Многоатомные спирты дают качественную реакцию с. Многоатомные спирты: характеристика, получение и использование. Физические свойства спиртов

Видеоурок 2: Фенол: Химические свойства

Лекция: Характерные химические свойства предельных одноатомных и многоатомных спиртов, фенола


Спирты и фенолы

В зависимости от типа углеводородного радикала, а также в некоторых случаях особенностей прикрепления группы -ОН к этому углеводородному радикалу соединения с гидроксильной функциональной группой разделяют на спирты и фенолы.

Существует подразделение органических соединений на спирты и фенолы. За основу данного деления берется тип углеводородного радикала и особенности прикрепления к нему -ОН-групп.

Спирты (алканолы) - производные предельных и непредельных углеводородов, в которых ОН-группа соединена с углеводородным радикалом без непосредственного присоединения к ароматическому кольцу.

Фенолы - органические вещества, имеющие в структуре ОН-группы, непосредственно присоединенные к ароматическому кольцу.

Названные особенности положения ОН-групп, существенно влияют на различие свойств спиртов и фенолов. В соединениях фенола связь О-Н более полярна в сравнении со спиртами. Это повышает подвижность атома водорода в ОН-группе. У фенолов значительно ярче, чем у спиртов, выражены кислотные свойства.

Классификация спиртов

Существует несколько классификаций спиртов. Так, по характеру углеводородного радикала спирты подразделяются на:

  • Предельные , содержащие только предельные углеводородные радикалы. В их молекулах один или несколько атомов водорода замещены ОН-группой, к примеру:

Этандиол-1,2 (этиленгликоль)

  • Непредельные , содержащие между атомами углерода двойные или тройные связи, к примеру:


Пропен-2-ол-1 (аллиловый спирт)

  • Ароматические , содержащие в молекуле бензольное кольцо и ОН-группу, которые связаны друг с другом через атомы углерода, к примеру:

Фенилметанол (бензиловый спирт)

По атомности, т.е. числу ОН-групп , спирты делятся на:

  • Одноатомные , к примеру:

  • Двухатомные (гликоли) , к примеру:

    Трехатомные , к примеру:

    Многоатомные , содержащие более трех ОН-групп, к примеру:



По характеру связи атома углерода и ОН-группы спирты подразделяются на:

  • Первичные , в которых ОН-группа связана с первичным атомом углерода, к примеру:

  • Вторичные , в которых ОН-группа связана со вторичным атомом углерода, к примеру:

    Третичны е , в которых ОН-группа связана с третичным атомом углерода, к примеру:

Кодификатор ЕГЭ по химии требует от вас знания химических свойств предельных одноатомных и многоатомных спиртов, рассмотрим их.
Химические свойства предельных одноатомных спиртов

1. Реакции замещения

    Взаимодействие с щелочными, щелочноземельными металлами , в результате образуются алкоголяты металлов и выделяется водород. К примеру, при взаимодействии этилового спирта и натрия образуется этилат натрия:

2C 2 H 5 OH+ 2Na→ 2C 2 H 5 ONa+ H2

Важно помнить следующее правило для данной реакции: спирты не должны содержать воду, иначе образование алкоголятов станет невозможным, поскольку они легко гидролизуются.

    Реакция этерификации , т.е. взаимодействие спиртов с органическими и кислородсодержащими неорганическими кислотами приводит к образованию сложных эфиров. Данная реакция катализируется сильными неорганическими кислотами. К примеру, взаимодействие этанола с уксусной кислотой образует этилацетат (уксусно-этиловый эфир):

Механизм реакции этерификации выглядит так:


Это обратимая реакция, поэтому для смещения равновесия в сторону образования сложного эфира, реакцию проводят при нагревании, а также в присутствии концентрированной серной кислоты как водоотнимающего вещества.

    Взаимодействие спиртов с галогеноводородами . При действии на спирты галогеноводородных кислот происходит замещение гидроксильной группы на атом галогена. В результате такой реакции образуются галогеналканы и вода. К примеру:

C 2 H 5 OH+ HCl → C 2 H 5 Cl+ H 2 O.

Это обратимая реакция.

2. Реакции элиминирования (отщепления)

    Дегидратация спиртов бывает межмолекулярной и внутримолекулярной.

При межмолекулярной одна молекула воды образуется в результате отщепления атома водорода от одной молекулы спирта и гидроксильной группы - от другой молекулы. В результате образуются простые эфиры (R-O-R). Условиями реакции являются присутствие концентрированной серной кислоты и нагревание 140 0 C:

С 2 Н 5 ОC 2 H 5 → C 2 H 5 -O-C 2 H 5 +H 2 O

Дегидратация этанола с этанолом привела к образованию диэтилового эфира (этоксиэтана) и воды.

СН 3 ОC 2 H 5 → CH 3 -O-C 2 H 5 +H 2 O

Дегидратация метанола с этанолом привела к образованию метилэтилового эфира (метоксиэтана) и воды.

Внутримолекулярная дегидратация спиртов в отличии от межмолекулярной протекает следующим образом: одна молекула воды отщепляется от одной молекулы спирта:

Для проведения данного типа дегидратации требуется сильное нагревание. В результате из одной молекулы спирта образуется одна молекула алкена и одна молекула воды.

Поскольку молекула метанола содержит только один атом углерода, для него невозможна внутримолекулярная дегидратация. При межмолекулярной дегидратации метанола возможно образование только простого эфира (CH 3 -O-CH 3):

2CH 3 OH → CH 3 -O-CH 3 + H 2 O.

Необходимо помнить, что в случае дегидратации несимметричных спиртов внутримолекулярное отщепление воды будет протекать в соответствии с правилом Зайцева, то есть водород будет отщепляться от наименее гидрированного атома углерода.

    Дегидрирование спиртов:

а) Дегидрирование первичных спиртов при нагревании в присутствии металлической меди приводит к образованию альдегидов:

б) В случае вторичных спиртов аналогичные условия приведут к образованию кетонов:

в) Третичные спирты дегидрированию не подвергаются.


3. Реакции окисления

    Горение . Спирты легко вступают в реакцию горения. При этом образуется большое количество тепла:

2СН 3 - ОН + 3O 2 → 2CO 2 + 4H 2 O + Q.

    Окисление спиртов происходит в присутствии катализаторов Cu, Cr и др. при нагревании. Окисление происходит и в присутствии хромовой смеси (H 2 SO 4 + K 2 Cr 2 O 7) или перманганата магния (KMnO 4). Первичные спирты образуют альдегиды, к примеру:

C 2 H 5 OH+ CuO → CH 3 COH + Cu + + H 2 O.

В результате получили уксусный альдегид (этаналь, ацетальдегид), медь, воду. Если образовавшийся альдегид не удалить из реакционной среды, образуются соответствующая кислота.


Вторичные спирты в этих же условиях образуют кетоны:

Для третичных спиртов реакция окисления не характерна.

Химические свойства многоатомных спиртов

Многоатомные спирты являются более сильными кислотами, чем одноатомные.

    Для многоатомных спиртов характерны такие же, как и для одноатомных, реакции с щелочными, щелочноземельными металлами. При этом в молекуле спирта замещается разное число атомов водорода ОН-групп. В результате образуются соли. К примеру:

Поскольку многоатомные спирты обладают кислотными свойствами больше одноатомных, то они охотно реагируют не только с металлами, но и с их гидроксидами тяжелых металлов. Реакция с гидроксидом меди 2 является качественной реакцией на многоатомные спирты. Голубой осадок при взаимодействии с многоатомным спиртом переходит в ярко синий раствор.

  • Реакция этерификации, т.е. взаимодействие с органическими и кислородсодержащими неорганическими кислотами с образованием сложных эфиров:

C 6 H 5 ONa + CH 3 COCl → C 6 H 5 OCOCH 3 + NaCl

В зависимости от типа углеводородного радикала, а также в некоторых случаях особенностей прикрепления группы -ОН к этому углеводородному радикалу соединения с гидроксильной функциональной группой разделяют на спирты и фенолы.

Спиртами называют соединения, в которых гидроксильная группа соединена с углеводородным радикалом, но не присоединена непосредственно к ароматическому ядру, если таковой имеется в структуре радикала.

Примеры спиртов:

Если в структуре углеводородного радикала содержится ароматическое ядро и гидроксильная группа, при том соединена непосредственно с ароматическим ядром, такие соединения называют фенолами .

Примеры фенолов:

Почему же фенолы выделяют в отдельный от спиртов класс? Ведь, например, формулы

очень похожи и создают впечатление веществ одного класса органических соединений.

Однако непосредственное соединение гидроксильной группы с ароматическим ядром существенно влияет на свойства соединения, поскольку сопряженная система π-связей ароматического ядра сопряжена также и с одной из неподеленных электронных пар атома кислорода. Из-за этого в фенолах связь О-Н более полярна по сравнению со спиртами, что существенно повышает подвижность атома водорода в гидроксильной группе. Другими словами, у фенолов значительно ярче, чем у спиртов выражены кислотные свойства.

Химические свойства спиртов

Одноатомные спирты

Реакции замещения

Замещение атома водорода в гидроксильной группе

1) Спирты реагируют со щелочными, щелочноземельными металлами и алюминием (очищенным от защитной пленки Al 2 O 3), при этом образуются алкоголяты металлов и выделяется водород:

Образование алкоголятов возможно только при использовании спиртов, не содержащих растворенной в них воды, так как в присутствии воды алкоголяты легко гидролизуются:

CH 3 OK + Н 2 О = СН 3 ОН + KOH

2) Реакция этерификации

Реакцией этерификации называют взаимодействие спиртов с органическими и кислородсодержащими неорганическими кислотами, приводящее к образованию сложных эфиров.

Такого типа реакции являются обратимыми, поэтому для смещения равновесия в сторону образования сложного эфира, реакцию желательно проводить при нагревании, а также в присутствии концентрированной серной кислоты как водоотнимающего агента:

Замещение гидроксильной группы

1) При действии на спирты галогеноводородных кислот происходит замещение гидроксильной группы на атом галогена. В результате такой реакции образуются галогеналканы и вода:

2) При пропускании смеси паров спирта с аммиаком через нагретые оксиды некоторых металлов (чаще всего Al 2 O 3) могут быть получены первичные, вторичные или третичные амины:

Тип амина (первичный, вторичный, третичный) будет в некоторой степени зависеть от соотношения исходного спирта и аммиака.

Реакции элиминирования (отщепления)

Дегидратация

Дегидратация, фактически подразумевающая отщепление молекул воды, в случае спиртов различается на межмолекулярную дегидратацию и внутримолекулярную дегидратацию.

При межмолекулярной дегидратации спиртов одна молекула воды образуется в результате отщепления атома водорода от одной молекулы спирта и гидроксильной группы — от другой молекулы.

В результате этой реакции образуются соединения, относящиеся к классу простых эфиров (R-O-R):

Внутримолекулярная дегидратация спиртов протекает таким образом, что одна молекула воды отщепляется от одной молекулы спирта. Данный тип дегидратации требует несколько более жестких условий проведения, заключающихся в необходимости использования заметно более сильного нагревания по сравнению с межмолекулярной дегидратацией. При этом из одной молекулы спирта образуется одна молекула алкена и одна молекула воды:

Поскольку молекула метанола содержит только один атом углерода, для него невозможна внутримолекулярная дегидратация. При дегидратации метанола возможно образование только простого эфира (CH 3 -O-CH 3).

Нужно четко усвоить тот факт, что в случае дегидратации несимметричных спиртов внутримолекулярное отщепление воды будет протекать в соответствии с правилом Зайцева, т.е. водород будет отщепляться от наименее гидрированного атома углерода:

Дегидрирование спиртов

а) Дегидрирование первичных спиртов при нагревании в присутствии металлической меди приводит к образованию альдегидов:

б) В случае вторичных спиртов аналогичные условия приведут у образованию кетонов:

в) Третичные спирты в аналогичную реакцию не вступают, т.е. дегидрированию не подвергаются.

Реакции окисления

Горение

Спирты легко вступают в реакцию горения. При этом образуется большое количество тепла:

2СН 3 -ОН + 3O 2 = 2CO 2 + 4H 2 O + Q

Неполное окисление

Неполное окисление первичных спиртов может приводить к образованию альдегидов и карбоновых кислот.

В случае неполного окисления вторичных спиртов возможно образование только кетонов.

Неполное окисление спиртов возможно при действии на них различных окислителей, например, таких, как кислород воздуха в присутствии катализаторов (металлическая медь), перманганат калия, дихромат калия и т.д.

При этом из первичных спиртов могут быть получены альдегиды. Как можно заметить, окисление спиртов до альдегидов, по сути, приводит к тем же органическим продуктам, что и дегидрирование:

Следует отметить, что при использовании таких окислителей, как перманганат калия и дихромат калия в кислой среде возможно более глубокое окисление спиртов, а именно до карбоновых кислот. В частности, это проявляется при использовании избытка окислителя при нагревании. Вторичные спирты могут в этих условиях окислиться только до кетонов.

ПРЕДЕЛЬНЫЕ МНОГОАТОМНЫЕ СПИРТЫ

Замещение атомов водорода гидроксильных групп

Многоатомные спирты так же, как и одноатомные реагируют со щелочными, щелочноземельными металлами и алюминием (очищенным от пленки Al 2 O 3 ); при этом может заместиться разное число атомов водорода гидроксильных групп в молекуле спирта:

2. Поскольку в молекулах многоатомных спиртов содержится несколько гидроксильных групп, они оказывают влияние друг на друга за счет отрицательного индуктивного эффекта. В частности, это приводит к ослаблению связи О-Н и повышению кислотных свойств гидроксильных групп.

Бо льшая кислотность многоатомных спиртов проявляется в том, что многоатомные спирты, в отличие от одноатомных, реагируют с некоторым гидроксидами тяжелых металлов. Например, нужно запомнить тот факт, что свежеосажденный гидроксид меди реагирует с многоатомными спиртами с образованием ярко-синего раствора комплексного соединения.

Так, взаимодействие глицерина со свежеосажденными гидроксидом меди приводит к образованию ярко-синего раствора глицерата меди:

Данная реакция является качественной на многоатомные спирты. Для сдачи ЕГЭ достаточно знать признаки этой реакции, а само уравнение взаимодействия уметь записывать необязательно.

3. Так же, как и одноатомные спирты, многоатомные могут вступать в реакцию этерификации, т.е. реагируют с органическими и кислородсодержащими неорганическими кислотами с образованием сложных эфиров. Данная реакция катализируется сильными неорганическими кислотами и является обратимой. В связи с этим при осуществлении реакции этерификации образующийся сложный эфир отгоняют из реакционной смеси, чтобы сместить равновесие вправо по принципу Ле Шателье:

Если в реакцию с глицерином вступают карбоновые кислоты с большим числом атомов углерода в углеводородном радикале, получающиеся в результате такой реакции, сложные эфиры называют жирами.

В случае этерификации спиртов азотной кислотой используют так называемую нитрующую смесь, представляющую собой смесь концентрированных азотной и серной кислот. Реакцию проводят при постоянном охлаждении:

Сложный эфир глицерина и азотной кислоты, называемый тринитроглицерином, является взрывчатым веществом. Кроме того, 1%-ный раствор данного вещества в спирте обладает мощным сосудорасширяющим действием, что используется при медицинских показаниях для предотвращения приступа инсульта или инфаркта.

Замещение гидроксильных групп

Реакции данного типа протекают по механизму нуклеофильного замещения. К взаимодействиям такого рода относится реакция гликолей с галогеноводородами.

Так, например, реакция этиленгликоля с бромоводородом протекает с последовательным замещением гидроксильных групп на атомы галогена:

Химические свойства фенолов

Как уже было сказано в самом начале данной главы, химические свойства фенолов заметно отличаются от химических свойств спиртов. Связано это с тем, что одна из неподеленных электронных пар атома кислорода в гидроксильной группе сопряжена с π-системой сопряженных связей ароматического кольца.

Реакции с участием гидроксильной группы

Кислотные свойства

Фенолы являются более сильными кислотами, чем спирты, и в водном растворе в очень небольшой степени диссоциированы:

Бо льшая кислотность фенолов по сравнению со спиртами в плане химических свойств выражается в том, что фенолы, в отличие от спиртов, способны реагировать со щелочами:

Однако, кислотные свойства фенола выражены слабее, чем даже у одной из самых слабых неорганических кислот – угольной. Так, в частности, углекислый газ, при пропускании его через водный раствор фенолятов щелочных металлов, вытесняет из последних свободный фенол как еще более слабую, чем угольная, кислоту:

Очевидно, что любой другой более сильной кислотой фенол также будет вытесняться из фенолятов:

3) Фенолы являются более сильными кислотами, чем спирты, а спирты при этом реагируют с щелочными и щелочноземельными металлами. В связи с этим очевидно, что и фенолы будут реагировать с указанными металлами. Единственное, что в отличие от спиртов, реакция фенолов с активными металлами требует нагревания, так как и фенолы, и металлы являются твердыми веществами:

Реакции замещения в ароматическом ядре

Гидроксильная группа является заместителем первого рода, и это значит, что она облегчает протекание реакций замещения в орто- и пара- положениях по отношению к себе. Реакции с фенолом протекают в намного более мягких условиях по сравнению с бензолом.

Галогенирование

Реакция с бромом не требует каких-либо особых условий. При смешении бромной воды с раствором фенола мгновенно образуется белый осадок 2,4,6-трибромфенола:

Нитрование

При действии на фенол смеси концентрированных азотной и серной кислот (нитрующей смеси) образуется 2,4,6-тринитрофенол – кристаллическое взрывчатое вещество желтого цвета:

Реакции присоединения

Поскольку фенолы являются ненасыщенными соединениями, возможно их гидрирование в присутствии катализаторов до соответствующих спиртов.

Многоатомные спирты можно рассматривать как производные углеводородов, в которых несколько атомов водорода замещены на группы ОН.

Двухатомные спирты, называются диолами или гликолями, трехатомные – триолы или глицерины.

Названия многоатомных спиртов образуются по общим правилам номенклатуры ИЮПАК. Представителями многоатомных спиртов являются:

этандиол-1,2 пропантриол-1,2,3

Этиленгликоль глицерин

Физические свойства спиртов.

Многоатомные спирты – это вязкие жидкости, сладкого вкуса, хорошо растворимые в воде и этаноле, плохо – в других органических растворителях. Этиленгликоль сильный яд.

Химические свойства спиртов.

Для многоатомных спиртов характерны реакции одноатомных спиртов и они могут протекать с участием одной или нескольких групп –ОН.

    Взаимодействие с активными металлами:

    Взаимодействие со щелочами. Введение в молекулу дополнительных групп ОН, являющихся электроноакцепторами, усиливает кислотные свойства спиртов, так как происходит делокализация электронной плотности.

    Взаимодействие с гидроксидами тяжелых металлов (гидроксидом меди) – качественная реакция на многоатомные спирты.

    Взаимодействие с галогеноводородами:

    Взаимодействие с кислотами с образованием сложных эфиров:

а) с минеральными кислотами

нитроглицерин

Нитроглицерин – бесцветная маслянистая жидкость. В виде разбавленных спиртовых растворов (1%) применяется при стенокардии, т.к. оказывает сосудорасширяющее действие.

При взаимодействии глицерина с фосфорной кислотой образуется смесь α- и β-глицерофосфатов:

Глицерофосфаты – структурные элементы фосфолипидов, применяются как общеукрепляющее средство

б) с органическими кислотами. При взаимодействии глицерина с высшими карбоновыми кислотами образуются жиры:

    Реакции дегидратации

диоксан (циклический диэфир)

    При нагревании глицерин разлагается с образованием слезоточивого вещества – акролеина:


Акролеин

    Окисление:

При окислении глицерина образуется ряд продуктов. При мягком окислении – глицериновый альдегид (1) и дигидроксиацетон (2):

При окислении в жестких условиях образуется 1,3-диоксоацетон (3):

Биологически значимыми являются пяти- и шестиатомные спирты.

Накопление –ОН групп ведет к появлению сладкого вкуса. Ксилит и сорбит – заменители сахара для больных диабетом

Инозиты – шестиатомные спирты циклогексанового ряда. В связи с наличием ассиметрических атомов углерода у инозита существует несколько стереоизомеров; наиболее важен мезоинозит (миоинозит)

инозит мезоинозит

Мезоинозит относится к витаминоподобным соединениям (витамины группы В) и является структурным компонентом сложных липидов. В растениях широко распространена фитиновая кислота, представляющая собой гексафосфат мезоинозита. Её кальциевая соль, называемая фитином, стимулирует кроветворение, улучшает нервную деятельность при заболеваниях, связанных с недостатком фосфора в организме.

Фенолы

Фенолы – это производные ароматических углеводородов, в которых один или несколько атомов водорода замещены на гидроксильные группы.

Многоатомные спирты – органические соединения, в молекулах которых содержится несколько гидроксильных групп (-ОН), соединённых с углеводородным радикалом

Гликоли (диолы)

  • Сиропообразная, вязкая бесцветная жидкость, имеет спиртовой запах, хорошо смешивается с водой, сильно понижает температуру замерзания воды(60%-ый раствор замерзает при -49 ˚С) –это используется в системах охлаждения двигателей – антифризы.
  • Этиленгликоль токсичен – сильный Яд! Угнетает ЦНС и поражает почки.

Триолы

  • Бесцветная, вязкая сиропообразная жидкость, сладкая на вкус. Не ядовит. Без запаха. Хорошо смешивается с водой.
  • Распространён в живой природе. Играет важную роль в обменных процессах, так как входит в состав жиров (липидов) животных и растительных тканей.

Номенклатура

В названиях многоатомных спиртов (полиолов ) положение и число гидроксильных групп указывают соответствующими цифрами и суффиксами -диол (две ОН-группы), -триол (три ОН-группы) и т.д. Например:

Получение многоатомных спиртов

I . Получение двухатомных спиртов

В промышленности

1. Каталитическая гидратация оксида этилена (получение этиленгликоля):

2. Взаимодействие дигалогенпроизводных алканов с водными растворами щелочей :

3. Из синтез-газа :

2CO + 3H 2 250°,200 МПа ,kat →CH 2 (OH)-CH 2 (OH)

В лаборатории

1. Окисление алкенов :

II . Получение трёхатомных спиртов (глицерина)

В промышленности

Омыление жиров (триглицеридов):

Химические свойства многоатомных спиртов

Кислотные свойства

1. С активными металлами:

HO-CH 2 -CH 2 -OH + 2Na → H 2 + NaO-CH 2 -CH 2 -ONa (гликолят натрия)

2. С гидроксидом меди( II ) – качественная реакция!


Упрощённая схема

Основные свойства

1. С галогенводородными кислотами

HO-CH 2 -CH 2 -OH + 2HCl H+ ↔ Cl-CH 2 -CH 2 -Cl + 2H 2 O

2. С азотной кислотой

Т ринитроглицерин - основа динамита

Применение

  • Этиленгликоль производства лавсана , пластмасс , и для приготовления антифризов - водных растворов, замерзающих значительно ниже 0°С (использование их для охлаждения двигателей позволяет автомобилям работать в зимнее время); сырьё в органическом синтезе.
  • Глицерин широко используется в кожевенной, текстильной промышленности при отделке кож и тканей и в других областях народного хозяйства. Сорбит (шестиатомный спирт) используется как заменитель сахара для больных диабетом. Глицерин находит широкое применение в косметике , пищевой промышленности , фармакологии , производстве взрывчатых веществ . Чистый нитроглицерин взрывается даже при слабом ударе; он служит сырьем для получения бездымных порохов и динамита ― взрывчатого вещества, которое в отличие от нитроглицерина можно безопасно бросать. Динамит был изобретен Нобелем, который основал известную всему миру Нобелевскую премию за выдающиеся научные достижения в области физики, химии, медицины и экономики. Нитроглицерин токсичен, но в малых количествах служит лекарством , так как расширяет сердечные сосуды и тем самым улучшает кровоснабжение сердечной мышцы.