Простейшие потоки марковские процессы и цепи решение. Марковские случайные процессы и потоки событий. Дискретные Марковские цепи

При исследовании операций часто приходится сталкиваться с системами, предназначенными для многоразового использования при решении однотипных задач. Возникающие при этом процессы получили название процессов обслуживания, а системы - систем массового обслуживания (СМО). Примерами таких систем являются телефонные системы, ремонтные мастерские, вычислительные комплексы, билетные кассы, магазины, парикмахерские и т.п.
Каждая СМО состоит из определенного числа обслуживающих единиц (приборов, устройств, пунктов, станций), которые будем называть каналами обслуживания. Каналами могут быть линии связи, рабочие точки, вычислительные машины, продавцы и др. По числу каналов СМО подразделяют на одноканальные и многоканальные.
Заявки поступают в СМО обычно не регулярно, а случайно, образуя так называемый случайный поток заявок (требований). Обслуживание заявок, вообще говоря, также продолжается какое-то случайное время. Случайный характер потока заявок и времени обслуживания приводит к тому, что СМО оказывается загруженной неравномерно: в какие-то периоды времени скапливается очень большое количество заявок (они либо становятся в очередь, либо покидают СМО необслуженными), в другие же периоды СМО работает с недогрузкой или простаивает.
Предметом теории массового обслуживания является построение математических моделей, связывающих заданные условия работы СМО (число каналов, их производительность, характер потока заявок и т.п.) с показателями эффективности СМО, описывающими ее способность справляться с потоком заявок.

В качестве показателей эффективности СМО используются: среднее (здесь и в дальнейшем средние величины понимаются как математические ожидания соответствующих случайных величин) число заявок, обслуживаемых в единицу времени; среднее число заявок в очереди; среднее время ожидания обслуживания; вероятность отказа в обслуживании без ожидания; вероятность того, что число заявок в очереди превысит определенное значение и т.п.

СМО делят на два основных типа (класса) : СМО с отказами и href="cmo_length.php">СМО с ожиданием (очередью). В СМО с отказами заявка, поступившая в момент, когда все каналы заняты, получает отказ, покидает СМО и в дальнейшем процессе обслуживания не участвует (например, заявка на телефонный разговор в момент, когда все каналы заняты, получает отказ и покидает СМО необслуженной). В СМО с ожиданием заявка, пришедшая в момент, когда все каналы заняты, не уходит, а становится в очередь на обслуживание.
СМО с ожиданием подразделяются на разные виды в зависимости от того, как организована очередь: с ограниченной или неограниченной длиной очереди, с ограниченным временем ожидания и т.п.
Процесс работы СМО представляет собой случайный процесс.
Под случайным (вероятностным или стохастическим) процессом понимается процесс изменения во времени состояния какой-либо системы в соответствии с вероятностными закономерностями.
Процесс называется процессом с дискретными состояниями, если его возможные состояния S 1 , S 2 , S 3 … можно заранее перечислить, а переход системы из состояния в состояние происходит мгновенно (скачком). Процесс называется процессом с непрерывным временем, если моменты возможных переходов системы из состояния в состояние не фиксированы заранее, а случайны.
Процесс работы СМО представляет собой случайный процесс c дискретными состояниями и непрерывным временем. Это означает, что состояние СМО меняется скачком в случайные моменты появления каких-то событий (например, прихода новой заявки, окончания обслуживания и т.п.).
Математический анализ работы СМО существенно упрощается, если процесс этой работы - марковский. Случайный процесс называется марковским или случайным процессом без последствия, если для любого момента времени t 0 вероятностные характеристики процесса в будущем зависят только от его состояния в данный момент t 0 и не зависят от того, когда и как система пришла в это состояние.

Пример марковского процесса: система S - счетчик в такси. Состояние системы в момент t характеризуется числом километров (десятых долей километров), пройденных автомобилем до данного момента. Пусть в момент t 0 счетчик показывает S 0 . Вероятность того, что в момент t > t 0 счетчик покажет то или иное число километров (точнее, соответствующее число рублей) S 1 , зависит от S 0 , но не зависит от того, в какие моменты времени изменялись показания счетчика до момента t 0 .
Многие процессы можно приближенно считать марковскими. Например, процесс игры в шахматы; система S - группа шахматных фигур. Состояние системы характеризуется числом фигур противника, сохранившихся на доске в момент t 0 . Вероятность того, что в момент t > t 0 материальный перевес будет на стороне одного из противников, зависят в первую очередь от того, в каком состоянии находится система в данный момент t 0 , а не того, когда и в какой последовательности исчезли фигуры с доски до момента t 0 .
В ряде случаев предысторией рассматриваемых процессов можно просто пренебречь и применять для их изучения марковские модели.
При анализе случайных процессов с дискретными состояниями удобно пользоваться геометрической схемой - так называемым графом состоянии. Обычно состояния системы изображаются прямоугольниками (кружками), а возможные переходы из состояния в состояние - стрелками (ориентированными дугами), соединяющими состояния.
Задача 1 . Построить граф состояний следующего случайного процесса: устройство S состоит из двух узлов, каждый из которых в случайный момент времени может выйти из строя, после чего мгновенно начинается ремонт узла, продолжающийся заранее неизвестное случайное время.

Решение. Возможные состояния системы: S 0 - оба узла исправны; S 1 - первый узел ремонтируется, второй исправен; S 2 - второй узел ремонтируется, первый исправен; S 3 - оба узла ремонтируются. Граф системы приведен на рис.1.
Рис. 1
Стрелка, направленная, например, из S 0 в S 1 означает переход системы в момент отказа первого узла, из S 1 в S 0 - переход в момент окончанияремонта этого узла.
На графе отсутствуют стрелки из S 0 , в S 3 и из S 1 в S 2 . Это объясняется тем, что выходы узлов из строя предполагаются независимыми друг от друга и, например, вероятностью одновременного выхода из строя двух узлов (переход из S 0 в S 3) или одновременного окончания ремонтов двух узлов (переход из S 3 в S 0) можно пренебречь.

Поток событий

Для математического описания марковского случайного процесса с дискретными состояниями и непрерывным временем, протекающего в СМО, познакомимся с одним из важных понятий теории вероятностей - понятием потока событий.
Под потоком событий понимается последовательность однородных событий, следующих одно за другим в какие-то случайные моменты времени (например, поток вызовов на телефонной станции, поток отказов ЭВМ, поток покупателей и т.п.).
Поток характеризуется интенсивностью l - частотой появления событий или средним числом событий, поступающих в СМО в единицу времени.
Поток событий называется регулярным, если события следуют одно за другим через определенные равные промежутки времени. Например, поток изделий на конвейере сборочного цеха (с постоянной скоростью движения) является регулярным.
Поток событий называется стационарным, если его вероятностные характеристики не зависят от времени. В частности, интенсивность стационарного потока есть величина постоянная: l(t)= l. Например, поток автомобилей на городском проспекте не является стационарным в течение суток, но этот поток можно считать стационарным в течение суток, скажем, в часы пик. Обращаем внимание на то, что в последнем случае фактическое число проходящих автомобилей в единицу времени (например, в каждую минуту) может заметно отличаться друг от друга, но среднее их число будет постоянно и не будет зависеть от времени.
Поток событий называется потоком без последействия, если для любых двух непересекающихся участков времени t 1 и t 2 - число событий, попадающих на один из них, не зависит от числа событий, попадающих на другие. Например, поток пассажиров, входящих в метро, практически не имеет последействия. А, скажем, поток покупателей, отходящих с покупками от прилавка, уже имеет последействие (хотя бы потому, что интервал времени между отдельными покупателями не может быть меньше, чем минимальное время обслуживания каждого из них).
Поток событий называется ординарным, если вероятность попадания на малый (элементарный) участок времени Dt двух и более событий пренебрежимо мала по сравнению с вероятностью попадания одного события. Другими словами, поток событий ординарен, если события появляются в нем поодиночке, а не группами. Например, поток поемов, подходящих к станции, ординарен, а поток вагонов не ординарен.
Поток событий называется простейшим (или стационарным пуассоновским), если он одновременно стационарен, ординарен и не имеет последействия. Название "простейший" объясняется тем, что СМО с простейшими потоками имеет наиболее простое математическое описание. Заметим, что регулярный поток не является "простейшим", так как он обладает последействием: моменты появления событий в таком потоке жестко зафиксированы.
Простейший поток в качестве предельного возникает в теории случайных процессов столь же естественно, как в теории вероятностей нормальное распределение получается в качестве предельного для суммы случайных величин: при наложении (суперпозиции) достаточно большого числа n независимых, стационарных и ординарных потоков (сравнимых между собой по интенсивностям l 1 (i=1,2, ..., п) получается поток, близкий к простейшему с интенсивностью l, равной сумме интенсивностей входящих потоков, т.е.
Рассмотрим на оси времени Ot (рис. 2) простейший поток событий как неограниченную последовательность случайных точек.
Рис. 2
Можно показать, что для простейшего потока число т событий (точек), попадающих на произвольный участок времени t, распределено по закону Пуассона , (1)
для которого математическое ожидание случайной величины равно ее дисперсии: a= s 2 = l t.
В частности, вероятность того, что за время t не произойдет ни одного события (m=0), равна (2)
Найдем распределение интервала времени Т между произвольными двумя соседними событиями простейшего потока.
В соответствии с (15.2) вероятность того, что на участке времени длиной t не появится ни одного из последующих событий, равна (3)
а вероятность противоположного события, т.е. функция распределения случайной величины Т, есть (4)
Плотность вероятности случайной величины есть производная ее функции распределения (рис. 3), т.е. (5)
Рис. 3
Распределение, задаваемое плотностью вероятности (5) или функцией распределения (4), называется показательным (или экспоненциальным). Таким образом, интервал времени между двумя соседними произвольными событиями имеет показательное распределение, для которого математическое ожидание равно среднему квадратическому отклонению случайной величины (6)
и обратно по величине интенсивности потока l.
Важнейшее свойство показательного распределения (присущее только показательному распределению) состоит в следующем: если промежуток времени, распределенный по показательному закону, уже длился некоторое время t, то это никак не влияет на закон распределения оставшейся части промежутка (T-t): он будет таким же, как и закон распределения всего промежутка Т.
Другими словами, для интервала времени Т между двумя последовательными соседними событиями потока, имеющего показательное распределение, любые сведения о том, сколько времени протекал этот интервал, не влияют на закон распределения оставшейся части. Это свойство показательного закона представляет собой, в сущности, другую формулировку для "отсутствия последействия" - основного свойства простейшего потока.
Для простейшего потока с интенсивностью l вероятность попадания на элементарный (малый) отрезок времени Dt хотя бы одного события потока равна согласно (4)
(7)
(Заметим, что эта приближенная формула, получаемая заменой функции e - l Dt лишь двумя первыми членами ее разложения в ряд по степеням Dt, тем точнее, чем меньше Dt).

Потоки событий Это последовательность событий происходящих одно за другим в определенные интервалы времени. T - средняя величина времени между соседними событиями Если T=const, то события в потоке распределены равномерно. - интенсивность потока, т. е. среднее число событий, происходящих в единицу времени.

Потоки событий Стационарный Количество событий, попадающих на любой произвольный интервал времени не зависит от положения на числовой оси, а зависит только от его ширины Без последействия Для любых двух непересекающихся временных интервалов количество событий, попадающих на один из них, не зависит от того, сколько событий произошло на другом интервале Регулярный Противоположный потоку без последействия (с последействием)

Потоки событий Ординарный В любой момент времени происходит одно и только одно событие, т. е. вероятность появления на бесконечно малом временном интервале двух и более событий пренебрежимо мала по сравнению с вероятностью появления одного события Пуассоновский Нестационарный, ординарный поток без последействия Простейший Стационарный, ординарный поток без последействия, для которого число событий, появляющихся за промежуток времени, распределено по закону Пуассона, а интервалы времени между двумя последовательными событиями характеризуются показательным распределением. Это стационарный пуассоновский поток.

Экономическое применение Современные финансово – банковские операции предполагают погашение задолженности в рассрочку, периодическое поступление доходов от инвестиций. Такого рода последовательность, или ряд платежей, можно назвать потоком платежей. Поток платежей все члены которого – положительные величины, а временные интервалы между платежами одинаковы, называют финансовой рентой. Рентой является последовательность получения процентов по облигациям, платежи по потребительскому кредиту, выплаты в рассрочку страховых премий. Характеристики потока платежей: интервал между двумя соседними платежами, вероятности выплаты платежа, широко применяются в различных финансовых расчетах. Без них невозможно разработать план последовательного погашения задолженности, измерить финансовую эффективность проекта, осуществить сравнение или безубыточное изменение условий контрактов.

Задача Для анализа изменения с течением времени размера текущего фонда банка, занимающегося выдачей долгосрочных ссуд, важно обладать информацией о процессе поступления в банк выплат по займам. Наблюдение за банком в предшествующем периоде показало, что число поступающих в банк выплат за любой промежуток времени не зависит от момента времени с которого начался отсчет промежутка времени, а зависит только от его продолжительности. Ожидаемое число выплат в банк за неделю равно 2. Исследуем, какова вероятность поступления в банк за месяц 7 выплат и найдем вероятность того, что интервал времени между двумя соседними выплатами меньше 2 дней.

Решение По условию задачи поток выплат можно считать простейшим с интенсивностью =2 (за неделю). Следовательно, число выплат, поступивших за промежуток времени =4 недели (1 месяц), распределено по закону Пуассона. Интервалы времени между двумя последовательными выплатами в простейшем потоке имеют показательный закон распределения.

Решение Пусть X() - дискретная случайная величина, представляющая собой число выплат, поступивших за промежуток времени. Она распределена по закону Пуассона. M(X)=D(X)= Тогда - вероятность того, что за промежуток времени в потоке наступят точно m событий равна Следовательно, при интенсивности потока выплат =2 вероятность поступления в банк за месяц (=4) 7 выплат (m=7) равна

Решение Пусть непрерывная случайная величина T - промежуток времени между двумя любыми соседними выплатами (событиями простейшего потока). Она имеет показательный закон распределения. M(T)=1/ , D(T)=1/ 2 Тогда вероятность P(T

Задачи для самостоятельного решения 1. Обычно студент приходит на остановку ровно в 8 часов утра и, сев в первый пришедший автобус, идущий в направлении университета, вовремя прибывает на занятия, которые начинаются ровно в 9 утра. Интервалы движения автобуса составляют в среднем 10 минут, а время в пути автобуса равно 30 минутам. Пусть поток автобусов является простейшим. Найдите вероятность того, что студент все же опоздает на занятия.

Задачи для самостоятельного решения 2. Поток заявок, поступающих в некоторую систему массового обслуживания, достаточно моделируется простейшим. При изучении опытных данных рассматривалось 200 выбранных наудачу промежутков времени длиной в 2 мин. Оказалось, что число тех из них, в которых не было зарегистрировано ни одной заявки, равно 27. Найти математическое ожидание и среднее квадратическое отклонение числа заявок за 1 час.

Основные понятия Под системой S будем понимать всякое целостное множество взаимосвязанных элементов, которое нельзя расчленить на независимые подмножества. Если система S с течением времени t изменяет свои состояния S(t) случайным образом, то говорят, что в системе S протекает случайный процесс. В любой момент времени система пребывает только в одном из состояний, то есть для любого момента времени t найдется единственное состояние Si такое, что S(t) = Si. Множество состояний может быть дискретно (техническое состояние объекта: исправен - неисправен, загружен - находится в простое; численность персонала; количество объектов, ожидающих обслуживания в очереди) или непрерывно (доход, объем производства).

Основные понятия В случае дискретного множества состояний система меняет свои состояния скачком (мгновенно). В случае же непрерывного множества состояний переход системы происходит непрерывно (плавно). В зависимости от времени пребывания системы в каждом состоянии различают процессы с дискретным временем (искусственная числовая сетка времени) и с непрерывным временем (физическое время, переход системы из одного состояния в другое может осуществляться в любой момент времени). Случайный процесс, протекающий в системе S, называется Марковским, если он обладает свойством отсутствия последствия, состоящим в том, что для каждого момента времени t 0 вероятность любого состояния S(t) системы S в будущем (при t>t 0) зависит только от ее состояния S(t 0) в настоящем (при t=t 0) и не зависит от того, как и сколько времени развивался этот процесс в прошлом (при t>t 0).

А. А. Марков (1856 - 1922) Андрей Андреевич Марков - старший - выдающийся русский математик, разработавший основы теории случайных процессов без последействия, которые в математике называют Марковскими процессами в его честь. А. А. Марков - старший известен также как давший вероятностное обоснование метода наименьших квадратов (МНК), приведший одно из доказательств предельной теоремы теории вероятностей и многое другое.

Виды Марковских процессов Дискретные состояния и дискретное время (цепь Маркова) Непрерывные состояния и дискретное время (Марковские последовательности) Дискретные состояния и непрерывное время (непрерывная Марковская цепь) Непрерывные состояния и непрерывное время. На практике большинство задач по Марковским процессам описываются с помощью Марковских цепей с дискретным или непрерывным временем.

Марковские цепи Цепью Маркова называют такую последовательность случайных событий, в которой вероятность каждого события зависит только от состояния, в котором процесс находится в текущий момент и не зависит от более ранних состояний.

Задание Марковской цепи множеством состояний S = {s 1, …, sn}, событием является переход из одного состояния в другое в результате случайного испытания вектором начальных вероятностей (начальным распределением) p(0) = {p(0)(1), …, p(0)(n)}, определяющим вероятности p(0)(i) того, что в начальный момент времени t = 0 процесс находился в состоянии si матрицей переходных вероятностей P = {pij}, характеризующей вероятность перехода процесса с текущим состоянием si в следующее состояние sj, при этом сумма вероятностей переходов из одного состояния равна 1

Виды Марковских цепей Марковская цепь называется однородной, если переходные вероятности от времени не зависят, то есть от шага k к шагу (k+1) не меняются. Разложимые Марковские цепи содержат невозвратные состояния, называемые поглощающими. Из поглощающего состояния нельзя перейти ни в какое другое. На графе поглощающему состоянию соответствует вершина, из которой не выходит ни одна дуга. Эргодические Марковские цепи описываются сильно связанным графом. В такой системе возможен переход из любого состояния в любое состояние за конечное число шагов.

Цель моделирования - определить вероятность системы находится в j-ом состоянии после k-го шага. Обозначим эту вероятность - однородная Марковская цепь - неоднородная Марковская цепь

Задача № 1 Некоторая совокупность рабочих семей поделена на три группы: 1 – семьи, не имеющие автомашины и не намеревающиеся ее приобрести; 2 – семьи, не имеющие автомашины, но собирающиеся ее приобрести, и, наконец, 3 – семьи, имеющие автомашину. Статистические обследования дали возможность оценить вероятность перехода семей из одной группы на протяжении года в другую. При этом матрица перехода оказалась такой:

Задача № 1 Найти: а)вероятность того, что семья, не имевшая машины и не собиравшаяся ее приобрести, будет находиться в той же ситуации через 2 года; б) вероятность того, что семья, не имевшая автомашины и намеревающаяся ее приобрести, будет иметь автомашину через 2 года. (выполнить решение пункта (б) данной задачи самостоятельно)

Решение задачи № 1 а) Дано: т. е. вектор начальных вероятностей p(0)=(1, 0, 0) (сейчас система в состоянии 1) Найти: (через 2 года в состоянии 1) Найдем вероятности системы оказаться в каждом из состояний через 1 год (умножение вектора начальных вероятностей на 1 столбец матрицы переходных вероятностей) (умножение вектора начальных вероятностей на 2 столбец матрицы переходных вероятностей) (умножение вектора начальных вероятностей на 3 столбец матрицы переходных вероятностей)

Решение задачи № 1 Получим вектор вероятностей через 1 год В нашем случае это 1 -ая строка матрицы переходных вероятностей Найдем вероятности системы оказаться в 1 состоянии через 2 года (умножение вектора вероятностей через 1 год, т. е. 1 -ой строки матрицы переходных вероятностей на 1 -ый столбец матрицы переходных вероятностей)

Решение задачи № 1 Вычисления: Ответ: вероятность того, что семья, не имевшая машины и не собиравшаяся ее приобрести, будет находиться в той же ситуации через 2 года равна 0, 64

Задача № 2 Предположим, что некая фирма осуществляет доставку оборудования по Москве: в северный округ (обозначим А), южный (В) и центральный (С). Фирма имеет группу курьеров, которая обслуживает эти районы. Понятно, что для осуществления следующей доставки курьер едет в тот район, который на данный момент ему ближе. Статистически было определено следующее: после осуществления доставки в А следующая доставка в 30 случаях осуществляется в А, в 30 случаях – в В и в 40 случаях – в С; после осуществления доставки в В следующая доставка в 40 случаях осуществляется в А, в 40 случаях – в В и в 20 случаях – в С; после осуществления доставки в С следующая доставка в 50 случаях осуществляется в А, в 30 случаях – в В и в 20 случаях – в С. Таким образом, район следующей доставки определяется только предыдущей доставкой.

Задача № 2 Если курьер стартует из центрального округа, какова вероятность того, что осуществив две доставки, он будет в южном округе? Выполните решение задачи самостоятельно: Составьте матрицу переходных вероятностей Нарисуйте граф данного процесса Вычислите искомую вероятность

Предельные вероятности Для эргодических цепей при достаточно большом времени функционирования (t стремится к бесконечности) наступает стационарный режим, при котором вероятности состояний системы не зависят от времени и не зависят от распределения вероятностей в начальный момент времени. Такие вероятности называются предельными (или финальными, стационарными) вероятностями состояний, они показывает среднее относительное время пребывания системы в определенном состоянии. Например, если предельная вероятность i-го состояния pi=0. 5, то это означает, что в среднем половину времени система находится в i-ом состоянии.

Предельные вероятности Пусть xi – предельные вероятности (i=1. . n), где n – число состояний. Тогда xi являются единственным решением системы линейных уравнений. В данную систему входят уравнения:

Пример Матрица переходных вероятностей (число состояний n=2) и графическое изображение Марковского процесса: Предельные вероятности x 1 и x 2 можно найти, решив систему

Задача № 3 Две машины А и В сдаются в аренду по одной и той же цене. Эти машины имеют следующие матрицы переходных вероятностей: где 1 – состояние, когда машина работает хорошо; 2 – состояние, когда машина требует регулировки. Определить вероятности для обеих машин. Какую машину стоит арендовать?

Задача № 4 Посетитель банка с намерением получить кредит проходит ряд проверок (состояний): е 1 – оформление документов; е 2 – кредитная история; е 3 – возвратность; е 4 – платежеспособность. По результатам проверки возможны два исхода: отказ в выдаче кредита (е 6) и получение кредита (е 5).

Задача № 4 Требуется: a) описать данный процесс как Марковскую цепь и построить переходную матрицу (выполнить самостоятельно); б) найти среднее время получения положительного и отрицательного результата (решение в Excel).

Вычислительные технологии

Том 13, Специальный выпуск 5, 2008

Исследование полумарковского потока событий

А. А. Назаров, С. В. Лопухова Томский государственный университет, Россия e-mail: nazarov@f pmk. tsu. ru, lopuchovasv@mail. ru

И.Р. Гарайшина

Филиал Кемеровского государственного университета в г. Анжеро-Судженске, Россия e-mail: [email protected]

In the submitted work, the semimarkovian process is considered. Limiting model is considered. Results of analytical treatment of limiting model are compared with results, obtained by the asymptotical method.

Введение

Существует проблема расширения класса математических моделей потоков однородных событий. Зачастую классические модели случайных потоков событий не могут быть адекватны реальным информационным, телекоммуникационным потокам. Моделей пуассоповского и простейшего потоков часто бывает недостаточно для более правдоподобного, приближенного к реальности описания входящих потоков для систем массового обслуживания. Несмотря на то что существуют потоки фазового типа и модулированные пуассоновские потоки, которые более адекватны реальным ситуациям, большой интерес представляют модели полумарковского потока, частным случаем которых являются потоки марковского восстановления и все вышеперечисленные потоки. Методы исследования таких моделей достаточно сложны и приводят к значительным математическим проблемам. Поэтому наряду с задачей расширения классов потоков существует проблема развития методов их исследования.

1. Математическая модель

Случайным потоком однородных событий (потоком) будем называть упорядоченную последовательность

t\ < ¿2 < ■ ■ ■

случайных величин tm - моментов наступления событий в потоке.

Пусть задана полумарковская матрица A(x) с элемента ми Aklk2 (x), Матрн ца P = lim A(x) является стохастической, поэтому при заданном начальном распределении

она определяет некоторую цепь Маркова k (tm) с дискретным временем, которую будем называть вложенной в полумарковский поток цепью Маркова,

© Институт вычислительных технологий Сибирского отделения Российской академии наук, 2008.

А. А. Назаров, С. В. Лопухова, И. Р. Гарайшина

Случайный поток однородных событий будем называть полумарковским, если вероятностный закон формирования последовательности (1) определяется начальным распределением и равенствами

Ак1к2 (х) = Р {к(Ьт+1) = к2, Ьт+1 - Ьт < х ^^т) = к\ }

при всех т > 1.

Обозначим п(Ь) число событий полу марко веко го потока, наетуп ивших за время Ь па интервале .

Задачей исследования данной работы является установление распределения вероятностей Р(п, Ь) = Р{п(Ь) = п} при стационарном функционировании эргодичеекой цепи Маркова к (1т). Очевидно, процесс п(Ь) - немарковский, поэтому определим еще два случайных процесса: г(Ь) - длину интервала от момента времени Ь до момента наступления очередного события в рассматриваемом потоке, к(Ь) - непрерывный слева процесс с непрерывным временем, значение которого на интервале (Ьт,Ьт+1] постоянны и определяются равенствами к (Ь) = к (Ьт+1). В силу сделанных определений случайный процесс {к(Ь), п(Ь), г(Ь)} является трехмерным марковским процессом с непрерывным временем.

Заметим, что случайный процесс к(Ь) не является полумарковским в классическом определении , так как полумарковский процесс Б(Ь) непрерывен справа и, как указано в , для его переходных вероятностей не существует дифференциальных эволюционных уравнений Колмогорова, в то время как предложенный выше процесс {к(Ь), п(Ь), г(Ь)} - марковский, поэтому для его распределения вероятностей

Р (к, п, г,Ь) = Р {к(Ь) = к, п(Ь) = п, г(Ь) < г} (2)

нетрудно составить систему дифференциальных уравнений Колмогорова дР (к,п,г,Ь) дР (к,п,г,Ь) дР (к,п, 0,Ь) ^ дР (и,п - 1,0,Ь)

^ дГ (и,1Ь - 1, 0,Ь) А (\ 2-^-

дЬ дг дг ^ дг

Обозначим

Н(к, и, г, г) = ^ е"иПР(к,п,г,Ь),

где ] = ¡~ ~~ мнимая единица. Для этих функций из системы дифференциальных уравнений Колмогорова можно записать

дН (к,и,г,Ь) дН (к,и,г,Ь) дН (к, и, 0,Ь) ,и ^ дН (и, и, 0,Ь)

дЬ дг дг ^ дг

Обозначим Н (и,г,Ь) = {Н (1,и,г,Ь) ,Н (2,и,г,Ь),...} строку вектор-функции, тогда систему уравнений (3) перепишем в матричном виде

дН{и,г,г) _ дН{и,г,г) дН{и,0,г) Мц,г ч п т

дг дг + дг 1 [) "" [ }

решение которой удовлетворяет начальному условию H(u,z, 0) = R(z), где I - единичная матрица, а стационарное распределение R(z) двумерного марковского процесса {k(t), z(t)} является решением задачи Коши

<Ш = <Ш(1-Мг)),

и определяется равенством R{z) = seiт / (Р - A(x))dx, где aei = Здесь г - вектор-

строка стационарного распределения вероятностей значений вложенной цепи Маркова

k(tm); E - единичный вектор-столбец и матрица A = (P - A(x))dx.

2. Допредельная модель

Пусть имеем дифференциальное уравнение (4), решение H (u,z,t) которого удовлетворяет начальному условию H(u, z, 0) = R(z). Тогда преобразование Фурье - Стилтьесса

ф>(u,a,t) = / ejaz dz H (u, z, t) вектор-функ ции H (u,z,t) удовлетворяет уравнению

дф(и,а,Ь) . . дН (и, 0,Ь) , .*. . гЛ, .

т = ~заф{щ а, +-(е?иА*{а) - /) (5)

и начальному условию

ф(и,а, 0) = R*(a) = ^ ё>а2

где А*(а) = J е>а"2dA(z). Решение уравнения (5) имеет вид о

ф(и, а,1) = е~заЬ [ II*{а) + I (¿>иА*{а) - I) dт ] . (6)

Устремив Ь в бесконечность в выражении (6), получим преобразование Фурье по т

дН (и, 0,т) ^ ^ " л

от вектор-функции---. Выполнив обратное преобразование Фурье, определим,

I e-j*A*{aj) 1 da.

А. А. Назаров, С. В. Лопухова, И. Р. Рарайшшиа

Теперь равенство (6) можно записать в виде

ф(ща,г) = е-аЬ Я*(а) +

+ - / е]ат I е~зутК*(у) (/ - е>иА*(у)) 1 Ау (е"иА*(а) - /) <*г). (7)

Зная, что Н(и, ж,г) = Н(и,г) = ф(и, 0,1), получим выражение для вектор-функции Н (и,г):

Тогда распределение вероятностей Р(п, г) числа событий, наступивших за время г, явля-

ции Н(и,Ь) = МеЭип(Ь = Н(и,Ь)Е, оно имеет вид

1 С а1 Г 1 - е-™Ь

Р(п,1) = - е~зипНШ)Е(1и = - / -^-5

I - А* (у) А*(у)п-1Ейу, (8)

I - А* (у) Е<1у

Заключение

Выполняя асимптотические исследования полу марко веко го потока событий, аналогичные исследованию потоков марковского восстановления , получим, что асимптотику третьего порядка для характеристической функции можно записать в виде

МеГап(1) = ^«(ге^+^ае^+^аез*)

где коэффициенты 831, а2, аз3 для полумарковского потока определяются аналогично тому, как это сделано в работах . Полученные равенства (8) определяют распределение вероятностей Р(п,г) числа событий, наступивших в стационарном полумарковском потоке, заданном полумарковской матрицей А(х) и ее преобразованием А*(х) Фурье - Стилтьесса, Численная реализация формул (8) позволяет находить численные значения вероятностей Р(п, г) для достаточно широкого клаееа матриц А* (х) и значений г. Но возможности численной реализации ограничены вычислительными ресурсами. Для достаточно больших значений г естественно применить метод асимптотического анализа полумарковского потока аналогично тому, как это выполнено для потока марковского восстановления в работе и просеянного потока марковского восстановления в работе . Наличие численного алгоритма (8) позволяет определить область применения асимптотических результатов. Для рассмотренных потоков с тремя состояниями вложенной цепи Маркова расстояние Колмогорова - Смирнова между распределениями,

полученными асимптотически и по формулам (8), не превосходит 2-3 % для определенных значений t = Т, это позволяет утверждать, что при t > Т эффективно применение асимптотических результатов, а при t < Т целесообразно использовать формулы (8), полученные в данной работе.

Список литературы

Королюк B.C. Стохастические модели систем. Киев: Наук, думка, 1989. 208 с.

Назаров A.A., Лопухова C.B. Исследование потока марковского восстановления асимптотическим методом второго порядка // Матер. Междунар. науч. конф. "Математические методы повышения эффективности функционирования телекоммуникационных сетей". Гродно, 2007. С. 170-174.

Лопухова C.B. Исследование полумарковского потока асимптотическим методом третьего порядка // Матер. VI Междунар. научно-практ. конф. "Информационные технологии и математическое моделирование". Томск: Изд-во Том. ун-та, 2007. Ч. 2. С. 30-34.

Марковские процессы были выведены учеными в 1907 году. Ведущие математики того времени развивали эту теорию, некоторые совершенствуют ее до сих пор. Эта система распространяется и в других научных областях. Практические цепи Маркова применяются в различных сферах, где человеку необходимо прибывать в состоянии ожидания. Но, чтобы четко понимать систему, нужно владеть знаниями о терминах и положениях. Главным фактором, который определяет Марковский процесс, считаются случайности. Правда, он не схож с понятием неопределенности. Для него присущи определенные условия и переменные.

Особенности фактора случайности

Это условие подчиняется статической устойчивости, точнее, ее закономерностям, которые не учитываются при неопределенности. В свою очередь, данный критерий позволяет использовать математические методы в теории Марковских процессов, как отмечал ученый, изучавший динамику вероятностей. Созданная им работа касалась непосредственно этих переменных. В свою очередь, изученный и развившийся случайный процесс, имеющий понятия состояния и перехода, а также применяемый в стохастических и математических задачах, при этом дает возможность этим моделям функционировать. Кроме всего прочего, он дает возможность совершенствоваться другим важным прикладным теоретическим и практическим наукам:

  • диффузионная теория;
  • теория массового обслуживания;
  • теория надежности и прочего;
  • химия;
  • физика;
  • механика.

Сущностные особенности не запланированного фактора

Этот Марковский процесс обусловлен случайной функцией, то есть любое значение аргумента считается данной величиной или той, что принимает заранее заготовленный вид. Примерами служат:

  • колебания в цепи;
  • скорость движения;
  • шероховатость поверхности на заданном участке.

Также принято считать, что фактом случайной функции выступает время, то есть происходит индексация. Классификация имеет вид состояния и аргумент. Этот процесс может быть с дискретными, а также непрерывными состояниями или временем. Причем случаи разные: все происходит или в одном, или в другом виде, или одновременно.

Детальный разбор понятия случайности

Построить математическую модель с необходимыми показателями эффективности в явно аналитическом виде было достаточно сложно. В дальнейшем реализовать данную задачу стало возможно, ведь возник Марковский случайный процесс. Разбирая детально это понятие, необходимо вывести некоторую теорему. Марковский процесс - это физическая система, изменившая свое положение и состояние, которые заранее не были запрограммированы. Таким образом, выходит, что в ней протекает случайный процесс. Например: космическая орбита и корабль, который выводится на нее. Результат достигнут лишь благодаря каким-то неточностям и корректировкам, без этого не реализуется заданный режим. Большинству происходящих процессов присущи случайность, неопределенность.

По существу вопроса, практически любой вариант, который можно рассмотреть, будет подвержен этому фактору. Самолет, техническое устройство, столовая, часы - все это подвержено случайным изменениям. Причем данная функция присуща любому происходящему процессу в реальном мире. Однако пока это не касается индивидуально настроенных параметров, происходящие возмущения воспринимаются как детерминированные.

Понятие Марковского случайного процесса

Проектировка какого-либо технического или механического прибора, устройства вынуждает создателя учитывать различные факторы, в частности неопределенности. Вычисление случайных колебаний и возмущений возникает в момент личной заинтересованности, например, при реализации автопилота. Некоторые процессы, изучаемые в науках вроде физики и механики, являются таковыми.

Но обращать на них внимание и проводить скрупулезные исследования следует начинать в тот момент, когда это непосредственно нужно. Марковский случайный процесс имеет следующее определение: характеристика вероятности будущего вида зависит от состояния, в котором он находится в данный момент времени, и не имеет отношения к тому, как выглядела система. Итак, данное понятие указывает на то, что результат можно предсказать, учитывая лишь вероятность и забыв про предысторию.

Подробное токование понятия

В настоящий момент система находится в определенном состоянии, она переходит и меняется, предсказать, что будет дальше, по сути, невозможно. Но, учитывая вероятность, можно сказать, что процесс будет завершен в определенном виде или сохранит предыдущий. То есть будущее возникает из настоящего, забывая о прошлом. Когда система или процесс переходит в новое состояние, то предысторию обычно опускают. Вероятность в Марковских процессах играет немаловажную роль.

Например, счетчик Гейгера показывает число частиц, которое зависит от определенного показателя, а не от того, в какой именно момент оно пришло. Здесь главным выступает вышеуказанный критерий. В практическом применении могут рассматриваться не только Марковские процессы, но и подобные им, к примеру: самолеты участвуют в бою системы, каждая из которых обозначена каким-либо цветом. В данном случае главным критерием вновь выступает вероятность. В какой момент произойдет перевес в числе, и для какого цвета, неизвестно. То есть этот фактор зависит от состояния системы, а не от последовательности гибели самолетов.

Структурный разбор процессов

Марковским процессом называется любое состояние системы без вероятностного последствия и без учета предыстории. То есть, если включить будущее в настоящее и опустить прошлое. Перенасыщение данного времени предысторией приведет к многомерности и выведет сложные построения цепей. Поэтому лучше эти системы изучать простыми схемами с минимальными числовыми параметрами. В результате эти переменные считаются определяющими и обусловленными какими-либо факторами.

Пример Марковских процессов: работающий технический прибор, который в этот момент исправен. В данном положении вещей интерес представляет вероятность того, что устройство будет функционировать еще длительный период времени. Но если воспринимать оборудование как отлаженное, то этот вариант уже не будет принадлежать к рассматриваемому процессу ввиду того, что нет сведений о том, сколько аппарат работал до этого и производился ли ремонт. Однако если дополнить эти две переменные времени и включить их в систему, то ее состояние можно отнести к Марковскому.

Описание дискретного состояния и непрерывности времени

Модели Марковских процессов применяются в тот момент, когда необходимо пренебречь предысторией. Для исследования в практике наиболее часто встречаются дискретные, непрерывные состояния. Примерами такой ситуации являются: в структуру оборудования входят узлы, которые в условиях рабочего времени могут выйти из строя, причем происходит это как незапланированное, случайное действие. В результате состояние системы подвергается ремонту одного или другого элемента, в этот момент какой-то из них будет исправен или они оба будут отлаживаться, или наоборот, являются полностью налаженными.

Дискретный Марковский процесс основан на теории вероятности, а также является переходом системы из одного состояния в другое. Причем данный фактор происходит мгновенно, даже если происходят случайные поломки и ремонтные работы. Чтобы провести анализ такого процесса, лучше использовать графы состояний, то есть геометрические схемы. Системные состояния в таком случае обозначены различными фигурами: треугольниками, прямоугольниками, точками, стрелками.

Моделирование данного процесса

Марковские процессы с дискретными состояниями - возможные видоизменения систем в результате перехода, осуществляющегося мгновенно, и которые можно пронумеровать. Для примера можно построить график состояния из стрелок для узлов, где каждая будет указывать путь различно направленных факторов выхода из строя, рабочего состояния и т. д. В дальнейшем могут возникать любые вопросы: вроде того, что не все геометрические элементы указывают верное направление, ведь в процессе способен испортиться каждый узел. При работе важно учитывать и замыкания.

Марковский процесс с непрерывным временем происходит тогда, когда данные заранее не фиксируются, они происходят случайно. Переходы ранее были не запланированы и происходят скачками, в любой момент. В данном случае вновь главную роль играет вероятность. Однако, если сложившаяся ситуация относится к указанной выше, то для описания потребуется разработать математическую модель, но важно разбираться в теории возможности.

Вероятностные теории

Данные теории рассматривают вероятностные, имеющие характерные признаки вроде случайного порядка, движения и факторов, математические задачи, а не детерминированные, которые являются определенными сейчас и потом. Управляемый Марковский процесс имеет фактор возможности и основан на нем. Причем данная система способна переходить в любое состояние мгновенно в различных условиях и временном промежутке.

Чтобы применять эту теорию на практике, необходимо владеть важными знаниями вероятности и ее применения. В большинстве случаев каждый пребывает в состоянии ожидания, которое в общем смысле и есть рассматриваемая теория.

Примеры теории вероятности

Примерами Марковских процессов в данной ситуации могут выступать:

  • кафе;
  • билетные кассы;
  • ремонтных цеха;
  • станции различного назначения и пр.

Как правило, люди ежедневно сталкиваются с этой системой, сегодня она носит название массового обслуживания. На объектах, где присутствует подобная услуга, есть возможность требования различных запросов, которые в процессе удовлетворяются.

Скрытые модели процесса

Такие модели являются статическими и копируют работу оригинального процесса. В данном случае основной особенностью является функция наблюдения за неизвестными параметрами, которые должны быть разгаданы. В результате эти элементы могут использоваться в анализе, практике или для распознавания различных объектов. Обычные Марковские процессы основаны на видимых переходах и на вероятности, в скрытой модели наблюдаются только неизвестные переменные, на которые оказывает влияние состояние.

Сущностное раскрытие скрытых Марковских моделей

Также она имеет распределение вероятности среди других значений, в результате исследователь увидит последовательность символов и состояний. Каждое действие имеет распределение по вероятности среди других значений, ввиду этого скрытая модель дает информацию о сгенерированных последовательных состояниях. Первые заметки и упоминания о них появились в конце шестидесятых годов прошлого столетия.

Затем их стали применять для распознавания речи и в качестве анализаторов биологических данных. Кроме того, скрытые модели распространились в письме, движениях, информатике. Также эти элементы имитируют работу основного процесса и пребывают в статике, однако, несмотря на это, отличительных особенностей значительно больше. В особенности данный факт касается непосредственного наблюдения и генерирования последовательности.

Стационарный Марковский процесс

Данное условие существует при однородной переходной функции, а также при стационарном распределении, считающимся основным и, по определению, случайным действием. Фазовым пространством для данного процесса является конечное множество, но при таком положении вещей начальная дифференциация существует всегда. Переходные вероятности в данном процессе рассматриваются при условиях времени или дополнительных элементах.

Детальное изучение Марковских моделей и процессов выявляет вопрос об удовлетворении равновесия в различных сферах жизни и деятельности общества. С учетом того, что данная отрасль затрагивает науку и массовое обслуживание, ситуацию можно исправить, проанализировав и спрогнозировав исход каких-либо событий или действий тех же неисправных часов или техники. Чтобы полностью использовать возможности Марковского процесса, стоит детально в них разбираться. Ведь этот аппарат нашел широкое применение не только в науке, но и в играх. Эта система в чистом виде обычно не рассматривается, а если и используется, то только на основе вышеупомянутых моделей и схем.

Потоком событий называют последовательность однородных собы­тий, появляющихся одно за другим в случайные моменты времени. При­меры: поток вызовов на телефонной станции; поток сбоев ЭВМ; поток заявок на проведение расчетов в вычислительном центре и т.п.

Поток событий наглядно изображается рядом точек с абсциссами Q 1, Q 2 , ..., Q n , ... (рис. 6.15) с интервалами между ними: Т 1 = Q 2 - Q 1, T 2 = Q 3 -Q 2 , ..., Т п = Q n +1 - Q n . При его вероятностном описании поток событий может быть представлен как последовательность случайных ве­личин:

Q 1 ; Q 2 = Q 1 + T 1 ; Q 3 = Q 1 + T 1 + T 2 ; и т.д.

На рисунке в виде ряда точек изображен не сам поток событий (он случаен), а только одна его конкретная реа­лизация.

Поток событий называется стационар­ным, если его вероятностные характеристики не зависят от выбора начала отсчета или, более конкретно, если вероятность попадания того или другого числа событий на любой интервал времени зависит только от длины этого интервала и не зависит от того, где именно на оси 0-t он расположен.

Рисунок 6.15 – Реализация потока событий

Поток событий называется ординарным, если вероятность попадания на элементарный интервал времени двух или более событий пренебре­жимо мала по сравнению с вероятностью попадания одного события.

Рисунок 6.16 – Поток событий как случайный процесс

Ординарный поток событий можно интерпретировать как случайный процесс Х(t) - число событий, появившихся до момента t(рис. 6.16). Случайный процесс Х(t) скачкообразно возрастает на одну единицу в точках Q ,Q 2 ,...,Q n .

Поток событий называется потоком без последействия, если число собы­тий, попадающих на любой интервал времени , не зависит от того, сколь­ко событий попало на любой другой не пересекающийся с ним интервал. Практически отсутствие последействия в потоке означает, что события, образующие поток, появляются в те или другие моменты времени незави­симо друг от друга.

Поток событий называется простейшим, если он стационарен, ордина­рен и не имеет последействия. Интервал времени T между двумя соседними событиями простейшего потока имеет показательное распределение

(при t>0 ); (6.21)

где / М [Т] -величина, обратная среднему значению интервала Т.

Ординарный поток событий без последействия называется пуассоновским. Простейший поток является частным случаем стационарного пуассоновского потока. Интенсивностью потока событий называется среднее число событий, приходящееся на единицу времени. Для стационарного потока ; для нестационарного потока она в общем случае зависит от времени: .

Марковские случайные процессы . Случайный процесс называют марковским , если он обладает следующим свойством: для любого момента времени t 0 вероят­ность любого состояния системы в будущем (при t >t 0 ) зависит только от ее состояния в настоящем (при t =t 0 ) и не зависит от того, каким обра­зом система пришла в это состояние.

В данной главе будем рассматривать только марковские процессы c дискретными состояниями S 1, S 2 , ...,S n . Такие процессы удобно иллюст­рировать с помощью графа состояний (рис. 5.4), где прямоугольниками (или кружками) обозначены состояния S 1 , S 2 , … системы S, а стрелками - возможные переходы из состояния в состояние (на графе отме­чаются только непосредственные переходы, а не переходы через другие состояния).

Рисунок 5.4 – Граф состояний случайного процесса

Иногда на графе состояний отмечают не только возможные пере­ходы из состояния в состояние, но и возможные задержки в прежнем состоянии; это изображается стрелкой («петлей»), направленной из данного состояния в него же, но можно обходиться и без этого. Число состояний системы может быть как конечным, так и бесконечным (но счетным).

Марковский случайный процесс с дискретными состояниями и дис­кретным временем обычно называют марковской цепью. Для такого про­цесса моменты t 1 , t 2 ..., когда система S может менять свое состояние, удобно рассматривать как последовательные шаги процесса, а в качестве аргумента, от которого зависит процесс, рассматривать не время t, а номер шага: 1, 2, . . ., k;…. Случайный процесс в этом случае характеризуется последовательностью состояний

если S(0) - начальное состояние системы (перед первым шагом); S(1) - состояние системы непосредственно после первого шага; ...; S(k) - со­стояние системы непосредственно после k-го шага....

Событие S i , (i= 1,2,...) является случайным событием, поэтому последо­вательность состояний (5.6) можно рассматривать как последователь­ность случайных событий. Начальное состояние S(0) может быть как заданным заранее, так и случайным. О событиях последовательности (5.6) говорят, что они образуют марковскую цепь.

Рассмотрим процесс с n возможными состояниями S 1, S 2 , ..., S n . Если обозначить через Х(t) номер состояния, в котором находится система S в мо­мент t, то процесс описывается целочисленной случай­ной функцией Х(t)>0 , возможные значения которой равны 1, 2,...,n . Эта функция совершает скачки от одного целочисленного значения к другому в заданные моменты t 1 , t 2 , ... (рис. 5.5) и является непрерывной слева, что отмечено точками на рис. 5.5.

Рисунок 5.5 – График случайного процесса

Рассмотрим одномерный закон распределения случайной функции Х(t). Обозначим через вероятность того, что после k -го шага [и до (k+1 )-го] система S будет в состоянии S i (i=1,2,...,n) . Веро­ятности р i (k) называются вероятностями состояний цепи Маркова. Очевидно, для любого k

. (5.7)

Распределение вероятностей состояний в начале процесса

p 1 (0) ,p 2 (0),…,p i (0),…,p n (0) (5.8)

называется начальным распределением вероятностей марковской цепи. В частности, если начальное состояние S(0) системы S в точности извест­но, например S(0)=S i , то начальная вероятность P i (0) = 1, а все остальные равны нулю.

Вероятностью перехода на k -м шаге из состояния S i в состояние S j называется условная вероятность того, что система после k -го шага окажется в состоянии S j при условии, что непосредственно перед этим (после k - 1 шагов) она находилась в состоянии S i . Вероятности перехода иногда называются также «переходными вероятностями».

Марковская цепь называется однородной, если переходные вероятности не зависят от номера шага, а зависят только от того, из какого состоя­ния и в какое осуществляется переход:

Переходные вероятности однородной марковской цепи Р ij образуют квадратную таблицу (матрицу) размером n * n :

(5.10)

. (5.11)

Матрицу, обладающую таким свойством, называют стохастической. Вероятность Р ij есть не что иное, как вероятность того, что система, при­шедшая к данному шагу в состояние S j , в нем же и задержится на очеред­ном шаге.

Если для однородной цепи Маркова заданы начальное распределение вероятностей (5.8) и матрица переходных вероятностей (5.10), то вероятности состояний системы могут быть опреде­лены по рекуррентной формуле

(5.12)

Для неоднородной цепи Маркова вероятности перехода в матрице (5.10) и формуле (5.12) зависят от номера шага k .

Для однородной цепи Маркова, если все состояния являются сущест­венными, а число состояний конечно, существует предел определяемый из системы уравнений и Сумма переходных вероятностей в любой строке матрицы равна единице.

При фактических вычислениях по формуле (5.12) надо в ней учитывать не все состояния S j , а только те, для которых переходные вероятности отличны от нуля, т.е. те, из которых на графе состояний ведут стрелки в состояние S i .

Марковский случайный процесс с дискретными состояниями и непрерывным временем иногда называют «непрерывной цепью Маркова» . Для такого процесса вероятность перехода из состояния S i в S j для любого момента времени равна нулю. Вместо вероятности перехода p ij рассматривают плотность вероятности перехода которая определяется как предел отношения вероятности перехода из состояния S i в состояние S j за малый промежуток времени , примыкающий к моменту t, к длине этого промежутка, когда она стремится к нулю. Плотность вероятности перехо­да может быть как постоянной (), так и зависящей от времени . В первом случае марковский случайный процесс с дискретными состояниями и непрерывным временем называется однородным. Типичный пример такого процесса - случайный процесс Х(t), представ­ляющий собой число появившихся до момента t событий в простейшем потоке (рис. 5.2).

При рассмотрении случайных процессов с дискретными состояниями и непрерывным временем удобно представлять переходы системы S из состояния в состояние как происходящие под влиянием некоторых по­токов событий. При этом плотности вероятностей перехода получают смысл интенсивностей соответствующих потоков событий (как только происходит первое событие в потоке с интенсивностью , система из со­стояния S i скачком переходит в Sj) . Если все эти потоки пуассоновские, то процесс, протекающий в системе S, будет мар­ковским.

Рассматривая марковские случайные процессы с дискретными со­стояниями и непрерывным временем, удобно пользоваться гра­фом состояний, на котором против каждой стрелки, ведущей из состоя­ния S i , в S j проставлена интенсивность потока событий, переводящего систему по данной стрелке (рис.5.6). Такой граф состояний называ­ют размеченным.

Вероятность того, что система S, находящаяся в состоянии S i , за эле­ментарный промежуток времени () перейдет в состояние S j (эле­мент вероятности перехода из S i в S j ), есть вероятность того, что за это время dt появится хотя бы одно событие потока, переводящего систему S из S i в S j . С точностью до бесконечно малых высших порядков эта вероятность равна .

Потоком вероятности перехода из состояния Si в Sj называется вели­чина (здесь интенсивность может быть как зависящей, так и не­зависящей от времени).

Рассмотрим случай, когда система S имеет конечное число состояний S 1, S 2 ,..., S п. Для описания случайного процесса, протекающего в этой системе, применяются вероятности состояний

(5.13)

где р i (t) - вероятность того, что система S в момент t находится в состоя­нии S i:

. (5.14)

Очевидно, для любого t

Для нахождения вероятностей (5.13) нужно решить систему диф­ференциальных уравнений (уравнений Колмогорова), имеющих вид

(i=1,2,…,n),

или, опуская аргумент t у переменных р i ,

(i=1,2,…,n ). (5.16)

Напомним, что интенсивности потоков ij могут зависеть от времени .

Уравнения (5.16) удобно составлять, пользуясь размеченным гра­фом состояний системы и следующим мнемоническим правилом: произ­водная вероятности каждого состояния равна сумме всех потоков веро­ятности, переводящих из других состояний в данное, минус сумма всех потоков вероятности, переводящих из данного состояния в другие. Напри­мер, для системы S, размеченный граф состояний которой дан на рис. 10.6, система уравнений Колмогорова имеет вид

(5.17)

Так как для любого t выполняется условие (5.15), можно любую из вероятностей (5.13) выразить через остальные и таким образом уменьшить число уравнений на одно.

Чтобы решить систему дифференциальных уравнений (5.16) для вероятностей состояний р 1 (t) p 2 (t ), …, p n (t ), нужно задать начальное распределение вероятностей

p 1 (0),p 2 (0), …,p i (0), …,p n (0 ), (5.18)

сумма которых равна единице.

Если, в частности, в начальный момент t = 0 состояние системы S в точности известно, например, S(0) =S i , и р i (0) = 1, то остальные вероятноcти выражения (5.18) равны нулю.

Во многих случаях, когда процесс, протекающий в системе, длится достаточно долго, возникает вопрос о предельном поведении ве­роятностей р i (t) при . Если все потоки событий, переводящие систему из состояния в состояние, являются простейшими (т.е. стацио­нарными пуассоновскими с постоянными интенсивностями ), в неко­торых случаях существуют финальные (или предельные) вероятности со­стояний

, (5.19)

независящие от того, в каком состоянии система S находилась в началь­ный момент. Это означает, что с течением времени в системе S устанавли­вается предельный стационарный режим, в ходе которого она переходит из состояния в состояние, но вероятности состояний уже не меняются. В этом предельном режиме каждая финальная вероятность может быть истолкована как среднее относительное время пребывания системы в дан­ном состоянии.

Систему, в которой существуют финальные вероятности, называют эргодической. Если система S имеет конечное число состояний S 1 , S 2 , . . . , S n , то для су­ществования финальных вероятностей достаточно, чтобы из любого со­стояния системы можно было (за какое-то число шагов) перейти в любое другое. Если число состояний S 1 , S 2 , . . . , S n , бесконечно, то это условие перестает быть достаточным, и существование финальных вероятностей зависит не только от графа состояний, но и от интенсивностей .

Финальные вероятности состояний (если они существуют) могут быть получены решением системы линейных алгебраических уравнений, они получаются из дифференциальных уравнений Колмогорова, если по­ложить в них левые части (производные) равными нулю. Однако удобнее составлять эти уравнения непосредственно по графу состояний, пользу­ясь мнемоническим правилом: для каждого состояния суммарный выхо­дящий поток вероятности равен суммарному входящему. Например, для системы S, размеченный граф состояний которой дан на р ис. 5.7, уравнения для финальных вероятностей состояний имеют вид

(5.20)

Таким образом, получается (для системы S с п состояниями) система n однород­ных линейных алгебраических уравнений с n неизвест­ными р 1, р 2 , ..., р п. Из этой системы можно найти неизвестные р 1 , р 2 , . . . , р п с точностью до произвольного множителя. Чтобы найти точные значения р 1 ,..., р п, к уравнениям добавляют нормировочное условие p 1 + p 2 + … + p п =1, пользуясь которым можно выразить любую из ве­роятностей p i через другие (и соответственно отбросить одно из уравне­ний).

Вопросы для повторения

1 Что называют случайной функцией, случайным процессом, сечением случайного процесса, его реализацией?

2 Как различаются случайные процессы по своей структуре и характеру протекания во времени?

3 Какие законы распределения случайной функции применяют для описания случайной функции?

4 Что представляет собой функция математического ожидания случайной функции, в чем ее геометрический смысл?

5 Что представляет собой функция дисперсии случайной функции, в чем ее геометрический смысл?

6 Что представляет собой корреляционная функция случайного процесса, и что она характеризует?

7 Каковы свойства корреляционной функции случайного процесса?

8 Для чего введено понятие нормированной корреляционной функции?

9 Объясните как по опытным данным получить оценки функций характеристик случайного процесса?

10 В чем отличие взаимной корреляционной функции от автокорреляционной функции?

11 Какой случайный процесс относят к стационарным процессам в узком смысле и в широком?

12 В чем заключается свойство эргодичности стационарного случайного процесса?

13 Что понимают под спектральным разложением стационарного случайного процесса и в чем его необходимость?

14 Какова связь между корреляционной функцией и спектральной плотностью стационарной случайной функции?

15 Что называют простейшим потоком событий?

16 Какой случайный процесс называют марковской цепью? В чем заключается методика расчета ее состояний?

17 Что представляет собой марковский случайный процесс с дискретными состояниями и непрерывным временем?

M(U)=10, D(U)=0.2 .

6.5 Найти нормированную взаимную корреляционную функцию случайных функций X(t)=t*U и Y(t)=(t+1)U , где U – случайная величина, причем дисперсия D(U)=10 .