезы о виде теоретического распределения удобно делать с помощью полигонов или гистограмм частот. Сравнивают эмпирический полигон (или гистограмму) с известными законами распределения и выбирают наиболее подходящий.

Приведём графики важнейших законов распределения:

Примеры эмпирических законов распределения приведены на рисунках:



В случае (а) выдвигается гипотеза о нормальном распределении, в случае (б) - гипотеза о равномерном распределении, в случае (в) - гипотеза о распределении Пуассона.

Основанием для выдвижения гипотезы о теоретическом распределении могут быть теоретические предпосылки о характере изменения признака. Например, выполнение условий теоремы Ляпунова позволяет сделать гипотезу о нормальном распределении. Равенство средней и дисперсии наводит на гипотезу о распределении Пуассона.

На практике чаще всего приходится встречаться с нормальным распределением, поэтому в наших задачах требуется проверить только гипотезу о нормальном распределении.

Проверка гипотезы о теоретическом распределении отвечает на вопрос: можно ли считать расхождение между предполагаемыми теоретическим и эмпирическим распределениями случайным, несущественным, объясняемым случайностью попадания в выборку тех или иных объектов, или же это расхождение говорит о существенном расхождении между распределениями. Для проверки существуют различные методы (критерии согласия) - c 2 (хи-квадрат), Колмогорова, Романовского и др.

Критерий Пирсона.

Достоинством критерия Пирсона является его универсальность: с его помощью можно проверять гипотезы о различных законах распределения.

1. Проверка гипотезы о нормальном распределении. Пусть получена выборка достаточно большого объема п с большим количеством различных значений вариант. Для удобства ее обработки разделим интервал от наименьшего до наибольшего из значений вариант на s равных частей и будем считать, что значения вариант, попавших в каждый интервал, приближенно равны числу, задающему середину интервала. Подсчитав число вариант, попавших в каждый интервал, составим так называемую сгруппированную выборку:

варианты………..х 1 х 2 … х s

частоты………….п 1 п 2 … п s ,

где х i – значения середин интервалов, а п i – число вариант, попавших в i -й интервал (эмпирические частоты). По полученным данным можно вычислить выборочное среднее и выборочное среднее квадратическое отклонение σ В . Проверим предположение, что генеральная совокупность распределена по нормальному закону с параметрами M (X ) = , D (X ) = . Тогда можно найти количество чисел из выборки объема п , которое должно оказаться в каждом интервале при этом предположении (то есть теоретические частоты). Для этого по таблице значений функции Лапласа найдем вероятность попадания в i -й интервал:

,

где а i и b i - границы i -го интервала. Умножив полученные вероятности на объем выборки п, найдем теоретические частоты: п i =n·p i .Наша цель – сравнить эмпирические и теоретические частоты, которые, конечно, отличаются друг от друга, и выяснить, являются ли эти различия несущественными, не опровергающими гипотезу о нормальном распределении исследуемой случайной величины, или они настолько велики, что противоречат этой гипотезе. Для этого используется критерий в виде случайной величины

. (7)

Смысл ее очевиден: суммируются части, которые квадраты отклонений эмпирических частот от теоретических составляют от соответствующих теоретических частот. Можно доказать, что вне зависимости от реального закона распределения генеральной совокупности закон распределения случайной величины (7) при стремится к закону распределения с числом степеней свободы k = s – 1 – r , где r – число параметров предполагаемого распределения, оцененных по данным выборки. Нормальное распределение характеризуется двумя параметрами, поэтому k = s – 3. Для выбранного критерия строится правосторонняя критическая область, определяемая условием

(8)

где α – уровень значимости. Следовательно, критическая область задается неравенством а область принятия гипотезы - .

Итак, для проверки нулевой гипотезы Н 0: генеральная совокупность распределена нормально – нужно вычислить по выборке наблюдаемое значение критерия:

, (7`)

а по таблице критических точек распределения χ 2 найти критическую точку , используя известные значения α и k = s – 3. Если - нулевую гипотезу принимают, при ее отвергают.

Пример. Результаты исследования спроса на товар представлены в таблице:

Выдвинуть гипотезу о виде распределения и проверить её на уровне значимости a=0,01.

I. Выдвижение гипотезы.

Для указания вида эмпирического распределения построим гистограмму


120 160 180 200 220 280

По виду гистограммы можно сделать предположение о нормальном законе распределения изучаемого признака в генеральной совокупности.

II. Проверим выдвинутую гипотезу о нормальном распределении, используя критерий согласия Пирсона.

1. Вычисляем , s В.В качестве вариант возьмём среднее арифметическое концов интервалов:

2. Найдём интервалы (Z i ; Z i+1): ; .

За левый конец первого интервала примем (-¥), а за правый конец последнего интервала - (+¥). Результаты представлены в табл. 4.

3. Найдем теоретические вероятности Р i и теоретические частоты (см. табл. 4).

Таблица 4

i Граница интервалов Ф(Z i) Ф(Z i+1) P i = Ф(Z i+1)-Ф(Z i)
x i x i+1 Z i Z i+1
-1,14 -0,5 -0,3729 0,1271 6,36
-1,14 -0,52 -0,3729 -0,1985 0,1744 8,72
-0,52 0,11 -0,1985 0,0438 0,2423 12,12
0,11 0,73 0,0438 0,2673 0,2235 11,18
0,73 0,2673 0,5 0,2327 11,64

4. Сравним эмпирические и теоретические частоты. Для этого:

а) вычислим наблюдаемое значение критерия Пирсона.

Вычисления представлены в табл.5.

Таблица 5

i
6,36 -1,36 1,8496 0,291
8,72 1,28 1,6384 0,188
12,12 1,88 3,5344 0,292
11,18 0,82 0,6724 0,060
11,64 -2,64 6,9696 0,599
S

б) по таблице критических точек распределения c 2 при заданном уровне значимости a=0,01 и числе степеней свободы k=m–3=5–3=2 находим критическую точку ; имеем .

Сравниваем c . . Следовательно, нет оснований отвергать гипотезу о нормальном законе распределения изучаемого признака генеральной совокупности. Т.е. расхождение между эмпирическими и теоретическими частотами незначимо (случайно). ◄

Замечание. Интервалы, содержащие малочисленные эмпирические частоты (n i <5), следует объединить, а частоты этих интервалов сложить. Если производилось объединение интервалов, то при определении числа степеней свободы по формуле K=m-3 следует в качестве m принять число оставшихся после объединения интервалов.

2. Проверка гипотезы о равномерном распределении . При использовании критерия Пирсона для проверки гипотезы о равномерном распределении генеральной совокупности с предполагаемой плотностью вероятности

необходимо, вычислив по имеющейся выборке значение , оценить параметры а и b по формулам:

где а* и b* - оценки а и b . Действительно, для равномерного распределения М (Х ) = , , откуда можно получить систему для определения а* и b *: , решением которой являются выражения (9).

Затем, предполагая, что , можно найти теоретические частоты по формулам

Здесь s – число интервалов, на которые разбита выборка.

Наблюдаемое значение критерия Пирсона вычисляется по формуле (7`), а критическое – по таблице с учетом того, что число степеней свободы k = s – 3. После этого границы критической области определяются так же, как и для проверки гипотезы о нормальном распределении.

3. Проверка гипотезы о показательном распределении. В этом случае, разбив имеющуюся выборку на равные по длине интервалы, рассмотрим последовательность вариант , равноотстоящих друг от друга (считаем, что все варианты, попавшие в i – й интервал, принимают значение, совпадающее с его серединой), и соответствующих им частот n i (число вариант выборки, попавших в i – й интервал). Вычислим по этим данным и примем в качестве оценки параметра λ величину . Тогда теоретические частоты вычисляются по формуле

Затем сравниваются наблюдаемое и критическое значение критерия Пирсона с учетом того, что число степеней свободы k = s – 2.

Пример . Для выборки, интервальный статистический ряд которой имеет вид

проверить при уровне значимости α = 0,05 гипотезу о.

Назначение критерия . Критерий λ предназначен для сопоставления двух распределений: а). эмпирического с теоретическим, например, равномерным или нормальным; б). одного эмпирического распределения с другим эмпирическим распределением.

Ограничения критерия. Критерий требует, чтобы выборка была достаточно большой, ≥50.

Гипотезы:

: различия между двумя распределениями незначимы.

: различия между двумя распределениями значимы.

Алгоритм подсчета λ – критерия.

Составляем таблицу для удобства расчетов:

1. В первом столбце располагают эмпирические значения признака, упорядоченные по возрастанию.

2. Во втором столбце располагают эмпирические частоты для каждого значения, а в третьем столбце относительные эмпирические частоты для каждого значения, рассчитанные по формуле: f* эмп j = f эмп j / n, где f эмп j – эмпирическая частота из второго столбца, n – объем выборки.

3. Подсчитываем «накопленные» эмпирические частоты по формуле:

∑ f* эмп j = ∑ f* эмп j -1 + f* эмп j ,

где ∑ f* эмп j -1 – частота, накопленная на предыдущих значениях признака;

j – порядковый номер значения признака; f* эмп j – эмпирическая частота данного j разряда. Результаты помещают в 4 столбец.

4. В 5 столбце располагают накопленные теоретические частоты, если сравнивают с известным теоретическим распределением; если сравнивают 2 эмпирических распределения, то в 5 столбце располагают накопленные эмпирические частоты для выборки 2.

5. Подсчитывают разности между накопленными частотами и их абсолютные значения помещают в 6 столбец. Обозначим их d j .

6. Определяют по 6 столбцу максимальное значение d j → d max .

7. Подсчитывают λ эмп по формуле:

,

где n 1 – объем выборки 1, n 2 - объем выборки 2, если = = n, то .

8. По заданному уровню значимости из таблицы VII приложения находят граничную точку λ кр.

9. Если λ эмп < λ кр, то различия между распределениями признака незначимы; если λ эмп > λ кр, то различия между распределениями признака значимы.

Пример . В продовольственном магазине проведены контрольные взвешивания проданной колбасы. Объем выборки n = 100. Полученные данные указаны в таблице.

недовес, г
частота

Определить с помощью λ – критерия Колмогорова-Смирнова на уровне значимости α=0,05, согласуются ли данные выборки с равномерным распределением на отрезке .

Решение. : различия между эмпирическим и предполагаемым теоретическим распределением незначимы.

: различия между эмпирическим и предполагаемым теоретическим распределением значимы.

Функция распределения случайной величины, равномерно распределенной на отрезке имеет следующий вид:

Заполним таблицу:

x j f эмп j f эмп j /n ∑ f* эмп j ∑ f* теор j d j
0,10 0,10 0,1
0,11 0,21 0,2 0,01
0,08 0,29 0,3 0,01
0,09 0,38 0,4 0,02
0,12 0,50 0,5
0,10 0,60 0,6
0,13 0,73 0,7 0,03
0,15 0,88 0,8 0,08
0,12 1,00 0,9 0,1

Поясним, как заполняется таблица. Значения первых двух столбцов взяты из условия. Каждое число второго столбца делим на n = 100 и результат записываем в 3 столбец. Каждое число 4 столбца равно сумме числа из этой же строки 3 столбца и предыдущего числа 4 столбца. Каждое число 1 столбца подставляем в формулу f * теор = x j /10 и результат записываем в 5 столбец. 6 столбец – модуль разности 4 и 5 столбцов. Наибольшее число в 6 столбце d max =0,1; λ эмп =0,1 = 1.

По уровню значимости α = 0,05 из таблицы VI приложениия находим граничную точку λ кр = 1,358. Поскольку λ эмп < λ кр (1 < 1,358), то принимаем гипотезу на уровне значимости α = 0,05. Данные выборки согласуются с равномерным распределением на отрезке .

​ Критерий Колмогорова-Смирнова – непараметрический критерий согласия, в классическом понимании предназначен для проверки простых гипотез о принадлежности анализируемой выборки некоторому известному закону распределения. Наиболее известно применение данного критерия для проверки исследуемых совокупностей на нормальность распределения .

1. История разработки критерия Колмогорова-Смирнова

Критерий Колмогорова-Смирнова был разработан советскими математиками Андреем Николаевичем Колмогоровым и Николаем Васильевичем Смирновым .
Колмогоров А.Н. (1903-1987) - Герой Социалистического Труда, профессор Московского государственного университета, академик АН СССР - крупнейший математик XX века, является одним из основоположников современной теории вероятности.
Смирнов Н.В. (1900-1966)- член-корреспондент АН СССР, один из создателей непараметрических методов математической статистики и теории предельных распределений порядковых статистик.

Впоследствии критерий согласия Колмогорова-Смирнова был доработан с целью применения для проверки совокупностей на нормальность распределения американским статистиком, профессором Университета Джорджа Вашингтона Хьюбертом Лиллиефорсом (Hubert Whitman Lilliefors, 1928-2008). Профессор Лиллиефорс являлся одним из пионеров применения компьютерной техники в статистических расчётах.

Хьюберт Лиллиефорс

2. Для чего используется критерий Колмогорова-Смирнова?

Данный критерий позволяет оценить существенность различий между распределениями двух выборок, в том числе возможно его применение для оценки соответствия распределения исследуемой выборки закону нормального распределения.

3. В каких случаях можно использовать критерий Колмогорова-Смирнова?

Критерий Колмогорова-Смирнова предназначен для проверки совокупностей данных, измеренных в количественной шкале .

Для большей достоверности полученных данных объемы рассматриваемых выборок должен быть достаточно большими: n ≥ 50. При размерах оцениваемой совокупности от 25 до 50 элементов, целесообразно применение поправки Большева.

4. Как рассчитать критерий Колмогорова-Смирнова?

Критерий Колмогорова-Смирнова рассчитывается при помощи специальных статистических программ. В основе лежит статистика вида:

где sup S - точная верхняя грань множества S, F n - функция распределения исследуемой совокупности, F(x) - функция нормального распределения

Выводимые значения вероятности основаны на предположении, что среднее и стандартное отклонение нормального распределения известны априори и не оцениваются из данных.

Однако на практике обычно параметры вычисляются непосредственно из данных. В этом случае критерий нормальности включает сложную гипотезу ("насколько вероятно получить D статистику данной или большей значимости, зависящей от среднего и стандартного отклонения, вычисленных из данных"), и приводятся вероятности Лиллиефорса (Lilliefors, 1967).

5. Как интерпретировать значение критерия Колмогорова-Смирнова?

Если D статистика Колмогорова-Смирнова значима, то гипотеза о том, что соответствующее распределение нормально, должна быть отвергнута.