Что представляет собой инсулин, его воздействие на организм и новейшие разработки. Инсулины Инсулин строение молекулы

Инсулином называется гормон, производимый бета-клетками островков Лангерганса поджелудочной железы. Название инсулина происходит от латинского insula – остров. Эффекты инсулина

Несмотря на то, что инсулин вызывает множество эффектов в различных тканях человеческого тела, его основным эффектом является стимулирование перехода глюкозы из крови внутрь клеток, что приводит к снижению концентрации глюкозы в крови.

Другими эффектами инсулина являются стимулирование синтеза в печены и мышцах гликогена из глюкозы, увеличение создания жиров и белков, подавление активности ферментов, разрушающих жиры и белки. Таким образом, инсулин обладает анаболическим действием, поскольку усиливает образование жиров и белков, одновременно замедляя их распад.

Основной эффект инсулина заключается в усилении переноса глюкозы через клеточную мембрану внутрь клетки. Других гормонов, снижающих уровень глюкозы крови, в организме человека не существует. Основные эффекты инсулина проявляются в мышцах и жировой ткани, поэтому эти ткани называют инсулинозависимыми. Уровень глюкозы крови снижается при воздействии инсулина и повышается при воздействии т.н. гипергликемических гормонов (глюкагона, соматотропного гормона, глюкокортикоидов).

Дополнительными эффектами инсулина являются увеличение интенсивности образования гликогена, уменьшение образования глюкозы в печени, усиление поглощения клетками аминокислот, необходимых для синтеза белка. Одновременно инсулин уменьшает разрушение белков и жиров. Таким образом, общий эффект инсулина является анаболическим – направленным на формирование жировой и мышечной ткани.

Строение инсулина

Инсулин является полипептидным гормоном, состоящим из двух аминокислотных цепей: А- и В-цепи. Полипептидные цепи соединяются дисульфидными мостиками. Человеческий инсулин по структуре близок к свиному и бычьему, хотя и отличается от них одним и тремя аминокислотными остатками соответственно.

Открытие инсулина

Островки поджелудочной железы были открыты в 1869 году Паулем Лангергансом при микроскопическом исследовании структуры поджелудочной железы. В 1889 году Оскар Малиновски в Германии при удалении поджелудочной железы у собаки вызвал у нее симптомы сахарного диабета. В 1921 году Ф. Бантинг и Ч. Бест выделили из клеток островков поджелудочной железы инсулин, а Д. Коллип разработал методику его очистки.

В 1922 году инсулин впервые был введен пациенту, страдающему сахарным диабетом. Его лечебное действие показало, что такой вид терапии является наиболее эффективным. В последующие годы основные усилия ученых были направлены на организацию производства в больших количествах. В 1923 году была вручена Нобелевская премия за открытие и выделение инсулина. В последующем аминокислотная структура инсулина была полностью расшифрована Ф. Сенгером.

Синтез инсулина

В островковых клетках поджелудочной железы инсулин синтезируется в несколько этапов. На первом этапе происходит синтез молекулы предшественника инсулина – препроинсулина. На втором этапе от молекулы препроинсулина отделяется сигнальный пептид, после чего образуется проинсулин. После созревания происходит образование окончательной молекулы инсулина. На этапе созревания от молекулы проинсулина отделяется С-пептид, который не оказывает биологического действия. После отделения С-пептида формируется активная форма инсулина.

Выделение инсулина в кровь происходит при повышении уровня глюкозы в крови. Дополнительно регуляция выработки инсулина производится автономной нервной системы. Разрушение инсулина происходит в печени и почках при воздействии фермента инсулиназы.

Препараты инсулина

В настоящее время фармацевтическая промышленность производит значительное число препаратов инсулина, имеющих различные биологические эффекты. Выделяют человеческий, свиной инсулины, инсулин крупного рогатого скота. По степени очистки различают традиционные, монопиковые, монокомпонентные инсулины. По времени действия выделяют инсулины короткого и пролонгированного действия. Последние делятся на инсулины среднего, длительного и сверхдлительного срока действия. Есть также инсулины ультракороткого и депо-инсулины, выделяющиеся медленно из подкожной клетчатки.

Подбор схемы инсулинотерапии – сложное и очень ответственное мероприятие. От правильности выбора формы инсулина и схемы его дозирования зависит успешность достижения компенсации сахарного диабета и, как следствие, качество жизни пациента.

  • Типы сахарного диабета

    В настоящее время выделяется два основных типа сахарного диабета, различающиеся по причине и механизму появления, а также по принципам лечения

  • Сахарный диабет 1 типа

    Сахарный диабет 1 типа - заболевание эндокринной системы, для которого характерным признаком является повышенная концентрация глюкозы в крови, которое развивается из-за деструктивных процессов в специфических клетках поджелудочной железы, секретирующих гормон - инсулин, вследствие чего наблюдается абсолютный недостаток инсулина в организме

  • Сахарный диабет 2 типа

    Сахарный диабет 2 типа - одна из разновидностей сахарного диабета - заболевания обмена веществ, возникающего в результате пониженной чувствительности клеток к инсулину, а также относительной недостачи инсулина в организме

  • Гестационный сахарный диабет при беременности

    Гестационный сахарный диабет может развиваться при беременности (примерно в 4% случаев). В его основе лежит снижение способности по усвоению глюкозы

  • Гипогликемия

    Гипогликемией называют патологическое состояние, характеризующееся снижением концентрации глюкозы в плазме крови ниже уровня 2,8 ммоль/л, протекающее с определенной клинической симптоматикой, либо менее 2,2 ммоль/л независимо от наличия или отсутствия клинических признаков

  • Кома при сахарном диабете

    Информация о наиболее опасном осложнении сахарного диабета, требующем экстренной медицинской помощи,- коме. Описываются виды ком при сахарном диабете, их специфические признаки, тактика лечения

  • Синдром диабетической стопы

    Синдром диабетической стопы - одно из осложнений сахарного диабета, наряду с диабетической офтальмопатией, нефропатией и др., представляющее собой патологическое состояние, возникшее вследствие поражения периферической нервной системы, артериального и микроциркуляторного русла, проявляющееся гнойно-некротическими, язвенными процессами и повреждением костей и суставов стопы

  • О диабете

    Сахарный диабет - термин, объединяющий эндокринные заболеваний, характерной чертой которых является недостаточность действия гормона инсулина. Главным симптомом сахарного диабета является развитие гипергликемии – увеличения концентрации глюкозы в крови, имеющее стойкий характер

(от лат. Insula — остров) — гормон пептидной природы, образуется в бета-клетках островков Лангерганса поджелудочной железы. Влияет на многие аспекты обмена веществ практически во всех тканях. Основное действие инсулина заключается в снижении концентрации глюкозы в крови.

Инсулин увеличивает проницаемость плазматических мембран для глюкозы, активирует ключевые ферменты гликолиза, стимулирует превращение в печени и мышцах глюкозы в гликоген, усиливает синтез жиров и белков. Кроме того, инсулин подавляет активность ферментов, расщепляющих гликоген и жиры. То есть, кроме анаболического действия, инсулин обладает также и антикатаболическим эффектом.

Нарушение секреции инсулина вследствие деструкции бета-клеток — абсолютная недостаточность инсулина — является ключевым звеном патогенеза сахарного диабета 1-го типа. Нарушение действия инсулина на ткани — относительная инсулиновая недостаточность — имеет важное место в развитии сахарного диабета 2-го типа.

Строение молекулы инсулина

Инсулин — это небольшой белок молекулярной массой 5,8 кДа. Он состоит из двух полипептидных цепей: А (21 аминокислота) и B (30 аминокислот). Молекула инсулина содержит три дисульфидные связи: два из них соединяют между собой A и B-цепи, а третий расположен внутри A-цепи. Бычий инсулин имеет такую ​​первичную структуру:

Структура инсулина почти не изменилась в эволюции высших позвоночных, в частности инвариабельнимы является положение дисульфидных связей, аминокислот и карбокситерминальни участка A-цепи, и гидрофобные аминокислоты около C-конца B-цепи. Человеческий инсулин отличается от бычьего двумя аминокислотными заменами в A-цепи: в 8-м положении треонин вместо аланина, а в 10-м изолейцин вместо валина. Свиной гормон еще ближе к человеческому, он отличается всего одной аминокислотой: аланином в 30-м положении B-цепи вместо треонина.

В разведенном растворе молекулы инсулина существуют в мономерной состоянии, каждая такая молекула состоит из гидрофобного сердцевины и преимущественно гидрофильной поверхности, за исключением двух неполярных участков. Эти участки участвуют в образовании димеров и гексамеров. В концентрированных растворах, например в препаратах для инъекции, и кристаллах, как внутри секреторных везикул β-клеток, шесть мономеров инсулина вместе с двумя атомами цинка образуют гексамеров. Таким образом после подкожного введения инсулина он всасывается в кровь медленно, потому, что для диссоциации гексамеров необходимо дополнительное время.

Образование и секреция

Синтез инсулина в клетке

Инсулин синтезируется в β-клетках островков Лангерганса поджелудочной железы. Ген предшественника инсулина — препроинсулина — у человека локализуется в коротком плече 11 хромосомы. Он содержит 3 экзона и 2 интрона. В других животных, например мышей, крыс и трех видов рыб, имеются два гена инсулина.

Препроинсулина человека состоит из 110 аминокислот: 24 из них составляют гидрофобный N-конечную лидерных последовательность (сигнальный пептид), за ней расположен B-ланюцюг, далее — последовательность Арг-Арг, соединительный C-пептид (от англ. Connecting peptide — с «соединительный пептид), последовательность Лиз-Арг, и А-цепь на C-конце. Лидерных последовательность необходима для котрансляцийного транспорта препроинсулина в полость шероховатого эндоплазматического ретикулума. После прохождения через мембрану лидерных последовательность отщепляется специальной сигнальной пептидазы и быстро деградирует. Образующийся после этого проинсулин состоит из 86 аминокислотных остатков и не обладает гормональной активностью. В эндоплазматическом ретикулуме происходит его свертывания и формирования внутри молекулы трех дисульфидных связей.

После образования правильной пространственной структуры проинсулин в транспортных везикулах переносится в цис -стороны комплекса Гольджи. В ходе движения прогормоном от цис — до транс -Гольджи происходит его отсортировку в компартмент секреторных гранул. Здесь, в незрелых гранулах, проинсулин подлежит дальнейшей модификации, а именно ограниченном протеолиза, что начинается с действия двух прогормонконвертаз (PC2 и PC3). Эти ферменты действуют специфически на карбоксикинцевий стороне последовательности из двух положительно заряженных аминокислот. В молекуле проинсулина есть два таких сайты: Арг31-Арг32 (место действия PC2) и между Лиз64-Арг65 (место действия PC3), где и происходит разрыв пептидных связей. Сразу же после прогормонконвертаз ферментативную активность проявляет карбоксипептидазы-H, которая отщепляет основные аминокислоты от образованных концов. Конечными продуктами протеолиза является молекула инсулина и C-пептид длиной 31 аминокислота. По сравнению с A- и B-цепями инсулина C-пептид значительно более вариабельным у позвоночных животных, его длина колеблется от 28 (у коров) до 38 у представителей семьи удильщику.

Зрелые секреторные везикулы β-клеток содержат кристаллический инсулин в форме гексамеров с атомами цинка и эквимолярных количество C-пептида. Они составляют пул гормона, предназначенный для экзоцитоза в ответ на стимул. Время полжизни β-гранул составляет несколько дней, и если они не секретируют свое содержимое, то подлежат деградации путем слияния с лизосомами. При повышенной потребности организма в инсулине деградация происходит медленнее.

Регуляция синтеза инсулина происходит на нескольких уровнях, в частности на уровне транскрипции, сплайсинга пре-мРНК, деградации мРНК, трансляции и посттрансляционной модификации. Сильнейшим стимулятором этих процессов является глюкоза, однако биосинтез проинсулина может включаться также другими сахарами, аминокислотами, в частности лейцином, промежуточными продуктами гликолиза, кетоновыми телами, гормоном роста, глюкагоном и некоторыми другими факторами.

Секреция инсулина

Бета-клетки поджелудочной железы, как типичные эндокринные клетки, секретируют большинство (95%) своего основного продукта — инсулина — регулируемым путем. Важнейшим активатором этого пути является глюкоза. В мембранах бета-клеток постоянно присутствуют переносчики глюкозы GLUT2, через которые она может свободно диффундировать. Благодаря этому увеличение концентрации глюкозы в крови приводит к аналогичному повышение ее уровня и в бета-клетках. Здесь она сразу же становится субстратом гексокиназную реакции, продуктом которой является глюкозо-6-фосфат. В инсулин-синтезирующих клетках поджелудочной железы экспрессируется один из изоферментов гексокиназы — гексокиназа IV или глюкокиназа, для нее характерна низкая сродство к субстрату: константа Михаэлиса составляет 10 мм, что превышает нормальное содержание глюкозы в крови (4-5 мм). Благодаря этому глюкокиназа может работать «глюкозы-сенсором», активируясь только в условиях гипергликемии.

Глюкозо-6-фосфат вступает в реакции гликолиза, продукты которого дальше окисляются в митохондриях, в результате чего в клетке образуется большое количество АТФ. Повышение концентрации АТФ приводит к закрытию АТФ-управляемых калиевых каналов (англ. ATP-gated K + channels, KATP) в плазмалемме. Вследствие уменьшения оттока калия из клетки мембрана деполяризуется, а это ведет к открытию потенциал-управляемых кальциевых каналов и приток кальция в клетку. Первоначальное увеличение концентрации ионов Ca 2+ в цитозоле ведет к дальнейшему их высвобождение из эндоплазматического ретикулума. Кальций вызывает слияние клатрин-окаймленных бета-гранул из плазмалемме и высвобождение их содержания в межклеточное пространство, откуда инсулин попадает в кровь через фенестровани стенки капилляров.

На активность АТФ-управляемых калиевых каналов кроме собственно АТФ могут влиять и другие вещества. Эти трансмембранные белки состоят из восьми субъединиц: четырех идентичных Kir6.2 и четырех идентичных SUR1. Первые формируют гидрофильный тоннель и отвечают за чувствительность к АТФ, а вторые являются рецепторами к Сульфанилмочевины (англ. S ulphonyl u rea r eceptor) и могут инактивировать канал после связывания со своим лигандом. Таким образом сульфонилмочевины активируют синтез инсулина, благодаря чему используются пероральные сахароснижающие препараты при сахарном диабете.

Кроме регулируемого существует так называемый «конститутивный путь» секреции инсулина бета-клетками, он работает при определенных расстройств, таких как инсулинома и сахарный диабет второго типа. В этом случае большое количество незрелого гормона (проинсулина или промежуточных «расщепленных» форм) выделяется прямо с везикул, образующихся в эндоплазматическом ретикулуме.

Регуляция секреции инсулина

Островки Лангерганса рядом иннервированные автономными и пептидергичнимы нервными волокнами. Холинергические окончания блукаючного нерва, является частью парасимпатической нервной системы стимулируют секрецию инслуину, в то время как адренергические окончания симпатической нервной системы подавляют этот процесс. Другие нервы выделяют вазоактивный интестинальный пептид, стимулирующий секрецию всех гормонов поджелудочной железы, и нейропептид Y, блокирует выделение инсулина.

Собственные гормоны поджелудочной железы также влияют на секрецию инсулина глюкагон стимулирует ее, а соматостатин — удручает. Кроме того инсулин действует автокринно активируя транскрипцию собственного гена и гена глюкокиназы.

Во время приема пищи секреция инсулина увеличивается не только под влиянием глюкозы или углеводов, а также аминокислот, особенно лейцина и аргинина некоторых гормониив пищеварительной системы системы: холецистокинина, глюкозозависимый инсулинотропный пептида, а также таких гормонов, как глюкагон, АКТГ, эстроген и другие. Также секрецию инсулина усиливает повышение уровня калия или кальция, свободных жирных кислот в плазме крови.

Инкертиновий эффект

Инкретиновий эффект — это феномен, заключающийся выделении значительно большей количеством инсулина в ответ на пероральное употребление глюкозы по сравнению с ее введением. За это явление отвечают гормоны пищеварительного тракта, секретируемых во время еды и усиливают глюкозо-стимулируемый высвобождение инсулина. К инкретинових гормонов относятся в частности глюкагоноподобного пептид-1 и желудочный ингибирующий полипептид, первый из них секретируются L-, а второй — K-клетками верхней части тонкой кишки.

Физиологическое действие инсулина

Влияние инсулина на уровень глюкозы в крови

Метаболический эффект

Молекула-мишень

Захват глюкозы (мышцы и жировая ткань)

Транспортер глюкозы GLUT4

Захват глюкозы (печень)

Глюкокиназа (повышенная экспрессия)

Синтез гликогена (печень и мышцы)

Гликогенсинтаза

↓ Расщепление гликогена (печень и мышцы)

↓ гликогенфосфорилазы

Гликолиз, продуцирование ацетил-КоА (печень и мышцы)

Фосфофруктокиназы-1 (через ФФК-2) пируватдегидрогеназного комплекс

Синтез жирных кислот (печень)

Ацетил-КОА-карбоксилаза

Синтез триацилгилцеролив (жировая ткань)

Липопротеинлипазу

Основная физиологическое действие инсулина заключается в снижении содержания глюкозы в крови, однако она не ограничивается этим, гормон также влияет на метаболизм белков и липидов. Одним из основных эффектов инсулина является то, что он стимулирует усиление усвоения глюкозы мышцами и жировой тканью, однако не влияет на этот процесс в печени, почках и мозга, клетки которых могут транспортировать глюкозу даже при отсутствии гормональной стимуляции. Также инсулин блокирует те метаболические пути, конечным продуктом которых является глюкоза, в частности глюконеогенез и расщепления гликогена, и стимулирует те, в которых она используется. Первый приоритет при этом принадлежит удовлетворению энергетических потребностей, в частности протеканию гликолиза, конечным продуктом которого является пируват, и дальнейшего окисления пирувата до ацетил-КоА, который может быть использован в цикле трикарбоновых кислот. Остаток глюкозы используется на пополнение запасов гликогена в печени и мышцах. В печени инсулин также стимулирует синтез жирных кислот с ацетил-КоА, необходимый для этого НАДФH производится в пентозофосфатному пути. Далее жирные кислоты в форме триглицеридов транспортируются к жировой ткани. Инсулин также влияет на метаболизм косвенно через головной мозг. Он влияет на ядра гипоталамуса таким образом, подавляющее потребления пищи и усиливает термогенез.

В мышечной ткани инсулин стимулирует захват аминокислот и синтез белков. Остаток аминокислот превращается в печени до пирувата и ацетил-КоА и используется для синтеза жиров.

Поглощение калия клетками также активируется под воздействием инсулина. Поэтому его препараты вместе с глюкозой используют для временного снижения гиперкальциемии у пациентов с почечной недостаточностью. Точный молекулярный механизм такого действия инсулина не выяснен, однако известно, что он может активировать Na + / K + -АТФазы.

К долговременным эффектам инсулина на организм относится ускорение роста, происходит благодаря его общем анаболические и белок-накопительных воздействия. Поэтому у детей с сахарным диабетом первого типа наблюдается задержка роста. Инсулин может стимулировать рост незрелых гипофизектомичних крыс, почти с такой же интенсивностью как и гормон роста при условии, если они употребляют большое количество углеводов. Также известно, что в культуре клеток инсулин ускоряет клеточное деление, подобно пептидных факторов роста, таких фактор роста эпидермиса, фактор роста фибробластов и тромбоцитарный фактор роста, и, кроме того, может усиливать их биологическое воздействие.

Связанные заболевания

Однако в контексте рассматриваемой проблемы, следует отметить особую роль инсулина в регуляции энергетического метаболизма в целом, включая обмен не только углеводов, но и жиров. Это касается механизмов координированного хранения и утилизации топливных молекул в жировой ткани, печени и скелетных мышцах. После переваривания пищи в организм поступает большое количество углеводов, но их концентрация в периферической крови и межклеточном пространстве благодаря активации экскреции инсулина не достигает критических величин. Этот гормон стимулирует поступление глюкозы в инсулинозависимый органы и ткани и одновременно подавляет процессы образования эндогенной глюкозы благодаря супрессии глюконеогенеза и гликогенолиза. Параллельно инсулин стимулирует и синтез гликогена. Подобное действие инсулин также проявляет по обмену жиров. Это манифестируется стимуляцией процессов накопления жира в жировой ткани и угнетением мобилизации жира из депо в результате активации инсулином липопротеиновой липазы, способствует очищению крови от триглицеридов и ингибирования активности гормоночувствительной липазы. Одновременно инсулин стимулирует поступление в липоциты глюкозы и возбуждает синтез внутриклеточных триглицеридов, т.е. активирует липогенез. В этом плане жировая ткань выполняет своеобразную буферную функцию, обеспечивая нормализацию концентрации жиров в плазме, особенно в постпрандиальный период. В состоянии покоя или кратковременного голода концентрация инсулина в крови снижается, повышается уровень контринсулярных гормонов и стимулируется функция симпатической нервной системы, что приводит к мобилизации печеночной глюкозы и активации липолиза с высвобождением из адипоцитов в кровообращение неетерификованих СЖК. В этих условиях глюкоза преимущественно утилизируется такими инсулиннезависимый тканями, как нервная система и эритроциты, тогда как скелетные мышцы получают энергию и за счет окисления жирных кислот. По удлиненного состояния голода в печени дополнительно происходит преобразование жирных кислот в кетоновые тела, а ацетил-КоА — в глюкозу. Подобные изменения имеют место и при физической нагрузке организма, но с усилением поступления глюкозы в мышцы. Итак, накопления и расходования жиров является динамичным процессом, протекает по-разному в зависимости от состояния организма и его потребностей в энергии. Следует также заметить, что инсулин — не единственный гормон, который регулирует энергетический обмен. Существует целый ряд контринсулярных гормонов (глюкагон, адреналин, гормон роста и глюкокортикоиды), активность которых направлена ​​на увеличение в циркуляции концентрации глюкозы. Дополнительным антагонистом инсулина выступает симпатичная нервная система, стимуляция которой приводит к высвобождению ВЖК из жировых клеток. Наличие такого сложного регуляторного механизма предусматривает возможность повреждения или снижение чувствительности тканей к регуляторных факторов процессов накопления и утилизации энергетических ресурсов на разных уровнях.

Использование инсулина в качестве лекарств

Открытие эндокринной функции поджелудочной железы

В 1869 году в Берлине 22-летний студент-медик Лангерганс исследуя с помощью нового микроскопа строение поджелудочной железы, обратил внимание на ранее неизвестные группы клетки равномерно распределены по ее ткани. Он не делал никаких предположений относительно их назначения. Только 1893 Эдуад Лагес выяснил, что они отвечают за эндокринную функцию поджелудочной железы и назвал их «островками Лангерганса» в честь первооткрывателя.

В 1889 году Оскар Минковский и Джозеф фон Меринг исследовали функции пидшлукновои железы. Они провели панкреатомию здоровом собаке, через несколько дней после этого у животного начали наблюдаться симптомы диабета, в частности сильная жажда, усиленное выделение мочи с высоким содержанием сахара, чрезмерное потребление пищи и потеря веса. Через некоторое время исследователям удалось «вылечить» собаку путем трансплантации ткани поджелудочной железы под кожу.

В 1901 году был сделан следующий важный шаг, Юджин Опи (Eugene Opie) четко показал, что «сахарный диабет обусловлен разрушением островков поджелудочной железы, и возникает только когда эти тельца частично или полностью разрушены». Связь между сахарным диабетом и поджелудочной железой был известен и раньше, но до этого не было ясно, что диабет связан именно с островками Лангерганса. Это, а также много других исследований патологий поджелудочной железы, привело таких ученых как Жан де Мейер (1909) и Эдвард Шарпи-Шафер (1916) к выводу о том, что островки Лангенгарса должны производить вещество с сахароснижающим эффектом. Мейер назвал ее инсулином от лат. Insula — остров.

Первые попытки выделения инсулина

В последующие два десятилетия было предпринято несколько попыток выделить островковый секрет как потенциальное лекарство. В 1907 году Георг Зюльцер (Georg Ludwig Zülzer) достиг некоторого успеха в снижении уровня глюкозы в крови подопытных собак панкреатическим экстрактом и даже смог спасти одного пациента в диабетической коме. Однако его препарат имел сильные побочные эффекты, вероятной, из-за плохого очистки, из-за чего от него пришлось отказаться.

Эрнест Скотт между 1 911 и 1912 годами в Чикагском университете использовал водный экстракт поджелудочной железы и отмечал «некоторое уменьшение глюкозурии», но он не смог убедить своего руководителя в важности этих исследований, и вскоре эксперименты были прекращены. Такой же эффект демонстрировал Израэль Кляйнер в Рокфеллеровском университете в 1919 году, но его работа была прервана началом Первой мировой войны, и он не смог ее завершить. Похожую работу после опытов во Франции в 1921 году опубликовал профессор физиологии Румынской школы медицины Николас Паулеско, и многие, особенно в Румынии, считают именно его первооткрывателем инсулина.

Работа Бантинга и Беста

Большинство экстрактов поджелудочной железы, изготовленных различными исследователями в период до 1921 года, имели одну и ту же проблему: они содержали много примесей, в том числе продуктов экзокринной части железы, и вызвали абсцессы у пациентов. Впервые выделить и очистить до уровня пригодного к использованию для терапии людей удалось группе ученых Торонтского университета в 1921 году.

Фредерик Бантинг после завершения Первой мировой войны работал хирургом-ортопедом и читал лекции в Университете Западного Онтарио. Одной из тем этих лекций был метаболизм углеводов. В ходе ознакомления с предметом, Бантинг прочитал труд доктора Мозеса Баррона, в которой тот описывал отмирания экзокринной части поджелудочной железы в случаях, когда ее протока была перекрыта камнями. Это навело его на мысль о новом методе выделения эндокринного секрета поджелудочной железы, в своих заметках Бантинг записал:

Со своей идеей Бантинг обратился к Джону Маклеода — профессора Университета Торонто, международно известного исследователя метаболизма углеводов. Маклеод знал о трудностях, с которыми столкнулись предыдущие исследователи в попытках выделить лечебный панкреатический экстракт, однако он считал, что даже отрицательный результат работы Бантинга будет полезным, и поэтому согласился предоставить ему место в лаборатории, собак для опытов и одного помощника. На роль помощника претендовали два студента физиологи Чарльз Бест и Кларк Ноубл. Чтобы решить, кто именно из них будет помогать Бантингу, они бросили монетку. Хотя распространено мнение о том, что Бест выиграл, его знакомый Роберт ВОЛП настаивал на том, что он проиграл, поскольку ни один из студентов не хотел работать с меланхолинйим раздражительным Бантинг.

Летом 1921 Бантингу и Бест начали свои эксперименты и после небольшой задержки получили атрофированы поджелудочные железы. Экстракт получали следующим образом: резали ткань на куски, растирали ее в ступке и фильтровали раствор, после чего вводили диабетическим собакам. Хотя им удалось добиться снижения уровня глюкозы в крови животных, Бантинг и Бест столкнулись с той же проблемой, что и их предшественники: в месте инъекции развивался стерильный абсцесс и общая интоксикация. В течение конца лета и осени 1921 году они обнаружили, что экстракт из атрофированного поджелудочной железы собак не имел никакого преимущества над экстрактом из фетальных желез телят с бойни. И поэтому стали в дальнейшем использовать эту ткань, которая была значительно легче получить.

В конце 1921 года Маклеод предложил биохимику Джеймсу Коллипом присоединиться к группе Бантинга и Беста и поработать над новыми методами очистки экстракта. Коллипом согласился, и впоследствии также показал, что панкреатический экстракт стимулирует отложение гликогена в печени, уменьшает кетоацидоз в диабетических животных, и снижает уровень глюкозы в крови у здоровых. После этого для тестирования перепарату он использовал нормальных кроликов, а не панкреатомованих собак. В ноября 1921 года Бантинг и Маклеод посетили собрание Американского физиологического общества, где представили полученные результаты.

11 января 1922 Бантинг и Бест впервые испытали один из активных экстрактов телячьей поджелудочной железы, который они назвали «айлетином» от англ. Isle — остров, на пациенте — 14-летнем Леонарди Томпсоне. Ему ввели по 7,5 мл перепарату в каждый ягодичную мышцу и получили ожидаемый результат: уровень глюкозы в крови снизился, однако развился абсцесс и общее отравление. Через несколько недель после этой неудачи, Коллипом сообщил Бантингу, что ему в конце удалось получить нетоксичный экстракт, но не захотел рассказать детали процесса (вероятно, надеясь на будущий патент), что чуть не привело к драке между исследователями.

Новом экстракта Коллипом Маклеод дал название «инсулин» (вероятно, не подозревая, что такое же название использовал Мейер 1909). Его испытали 23 января на том же пациенте. На этот раз лечение было успешным: уровень глюкозы в крови Томпсона упал от 520 до 120 мг / дл, и не наблюдалось никаких побочных эффектов. Но впоследствии выяснилось, что Коллипом забыл протокол приготовления инсулина. В течение следующих нескольких недель с помощью Эли Лилли он пытался вновь обрести метод, ему, наконец, удалось сделать.

Среди первых пациентов, леченных Бантинг и Бест была Элизабет Хьюз дочь государственного секретаря Чарльза Хьюза. Она описала изменение своего состояния здоровья после инъекции инсулина как «несказанно прекрасное». Известны диабетолога того времени Эллиот Джослин и Фредерик Аллен также были поражены силой нового препарата. Описывая свои впечатления Джослин сравнил действие инсулина со сценой из Библии Иез. 37: 1-10:

Была на мне рука Господа, и Господь вывел меня духом и поставил меня среди поля, и оно было полно костей … они весьма сухи И сказал мне: сын человеческий! Оживут ли кости сии? Я сказал: Господи Боже! Ты знаешь И сказал мне: изреки пророчество на кости, и скажи им: кости сухие! Слушайте слово Господне …Пророчество, как повелено. И снялся шум, когда я предсказывал, и вот грохот, сближаться кости, кость с костью своею. И я видел, и вот на них жили, и плоть выросла, и была натянута на них кожа сверху, а духа не было в них. И сказал мне: изреки духу пророчество, сын человеческий, и скажи духу: так говорит Господь Бог: приди, дух, от четырех ветров, и дохни на этих убитых, и они оживут И я изрек пророчество, как Он повелел мне, и вошел в них дух, и они ожили, и стали на ноги свои, весьма, весьма великое …

За революционное открытие инсулина Маклеод и Бантинг в 1923 году были удостоены Нобелевской премии по физиологии и медицине. Бантинг сперва был сильно возмущен, что его помощник Бест не был представлен к награде вместе с ним, и сначала даже демонстративно отказался от награды, но потом все же согласился принять премию, и свою часть торжественно разделил с Бестом. Так же поступил и Маклеод, поделив свою премию по Коллипом. Патент на производство телячьего инсулина получили Бест и Коллипом, как немедицинские члены группы, поскольку участие медиков в коммерческих делах считалась неэтичным. Они передали патент Торонтскому университета, а он предоставил лицензии многим медицинским фирмам по всему миру. В частности, в США право на производство инсулина получила фармацевтическая фирма Эли Лилли, в Европе крупнейшим производителем стала компания основана в Дании Август Крог.

Исследование структуры инсулина

Инсулин был первым белковой молекулой, для которой было полностью установлено аминокислотную последовательность, то есть первичную структуру. Эту работу совершил 1953 британский молекулярный биолог Сенгер, за что был удостоен Нобелевской премии по химии 1958 года. А спустя почти 40 лет Дороти Кроуфут Ходжкин с помощью метода рентгеновской дифракции определила пространственное строение (третичную структуру) молекулы инсулина. Ее работы также отмечены Нобелевской премией.

Начиная с 1980-х годов человеческий инсулин получат генноинженерного методами с помощью клеток кишечной палочки или пивных дрожжей.

Естественный синтез инсулина и биохимия его выработки в организме происходит при каждом приеме пищи. Полипептидный гормон инсулина вырабатывается в поджелудочной железе и активно участвует в процессе усвоения питательных веществ и в синтезе белков, жирных кислот. Углеводы, содержащиеся в пище, трансформируются в глюкозу – основной источник энергии.

Инсулин способствует всасыванию глюкозы и других сахаров из плазмы крови в мышечные ткани. Излишки трансформируются в жировую ткань. Инсулин в печени способствует преобразованию жирных кислот из крови в жировые отложения и активно питает существующие жировые ткани.

Биохимия инсулина хорошо изучена, в ней почти не осталось белых пятен. За исследования в области строения и структуры инсулина, биохимии, получено уже несколько Нобелевских премий. Это первый гормон, который удалось синтезировать искусственно и получить в кристаллической форме.

В промышленных масштабах выполняется производство искусственного инсулина, разрабатываются удобные системы контроля сахара в крови и устройства, обеспечивающие максимально безболезненное введение гормона в организм.

Биохимия инсулина заключается в усилении и ускорении проникновения глюкозы через клеточные мембраны. Дополнительная стимуляция инсулина ускоряет транспорт глюкозы в десятки раз.

Механизм действия инсулина и биохимия процесса следующая:

  1. После введения инсулина происходит увеличение количества особых транспортных белков в клеточных мембранах. Это позволяет максимально быстро и с минимальными энергетическими потерями вывести глюкозу из крови и переработать избыток в жировые клетки. При дефиците собственной выработки инсулина, для поддержки необходимого количества транспортных белков, требуется дальнейшая стимуляция инсулином.
  2. Инсулин повышает активность ферментов, участвующих в синтезе гликогена посредством сложной цепочки взаимодействий и ингибирует процессы его распада.

Биохимия инсулина включает в себя не только участие в метаболизме глюкозы. Инсулин активно включен в метаболизмы жиров, аминокислот, синтез белков. Также инсулин позитивно воздействует на процессы генной транскрипции и репликации. В сердце человека, скелетных мышцах, инсулин служит для транскрипции более 100 генов

В печени и в непосредственно жировых тканях, инсулин притормаживает механизм распада жиров, в результате концентрация жирных кислот непосредственно в крови, снижается. Соответственно, снижается риск холестериновых отложений в сосудах и восстанавливается пропускная способность стенок сосудов.

Синтез жиров в печени под воздействием инсулина стимулируется ацетилСоА-карбоксилазными и липопротеинлипазными ферментами. Таким образом очищается кровь, жиры выводятся из общего потока крови.

Участие в липидном обмене заключается в следующих ключевых моментах:

  • Усиливается синтез жирных кислот при активации ацетил-КоА-карбоксилазы;
  • Снижается активность тканевой липазы, тормозится процесс липолиза;
  • Выполняется торможение формирования кетоновых тел, поскольку вся энергия перенаправляется на синтез липидов.

Гормон в форме препроинсулина синтезируется в особых бета-клетках островков Лангерганца, расположенных в поджелудочной железе. Общий объем островков составляет около 2% от общей массы железы. При снижении активности островков возникает дефицит синтезируемых гормонов, гипергликемия, развитие эндокринных заболеваний.

После отщепления от препроинсулина особых сигнальных цепочек, формируется проинсулин, который состоит из А и В цепочек с соединяющим С-петидом. По мере созревания гормона, протеиназы захватывают пептидную цепочку, которая замещается двумя дисульфидными мостами. Вызревание происходит в аппарате Гольджи и в секреторной грануле бета клеток.

Зрелый гормон содержит 21 аминокислоту в А цепочке и 30 аминокислот во второй цепи. Синтез занимает в среднем около часа, как и для большинства гормонов немедленного действия. Молекула отличается стабильностью, замещающие аминокислоты встречаются на малозначимых участках полипептидной цепочки.

Рецепторами, отвечающими за инсулиновый обмен, являются гликопротеиды, расположенные непосредственно на клеточной мембране. После захвата и выполнения обменных процессов, структура инсулина разрушается, рецептор возвращается на поверхность клетки.

Стимулом, провоцирующим выброс инсулина является повышение уровня глюкозы. При отсутствии специального белка — транспортера в плазме крови, период полужизни составляет до 5 минут. Необходимости в дополнительном белке для транспорта нет, поскольку гормоны попадают непосредственно в панкреатическую вену и оттуда в воротную. Печень – основная мишень для гормона. При попадании в печень, свой ресурс вырабатывает до 50% гормона.

Несмотря на то, что принципы действия с доказательной базой — собакой, с искусственно вызванным диабетом при удалении поджелудочной железы, были предъявлены в конце 19 века, на молекулярном уровне механизм взаимодействия продолжает вызывать бурные споры и не до конца изучен. Это относится ко всем реакциям с генами и гормональным обменом. Для лечения диабета свиной и телячий инсулин начал применяться в 20-х годах 20 века.

Чем опасна нехватка инсулина в организме

При недостатке естественной выработки инсулина или при избытке углеводов, поступающих с пищей, возникают предпосылки развития сахарного диабета – системного заболевания обмена веществ.

Характерными признаками начальной стадии нарушений обменных процессов становятся следующие симптомы:


Понимание механизма действия инсулина и общей биохимии процессов в организме помогает построить правильные схемы питания и не подвергать организм опасности, употребляя повышенные дозы глюкозы в чистом виде, например, в качестве легкого стимулятора, или повышенные дозы быстрых углеводов.

Чем опасна повышенная концентрация инсулина

При усиленном питании, повышенном содержании углеводов в пище, экстремальных физических нагрузках, естественная выработка инсулина увеличивается. Инсулиновые препараты используются в спорте для увеличения роста мышечной ткани, увеличивают выносливость и обеспечивают улучшенную переносимость физических нагрузок.

При прекращении нагрузок или ослаблении тренировочного режима, мышцы быстро становятся дряблыми, происходит процесс отложения жиров. Нарушается гормональный баланс, что также приводит к сахарному диабету.

При диабете 2 типа выработка инсулина в организме остается на нормальном уровне, но клетки приобретают устойчивость к его воздействию. Для достижения нормального эффекта требуется существенное увеличение количества гормона. В результате резистентности тканей, наблюдается общая клиническая картина, сходная с недостатком гормона, но при его избыточной выработке.

Почему с точки зрения биохимических процессов, необходимо удерживать уровень глюкозы в крови на уровне нормы

Казалось бы, синтезированный инсулин способен полностью решить проблему осложнений сахарного диабета, быстро выводит глюкозу, нормализует метаболизм. Соответственно, нет смысла контролировать уровень сахара. Но это не так.

Гипергликемия поражает ткани, в которые глюкоза свободно проникает без участия инсулина. Страдает нервная система, кровеносная система, почки, органы зрения. Повышение уровня глюкозы влияет на основные функции белков тканей, ухудшается кислородное снабжение клеток из-за изменений гемоглобина.

Гликозилирование нарушает функции коллагена – увеличивается хрупкость и уязвимость сосудов, что ведет к развитию атеросклероза. К характерным осложнениям гипергликемии относится набухание кристаллика глаза, повреждения сетчатки, развитие катаракты. Также поражаются ткани и капилляры почек. Ввиду опасности осложнений, при лечении сахарного диабета, желательно удерживать уровень сахара на уровне нормы.

Инсулин представляет собой белок, состоящий из двух пептидных цепей А (21 аминокислота) и В (30 аминокислот), связанных между собой дисульфидными мостиками. Всего в зрелом инсулине человека присутствует 51 аминокислота и его молекулярная масса равна 5,7 кДа.

Синтез

Инсулин синтезируется в β-клетках поджелудочной железы в виде препроинсулина, на N-конце которого находится концевая сигнальная последовательность из 23 аминокислот, служащая проводником всей молекулы в полость эндоплазматической сети. Здесь концевая последовательность сразу отщепляется и проинсулин транспортируется в аппарат Гольджи. На данном этапе в молекуле проинсулина присутствуют А-цепь , В-цепь и С-пептид (англ. connecting – связующий). В аппарате Гольджи проинсулин упаковывается в секреторные гранулы вместе с ферментами, необходимыми для "созревания" гормона. По мере перемещения гранул к плазматической мембране образуются дисульфидные мостики, вырезается связующий С-пептид (31 аминокислота) и формируется готовая молекула инсулина . В готовых гранулах инсулин находится в кристаллическом состоянии в виде гексамера, образуемого с участием двух ионов Zn 2+ .

Регуляция синтеза и секреции

Секреция инсулина происходит постоянно, и около 50% инсулина, высвобождаемого из β-клеток, никак не связано с приемом пищи или иными влияниями. В течение суток поджелудочная железа выделяет примерно 1/5 от запасов имеющегося в ней инсулина.

Главным стимулятором секреции инсулина является повышение концентрации глюкозы в крови выше 5,5 ммоль/л, максимума секреция достигает при 17-28 ммоль/л. Особенностью этой стимуляции является двухфазное усиление секреции инсулина:

  • первая фаза длится 5-10 минут и концентрация гормона может 10-кратно возрастать, после чего его количество понижается,
  • вторая фаза начинается примерно через 15 минут от начала гипергликемии и продолжается на протяжении всего ее периода, приводя к увеличению уровня гормона в 15-25 раз.

Чем дольше в крови сохраняется высокая концентрация глюкозы, тем большее число β-клеток подключается к секреции инсулина.

Индукция синтеза инсулина происходит от момента проникновения глюкозы в клетку до трансляции инсулиновой мРНК. Она регулируется повышением транскрипции гена инсулина, повышением стабильности инсулиновой мРНК и увеличением трансляции инсулиновой мРНК.

Активация секреции инсулина

1. После проникновения глюкозы в β-клетки (через ГлюТ-1 и ГлюТ-2) она фосфорилируется гексокиназой IV (глюкокиназа, обладает низким сродством к глюкозе),
2. Далее глюкоза аэробно окисляется, при этом скорость окисления глюкозы линейно зависит от ее количества,
3. В результате нарабатывается АТФ, количество которого также прямо зависит от концентрации глюкозы в крови,
4. Накопление АТФ стимулирует закрытие ионных K + -каналов, что приводит к деполяризации мембраны,
5. Деполяризация мембраны приводит к открытию потенциал-зависимых Ca 2+ -каналов и притоку ионов Ca 2+ в клетку,
6. Поступающие ионы Ca 2+ активируют фосфолипазу C и запускают кальций-фосфолипидный механизм проведения сигнала с образованием ДАГ и инозитол-трифосфата (ИФ 3),
7. Появление ИФ 3 в цитозоле открывает Ca 2+ -каналы в эндоплазматической сети, что ускоряет накопление ионов Ca 2+ в цитозоле,
8. Резкое увеличение концентрации в клетке ионов Ca 2+ приводит к перемещению секреторных гранул к плазматической мембране, их слиянию с ней и экзоцитозу кристаллов зрелого инсулина наружу,
9. Далее происходит распад кристаллов, отделение ионов Zn 2+ и выход молекул активного инсулина в кровоток.

Схема внутриклеточной регуляции синтеза инсулина при участии глюкозы

Описанный ведущий механизм может корректироваться в ту или иную сторону под действием ряда других факторов, таких как аминокислоты, жирные кислоты, гормоны ЖКТ и другие гормоны, нервная регуляция .

Из аминокислот на секрецию гормона наиболее значительно влияют лизин и аргинин . Но сами по себе они почти не стимулируют секрецию, их эффект зависит от наличия гипергликемии, т.е. аминокислоты только потенциируют действие глюкозы.

Свободные жирные кислоты также являются факторами, стимулирующими секрецию инсулина, но тоже только в присутствии глюкозы. При гипогликемии они оказывают обратный эффект, подавляя экспрессию гена инсулина.

Логичной является положительная чувствительность секреции инсулина к действию гормонов желудочно-кишечного трактаинкретинов (энтероглюкагона и глюкозозависимого инсулинотропного полипептида), холецистокинина , секретина , гастрина , желудочного ингибирующего полипептида .

Клинически важным и в какой-то мере опасным является усиление секреции инсулина при длительном воздействии соматотропного гормона , АКТГ и глюкокортикоидов , эстрогенов , прогестинов . При этом возрастает риск истощения β-клеток, уменьшение синтеза инсулина и возникновение инсулинзависимого сахарного диабета. Такое может наблюдаться при использовании указанных гормонов в терапии или при патологиях, связанных с их гиперфункцией.

Нервная регуляция β-клеток поджелудочной железы включает адренергическую и холинергическую регуляцию. Любые стрессы (эмоциональные и/или физические нагрузки, гипоксия, переохлаждение, травмы, ожоги) повышают активность симпатической нервной системы и подавляют секрецию инсулина за счет активации α 2 -адренорецепторов. С другой стороны, стимуляция β 2 -адренорецепторов приводит к усилению секреции.

Также выделение инсулина повышается n.vagus , в свою очередь находящегося под контролем гипоталамуса, чувствительного к концентрации глюкозы крови.

Мишени

Рецепторы инсулина находятся практически на всех клетках организма, кроме нервных, но в разном количестве. Нервные клетки не имеют рецепторов к инсулину, т.к. последний просто не проникает через гематоэнцефалический барьер.

Наибольшая концентрация рецепторов наблюдается на мембране гепатоцитов (100-200 тыс на клетку) и адипоцитов (около 50 тыс на клетку), клетка скелетной мышцы имеет около 10 тысяч рецепторов, а эритроциты - только 40 рецепторов на клетку.

Механизм действия

После связывания инсулина с рецептором активируется ферментативный домен рецептора. Так как он обладает тирозинкиназной активностью, то фосфорилирует внутриклеточные белки - субстраты инсулинового рецептора. Дальнейшее развитие событий обусловлено двумя направлениями: MAP-киназный путь и фосфатидилинозитол-3-киназный механизмы действия .

При активации фосфатидилинозитол-3-киназного механизма результатом являются быстрые эффекты – активация ГлюТ-4 и поступление глюкозы в клетку, изменение активности "метаболических" ферментов – ТАГ-липазы, гликогенсинтазы, гликогенфосфорилазы, киназы гликогенфосфорилазы, ацетил-SКоА-карбоксилазы и других.

При реализации MAP-киназного механизма (англ. mitogen-activated protein ) регулируются медленные эффекты – пролиферация и дифференцировка клеток, процессы апоптоза и антиапоптоза.

Два механизма действия инсулина

Скорость эффектов действия инсулина

Биологические эффекты инсулина подразделяются по скорости развития:

Очень быстрые эффекты (секунды)

Эти эффекты связаны с изменением трансмембранных транспортов :

1. Активации Na + /K + -АТФазы , что вызывает выход ионов Na + и вход в клетку ионов K + , что ведет к гиперполяризации мембран чувствительных к инсулину клеток (кроме гепатоцитов).

2. Активация Na + /H + -обменника на цитоплазматической мембране многих клеток и выход из клетки ионов H + в обмен на ионы Na + . Такое влияние имеет значение в патогенезе артериальной гипертензии при сахарном диабете 2 типа.

3. Угнетение мембранной Ca 2+ -АТФазы приводит к задержке ионов Ca 2+ в цитозоле клетки.

4. Выход на мембрану миоцитов и адипоцитов переносчиков глюкозы ГлюТ-4 и увеличение в 20-50 раз объема транспорта глюкозы в клетку.

Быстрые эффекты (минуты)

Быстрые эффекты заключаются в изменении скоростей фосфорилирования и дефосфорилирования метаболических ферментов и регуляторных белков.

Печень
  • торможение эффектов адреналина и глюкагона (фосфодиэстераза),
  • ускорение гликогеногенеза (гликогенсинтаза),
  • активация гликолиза
  • превращение пирувата в ацетил-SКоА (ПВК-дегидрогеназа),
  • усиление синтеза жирных кислот (ацетил-SКоА-карбоксилаза),
  • формирование ЛПОНП ,
  • повышение синтеза холестерина (ГМГ-SКоА-редуктаза),
Мышцы
  • торможение эффектов адреналина (фосфодиэстераза),
  • ГлюТ-4 ),
  • стимуляция гликогеногенеза (гликогенсинтаза),
  • активация гликолиза (фосфофруктокиназа, пируваткиназа),
  • превращение пирувата в ацетил-SКоА (ПВК-дегидрогеназа),
  • усиливает транспорт нейтральных аминокислот в мышцы,
  • стимулирует трансляцию (рибосомальный синтез белков).
Жировая ткань
  • стимулирует транспорт глюкозы в клетки (активация Глют-4 ),
  • активирует запасание жирных кислот в тканях (липопротеинлипаза ),
  • активация гликолиза (фосфофруктокиназа, пируваткиназа),
  • усиление синтеза жирных кислот (активация ацетил-SКоА-карбоксилазы),
  • создание возможности для запасания ТАГ (инактивация гормон-чувствительной-липазы).

Медленные эффекты (минуты-часы)

Медленные эффекты заключаются в изменении скорости транскрипции генов белков, отвечающих за обмен веществ, за рост и деление клеток, например:

1. Индукция синтеза ферментов в печени

  • глюкокиназы и пируваткиназы (гликолиз ),
  • АТФ-цитрат-лиазы, ацетил-SКоА-карбоксилазы, синтазы жирных кислот, цитозольной малатдегидрогеназы (синтез жирных кислот ),
  • глюкозо-6-фосфатдегидрогеназы (пентозофосфатный путь ),

2. Индукция в адипоцитах синтеза глицеральдегидфосфат-дегидрогеназы и синтазы жирных кислот.

3. Репрессия синтеза мРНК, например, для ФЕП-карбоксикиназы (глюконеогенез ).

4. Обеспечивает процессы трансляции , повышая фосфорилирование по серину рибосомального белка S6.

Очень медленные эффекты (часы-сутки)

Очень медленные эффекты реализуют митогенез и размножение клеток. Например, к этим эффектам относится

1. Повышение в печени синтеза соматомедина, зависимого от гормона роста .

2. Увеличение роста и пролиферации клеток в синергизме с соматомединами.

3. Переход клетки из G1-фазы в S-фазу клеточного цикла.

Именно группой медленных эффектов объясняется "парадокс" наличия инсулинорезистентности адипоцитов (при сахарном диабете 2 типа) и одновременное увеличение массы жировой ткани и запасание в ней липидов под влиянием гипергликемии и инсулина.

Инактивация инсулина

Удаление инсулина из циркуляции происходит после его связывания с рецептором и последующей интернализации (эндоцитоза) гормон-рецепторного комплекса, в основном в печени и мышцах . После поглощения комплекс разрушается и белковые молекулы лизируются до свободных аминокислот. В печени захватывается и разрушается до 50% инсулина при первом прохождении крови, оттекающей от поджелудочной железы. В почках инсулин фильтруется в первичную мочу и, после реабсорбции в проксимальных канальцах, разрушается.

Патология

Гипофункция

Инсулинзависимый и инсулиннезависимый сахарный диабет. Для диагностики этих патологий в клинике активно используют нагрузочные пробы и определение концентрации инсулина и С-пептида.

Инсулин – популярнейшая
молекула XX столетия

В истории химии случались события, по своему драматизму напоминавшие штурм неприступной вершины, на которую пытаются взойти одновременно независимые группы альпинистов по различным маршрутам. Все это сопровождается обстановкой состязания – кто взойдет на вершину первым?

Далее речь пойдет о синтезе инсулина – событии, ставшем заметным достижением в химической науке. Точно так же, как перед штурмом вершины альпинисты создают базовые, промежуточные и штурмовые лагеря, синтез инсулина был хорошо подготовлен, но не теми, кто вышел на покорение вершины, а основательными работами исследователей-предшественников. Можно уверенно сказать, что создание исходного плацдарма впечатляет не меньше, чем последующий штурм. Инсулин по праву можно назвать популярнейшей молекулой ХХ столетия; с исследованиями этого соединения связаны имена семи (!) нобелевских лауреатов.

Белок, спасающий жизнь

В середине XX в. инсулин был одним из наиболее интенсивно изучаемых веществ. Причина в том, что удалось объяснить происхождение одного из тяжелейших заболеваний – сахарного диабета. Болезнь возникает, когда в организме недостаточно гормона* инсулина. Инсулин запускает процессы, обеспечивающие поступление глюкозы (сахара) в клетки, а также стимулирует внутриклеточные механизмы, позволяющие усваивать глюкозу.

При недостатке инсулина глюкоза не расходуется клетками, она накапливается в крови и начинает через почки поступать в мочу. Повышенный уровень глюкозы в крови и ее выведение с мочой приводят к похуданию, чрезмерному мочеотделению, постоянному ощущению сильной жажды и голода. Организм старается компенсировать дефицит калорий, которые он теряет с мочой в виде глюкозы, и начинает использовать жировые запасы и тканевые белки (главным образом мышечные). Возникают утомление, сонливость, тошнота, нарушаются обменные процессы, что может привести к диабетической коме, а при отсутствии лечения к смерти.

Сахарный диабет встречается среди населения всех стран и у представителей всех рас. Самое раннее описание этого заболевания было сделано примерно 3000 лет назад в Древней Индии. Подробные симптомы болезни (обильное мочеотделение, чрезмерная жажда и потеря веса) были описаны в I в. н.э. Болезнь получила свое название от греческого diabetes , что означает «протекаю, прохожу сквозь» (имеется в виду чрезмерное мочеотделение).

Планомерное изучение этого заболевания длилось не одно столетие. В XVII в. английский врач Т.Уиллис обратил внимание на то, что моча у пациентов с такими симптомами имеет сладковатый вкус (провести подобный анализ мог только истинный ученый). Картина начала проясняться после опытов французского физиолога Клода Бернара (1813–1878), в которых он наблюдал собак с удаленной поджелудочной железой. Его опыты продолжили в 1889 г. немецкие физиологи Йозеф фон Меринг и Оскар Минковский. Они удаляли хирургическим путем поджелудочную железу у собак и затем наблюдали у них резкий подъем концентрации глюкозы в крови, ее появление в моче и другие признаки сахарного диабета. Таким образом они экспериментально доказали связь между поджелудочной железой и сахарным диабетом.

Некоторые физиологи высказывали предположение, что поджелудочная железа вырабатывает вещество, которое способствует усваиванию в организме глюкозы. В 1916 г. немецкий физиолог Шарпи-Шафер назвал это гипотетическое вещество инсулин (от латинского insula – островок, поскольку отчетливо наблюдаемые группы клеток поджелудочной железы к этому моменту именовали островками Лангерганса). Тогда это было только предположение, которое впоследствии полностью подтвердилось.

11 января 1922 г. (знаменательный факт в истории мировой медицины) более чистый и активный препарат инсулина был введен первому пациенту – подростку, страдавшему тяжелой формой диабета. После полученного положительного эффекта были проведены аналогичные испытания еще на нескольких пациентах. Возникло новое направление в медицинской науке – гормонотерапия.

В 1923 г. Маклеод и Бантинг были удостоены Нобелевской премии по физиологии и медицине «за открытие инсулина». Бест не был включен в список лауреатов, и Бантинг отдал ему половину полученных денег (жест, достойный истинного ученого).

В 1926 г. было налажено серийное производство инсулина. Многие тысячи больных сахарным диабетом, ранее обреченных на смерть, были спасены и могли вести сравнительно нормальную жизнь, регулярно принимая лекарство.

От медицины к химии

Физиологи Маклеод и Бантинг использовали для лечения больных экстракт поджелудочной железы животных. Однако химиков всегда интересовало, как именно устроено то или иное соединение. Инсулин в кристаллическом виде впервые сумел получить в 1926 г. Дж.Абель. Именно благодаря его работам удалось наладить промышленное производство препарата. Абель также определил состав инсулина, стало понятно, что вещество представляет собой белковую молекулу. C этого момента исследования инсулина из медицины переходят в область химии, точнее, в руки биохимиков.

Ф.Сенгер
(р. 1918)

Все упомянутые выше работы подготовили решающий этап, позволивший выяснить, как устроена молекула, привлекавшая внимание столь большого числа исследователей. Решить эту задачу удалось американскому биохимику Фредерику Сенгеру. Вначале он разработал способ идентификации концевых аминогрупп в белковой молекуле путем обработки в щелочной среде динитрофторбензолом (впоследствии этот метод стал классическим). Далее он буквально разобрал на части всю молекулу инсулина и определил состав полученных аминокислот с помощью самых современных методов – электрофореза, разработанного А.Тизелиусом (Нобелевская премия, 1948 г.) и хроматографии, усовершенствованной А.Мартином и Р.Сингом (нобелевские лауреаты, 1952 г.). Однако установить, из каких аминокислот собрана белковая молекула, лишь половина дела, притом менее сложная. Главное – выяснить их последовательность в цепи.

Сенгер разработал план, по которому с помощью специально подобранных ферментов (биологических катализаторов) проводил расщепление белковой цепи на небольшие отрезки в заранее намеченных участках, а потом сопоставлял их состав. Работа представляла собой безупречное сочетание логики и экспериментального мастерства, и в 1958 г. ученому была присуждена Нобелевская премия «за работы по структуре протеинов, особенно инсулина». Свой метод Сенгер довел буквально до совершенства, со временем его методика стала общим принципом исследования структуры белков.

Винсент
Дю Виньо
(1901–1978)

Попутно отметим, что Сенгер, применив похожие логические построения, но несколько изменив методику и используемые реагенты, сумел установить последовательность фрагментов в структуре знаменитой двойной спирали ДНК. За эти исследования в 1980 г. Сенгеру (совместно с У.Гилбертом и П.Бергом) была присуждена еще одна Нобелевская премия «за вклад в определение последовательности оснований в нуклеиновых кислотах». Таким образом, Сенгер – единственный дважды нобелевский лауреат по химии. Никто не мог предположить, что эти исследования ДНК со временем откроют новую страницу в химии инсулина, но об этом речь пойдет несколько позже.

Дороти
Кроуфут-Ходжкин
(1910–1994)

Американский биохимикВинсент Дю Виньо, в течение нескольких лет изучавший инсулин, узнав о работах Сенгера, решил воспользоваться его методикой для расшифровки структуры двух других гормонов (вазопрессина и окситоцина). Однако он не только установил строение, но и синтезировал молекулы этих гормонов. Фактически он был первым, кто сумел синтезировать природные полипептиды. Эта работа ученого была отмечена Нобелевской премией в 1955 г., т.е. он получил премию на три года раньше Сенгера, чьи идеи помогли ему добиться столь великолепного результата. Работы Дю Виньо фактически открыли дорогу к синтезу инсулина.

Тем временем изучение инсулина продолжалось. Исследование лечебных свойств инсулина позволило установить, что его цинковый комплекс из нескольких молекул, так называемый Zn-инсулин, обладает более длительным лечебным действием. Строение этого комплекса оказалось весьма сложным (он содержит почти 800 атомов), поэтому были привлечены физико-химические методы анализа. В 1972 г. английский биофизик Дороти Кроуфут-Ходжкин (лауреат Нобелевской премии 1964 г. за определение с помощью рентгеновских лучей структур биологически активных веществ) установила трехмерную структуру этого необычайно сложного комплекса.

Упрощенный язык биохимиков

Прежде чем рассмотреть строение молекулы инсулина, познакомимся с тем, как биохимики изображают молекулы белков.

Все белки представляют собой полимеры, цепи которых собраны из фрагментов аминокислот. Аминокислоты – это органические соединения, содержащие в своем составе аминогруппу NH 2 и карбоксильную группу СООН. В образовании белков участвуют только такие аминокислоты, у которых между аминогруппой и карбоксильной группой всего один углеродный атом. В общем виде они могут быть представлены формулой H 2 N–CH(R)–COOH. Группа R, присоединенная к атому углерода (тому, который находится между амино- и карбоксильной группой), определяет различие между аминокислотами, образующими белки. Эта группа может состоять только из атомов углерода и водорода, но чаще содержит помимо С и Н различные функциональные группы. Из всего многообразия существующих аминокислот (теоретически количество возможных аминокислот неограниченно) в образовании белков участвуют только двадцать, так называемые «фундаментальные» аминокислоты. Для «строительства» инсулина природа использовала 16 аминокислот (из допустимых двадцати) (табл.1).

Таблица 1

Аминокислоты, участвующие в создании инсулина

Название Структура Обозначение*
Глицин Гли
Аланин Ала
Валин Вал
Лейцин Лей
Изолейцин Иле
Серин Сер
Цистеин Цис
Лизин Лиз
Аргинин Арг
Аспарагин Асн
Глутаминовая кислота Глу
Глутамин Глн
Фениаланин Фен
Тирозин Тир
Гистидин Гис
Пролин Про

* В международной практике принято сокращенное обозначение перечисленных аминокислот с помощью латинских трехбуквенных сокращений, например глицин – Gly, аланин – Ala и т.п.

Белковая молекула образуется в результате последовательного соединения аминокислот, при этом карбоксильная группа одной кислоты взаимодействует с аминогруппой соседней молекулы, в результате образуется пептидная связь –CO–NH– и выделяется молекула воды. На схеме 1
(см. с. 6 ) показано последовательное соединение аланина, валина и глицина.

Схема 1

Из превращений, показанных на схеме 1, следует, что при любом количестве соединяемых аминокислот на одном конце возникшей цепочки обязательно будет находиться аминогруппа, а на другом – карбоксильная. Фрагменты соединенных аминокислот обозначены (под фигурными скобками) теми сокращенными буквосочетаниями, которые указаны в табл. 1. Таким образом, вместо структурной формулы мы можем использовать сокращенное обозначение получившегося трипептида: ала-вал-гли. Поскольку количество аминокислот, используемых природой, всего двадцать, то подобные сокращения позволяют компактно записать формулу любого белка, и никакой неясности при этом не возникнет.

Молекула инсулина, как установил Сенгер, состоит из 51 аминокислотного остатка (это один из самых короткоцепочечных белков) и представляет собой две соединенные между собой параллельные цепи неодинаковой длины. На схеме 2 показана последовательность аминокислот в молекуле инсулина: А-цепь содержит 21 аминокислотный остаток, Б-цепь – 30.

Схема 2

Содержащиеся в молекуле остатки аминокислоты цистеина (сокращенное обозначение Цис) образуют дисульфидные мостики S-S-, которые связывают две полимерные цепи молекулы и, кроме того, образуют перемычку внутри А-цепи. При таком компактном изображении белковой молекулы символы химических элементов используют только для обозначения дисульфидных мостиков и концевых групп (NH 2 и COOH).

Схема 3

Согласитесь с тем, что биохимики выбрали компактный и необычайно удобный для написания способ изображения белковых молекул.

От демонтажа к сборке

Казалось бы, после того как установлена структура молекулы, синтезировать ее заново не составит большого труда.

Основная трудность при сборке белковой молекулы – добиться, чтобы необходимые аминокислоты соединялись в строго определенном порядке. При этом нужно учитывать, что аминокислота способна реагировать не только с другой аминокислотой, но и сама с собой, и в итоге может получиться молекула, не имеющая ничего общего с тем, что синтезирует живой организм.

К моменту, когда решался вопрос о синтезе инсулина, было разработано несколько соответствующих методик. Для того чтобы аминокислота, которую намечено было присоединить к растущей цепи, не реагировала сама с собой, ее реакционноспособные концы (аминогруппу NH 2 и карбоксильную группу СООН) блокировали специальным образом: карбоксильную группу переводили в п -нитрофениловый эфир, а со стороны аминогруппы присоединяли карбоксибензильную группу. Такая блокированная молекула реагировала с аминогруппой, находящейся на конце растущей цепи, по схеме 4 (cм. c. 8 ).

Схема 4

В результате растущая цепь удлинялась на одно пептидное звено. Однако теперь на конце цепи разместилась блокирующая карбоксибензильная группа. Чтобы сделать «аминный хвост» реакционноспособным, т. е. перевести его в активную форму, осуществляли обработку бромоводородом с уксусной кислотой по схеме 5 (cм. c. 8 ).

Схема 5

В результате аминогруппа на конце цепи (она показана в виде аммониевой соли с HBr) вновь была готова реагировать с очередной аминокислотой (естественно, тоже содержащей блокирующие группы). Параллельно были разработаны и другие методы сборки полипептидных цепей.

Штурм вершины

К полному синтезу инсулина в 1962 г. приступили практически одновременно три группы исследователей: группа П.Катсоянниса в г. Питсбурге (США), группа Г.Цана в г. Аахене (Германия), а также группа китайских химиков (Шанхай и Пекин). Все три группы действовали по весьма похожим стратегиям: собрали отдельно короткую и длинную цепи из заготовленных фрагментов, а затем соединяли обе цепи дисульфидными мостиками.

Короткую А-цепь все три группы исследователей собирали из двух одинаковых блоков.

1-й блок: гли-иле-вал-глу-глн-цис-цис-тир-сер;

2-й блок: иле-цис-сер-лей-тир-глн-лей-глу-асн-тир-цис-асн.

Длинную Б-цепь собирали из четырех полипептидных блоков, однако длина этих блоков у разных групп ученых несколько различалась (табл. 2).

Таблица 2

Полипептидные блоки для сборки Б-цепи инсулина

Исследова-
тельская группа
1-й блок 2-й блок 3-й блок 4-й блок
Аахенская Фен-вал-асн-глн-
гис-лей-цис-гли
Сер-гис-лей-
вал-глу-ала
Лей-тир-лей-
вал-цис-глу
Глу-арг-глу-фен-фен-
тир-тир-про-лиз-тир
Питсбургска Фен-вал-асн-глн-
гис-лей-цис-гли-сер
Гис-лей-вал-глу Ала-лей-тир-лей-
вал-цис-глу
Глу-арг-глу-фен-фен-
тир-тир-про-лиз-тир
Пекинско-
шанхайская
Фен-вал-асн-глн-
гис-лей-цис-гли
Сер-гис-лей-вал-
глу-ала-лей-тир
Лей-вал-цис-глу Глу-арг-глу-фен-фен-
тир-тир-про-лиз-тир

Различия возникли из-за того, что методы соединения блоков и способы промежуточной защиты, используемые каждой из исследовательских групп, были неодинаковы. Естественно, на последнем этапе у всех групп получились одинаковые цепи. Приблизительно год ушел на создание исходных блоков. Подстегиваемая обстановкой соревнования аахенская группа интенсифицировала работу и в декабре 1963 г. сообщила об успешном синтезе инсулина. Эта группа буквально вырвала первенство у питсбургских химиков, которые сообщили об успешном результате в марте 1964 г. Окончательный выход чистого продукта колебался в пределах 0,02–0,07%. У китайских химиков выход был несколько выше (1,2–2,5%); разумеется, о производстве инсулина по таким методикам не могло быть и речи.

Питсбургская группа П.Катсоянниса
(он второй справа)

Синтез инсулина стал убедительной победой классической синтетической химии пептидов. Несмотря на низкий выход продукта, все признавали, что была проделана выдающаяся работа, которая позволила изменить образ мышления химиков, сформулировать новые принципы сборки больших молекул, отработать стратегию синтеза и подобрать оптимальные методики. Все это заметно повысило общий уровень органической химии. Тем не менее истинного триумфа не получилось, потому что почти одновременно с успешным завершением этих работ появилась принципиально иная, более совершенная методика сборки белковых молекул.

Главное – закрепить хвост

Профессор Рокфеллеровского университета (Нью-Йорк) Роберт Меррифилд, занимаясь химией белков, высказал оригинальную идею: первую аминокислоту можно закрепить одним концом на некой нерастворимой поверхности (носителе). Затем следует присоединить к другому ее концу следующую аминокислоту, при этом нежелательные побочные продукты и промежуточные реагенты, не вступившие в реакцию, можно будет вымывать из реакционного сосуда после каждой стадии, а растущий полипептид, прикрепленный к носителю, останется при этом незатронутым. Молекулы растущих полипептидов будут подвешены «за хвост» к твердой поверхности носителя, а когда процесс синтеза завершится, конечный полипептид можно отделить от носителя.

Меррифилду удалось реализовать эту идею. Первую аминокислоту присоединяют к нерастворимому полимерному гелю (сшитый полистирол) с введенными в него хлорметильными группами CH 2 Cl, которые способны реагировать с СООН-группами аминокислоты. Чтобы взятая для реакции аминокислота не прореагировала сама с собой и не присоединилась аминогруппой к подложке, NH 2 -группу этой кислоты предварительно блокируют объемистым заместителем – [(С 4 Н 9) 3 ] 3 ОС(О)-группой. После того как аминокислота присоединилась к полимерной подложке, блокирующую группу удаляют и в реакционную смесь вводят другую аминокислоту, у которой также предварительно заблокирована NH 2 -группа. В такой системе возможно только взаимодействие NH 2 -группы первой аминокислоты и COOH-группы второй аминокислоты, которое проводят в присутствии катализаторов (солей фосфония). Далее схему присоединения повторяют, вводя третью аминокислоту. Вся схема синтеза полипептидных цепей, позволяющая чередовать аминокислотные остатки в заданном порядке, выглядит следующим образом (схема 6).

Схема 6

На последней стадии полученные полипептидные цепи отделяют от полистирольной подложки действием HBr в присутствии трифторуксусной кислоты F 3 CCOOH.

Меррифилд не только экспериментально проверил эффективность предложенного метода, но и сконструировал аппарат, который практически автоматизировал пептидный синтез. Это устройство представляло собой контейнер для аминокислот и реагентов – реакционный сосуд с автоматическими впускным и выпускным клапанами и программным механизмом, который регулировал последовательность процессов и длительность каждой стадии.

С помощью сконструированного аппарата Меррифилд и его коллеги синтезировали инсулин всего за 20 дней (притом с выходом в десятки процентов), в то время как «первопроходцы» – аахенская, питсбургская и шанхайская группы – затратили на это больше года.

В 1985 г. Меррифилд был удостоен Нобелевской премии «за развитие методологии твердофазного химического синтеза».

Копируем Природу

Во время проведения описанных выше работ химиков не оставляла мысль, что те задачи, которые ученые решают с таким трудом, Природа решает легко и исключительно аккуратно. Синтез белков в живых организмах проходит в мягких условиях, быстро и без образования побочных продуктов. До определенного момента химики могли лишь с удивлением и интересом наблюдать подобные «синтезы», однако стремительное развитие биохимии позволило активно вмешаться в эти процессы, в том числе открыть принципиально новый способ синтеза инсулина.

Ранее было сказано, что Ф.Сенгер (установивший структуру инсулина) сумел определить последовательность фрагментов в структуре ДНК, за что был удостоен второй Нобелевской премии. Эта работа позволила биохимикам перейти к следующему этапу – встраивать в генетический код ДНК заранее намеченные фрагменты. Основная идея состояла в том, чтобы в ДНК некоторых бактерий включать гены высших организмов. В результате бактерии приобретают способность синтезировать соединения, которые прежде могли синтезировать только высшие организмы. Такая технология получила название «генная инженерия».

В 1981 г. канадский биохимик Майкл Смит был приглашен в научные соучредители новой биотехнологической компании «Зимос». Один из первых контрактов фирмы был заключен с датской фармацевтической компанией «Ново» по разработке технологии производства человеческого инсулина в дрожжевой культуре. В результате совместных усилий инсулин, полученный по новой технологии, в 1982 г. поступил в продажу. В 1993 г. за цикл работ в этой области М.Смит (совместно с К.Муллисом) получил Нобелевскую премию. В настоящее время инсулин, получаемый методом генной инженерии, практически вытеснил инсулин животных.

Чьи работы важнее

Итак, мы познакомились с четырьмя способами получения инсулина: экстракцией из поджелудочной железы животных (группа Д.Маклеода), многоступенчатым синтезом (группа Г.Цана), автоматизированной сборкой (Р.Меррифилд), методом генной инженерии (М.Смит). Оставим в стороне медицинский аспект проблемы, сосредоточим внимание на химии. Могло сложиться впечатление, что работы Смита сделали ненужными все предшествующие исследования. На самом деле это не так, все методы неразрывно связаны, ни один из этапов упомянутых исследований нельзя «выбросить». Инсулин, выделенный из поджелудочной железы животных, позволил Сенгеру определить его структуру, а без этого последующий синтез был невозможен. Группа Цана разработала химические приемы сборки цепей и способы промежуточной блокировки функциональных групп, которыми воспользовался Меррифилд при создании автоматической установки синтеза. Работы Смита, по существу, опирались на весь предшествующий опыт, накопленный при изучении инсулина. При синтезе некоторых короткоцепочечных гормонов автоматическая установка Меррифилда технически оказалась предпочтительнее «генной инженерии».

Обобщая, можно сказать, что все этапы, которые мы рассмотрели, – это естественный, традиционный и, если не бояться торжественных слов, величественный путь науки.

* Гормоны (от греческого – привожу в действие, побуждаю) – специфические физиологически активные вещества, вырабатываемые специальными эндокринными органами или тканями, секретируемые в кровь или лимфу и действующие на строение и функции организма.

Статья подготовлена при поддержке сайта "www.limanskaya.cn". Китайский язык сложен и специфичен, поэтому перевод должен осуществляться только специалистом. Если вам срочно потребовался переводчик с китайского на русский , то не стоит паниковать. На сайте, расположенном по адресу "www.Limanskaya.Сn", вы сможете, не отходя от экрана монитора, узнать адрес и телефон переводчика, а также посмотреть прайс-лист предоставляемых услуг.